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Abstract 

First of all, we find arithmetic identities for the number of representations of a 

positive integer as a sum of three squares and a sum of three triangular numbers 

by employing two beautiful theta function identities of Ramanujan. We also use 

several Lambert series identities to establish infinite families of cougruellces modulo 

3 and modulo 7 of the coefficients of some theta functions. 

Recently, Sandon and Zanella conjectured 29 highly non-trivial colored partition 

identities. In this thesis, we establish 17 of them, find analogolls colored partition 

identities of the remaining 12 and also find some Hew colored partition identities 

of the same type by using the theory of Ramanujan's theta functions and modular 

equations. Finally, we interpret several modular equations of Ramanujan involving 

multipliers in terms of partitions, overpartitions, overpartition pairs and regular 

partitions. 
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Chapter 1 

Introduction 

The thesis consists of five chapters including this introductory chapter. We 

briefly introduce the basic concepts and terminology in the following few subsections. 

1.1 Ramanujan's theta functions and modular equa
tions 

Ramanujan's general theta function f(a, b) is defined 8...<; 

00 

f(a, b):= L an(n+l)/2bn(n-l)/2, labl < 1. (1.1.1) 
n=-oo 

Jacobi's famous triple product identity [13, p. 35, Entry 19] takes the form 

f( a, b) = (-a; ab )oo( -b; ab )oo( ab; ab )00' 

where, as customary, we use the standard notation for q-products 

n-l 

(a; q)o = 1, (a; q)n = II (1 - aqk), n>l - , 
k=O 

(a; q)oo = lim (a; q)r" Iql < 1. n-)oo 

It can be easily shown that [13, p. 34, Entry 18] /(0" b) satisfies 

J (a, b) = /(b, a), 

f(l, a) = 2f(a, 0,3), 

f(-l,a)=O, 

1 

(1.1.2) 
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and, if n is an integer, 

J(a, b) = an(n+l)/2bn(n-l)/2 J(a(ab)", b(ab)-n). 

The three special cases of J (a, b) are 

00 

!.p(q) := J(q, q) = L qk
2 

= (-q; q2)~(q2; q2)oo, (1.1.3) 
k=-oo 

(1.1.4) 

00 00 

f( -q) := f( -q, _q2) = L( _1)k qk(3k-l)/2 + L( _1)kqk(3k+l)/2 = (q; q)oo, (1.1.5) 

k=O k=l 

where here and throughout the sequel, we assume that Iql < 1. The product rep

resentations in (1.1.3)-(1.1.5) arise from (1.1.2) and the last equality in (1.1.5) is 

Euler's famous pentagonal number theorem. 

Next, we give the definition of a modular equation as uuderstood by Ri1.I1li1.nujan. 

First of all, the complete elliptic integral of the first kind K(k) is defined by 

(1.1.6) 

where the series representation is found by expanding the integrand in a binomial 

series and integrating termwise and '2 Fl is one of the hypergeometric functions pFp- 1 , 

P ~ I, which are defined by 

Ixl < I, 

where b.'s are not nonpositive integers. The number k. is called the modulus of 

K := K(k), and k' := Jf=k2 is called the complementary modulus. Let K, K', £ 

and £' denote complete elliptic integrals of the first kind associated with the moduli 

k, k', e and e', respectively. Suppose that the equality 

K' £' 
rt.- =-

K L 
(l.1. 7) 
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holds for some positive integer n. Then a modular equation of degree n is a relation 

between the moduli k and £ which is induced by (1.1.7). Ramanujan recorded his 

modular equations in terms of 0: and fJ, where Ct = k2 and fJ = £2. It is then said 

that fJ has degree n over 0:. For example, we recall from [13, Entry 5(ii), p. 230] 

that if (3 has degree 3 over 0:, then 

(0:(3)1/4 + ((1 - 0:)(1 - fJ))1/4 = 1. 

The corresponding multiplier m is defined by 

K 
'Tn, =-

L' 

If q = exp( -7r K' I K), then one of the fundamental results in the theory of elliptic 

functions [13, Entry 6, p. 101] is given by 

<p2(q) = ~K(k) = 2F1 (~,~; 1; k2) , 

where <p(q) is as defined in (1.1.3). 

The above identity enables one to derive formulas for <p, 'ljJ and f at different 

arguments in terms of 0:, q, and z := 2F1 (~, ~; 1; 0:). In particular, Ramanujan 

recorded the following identities. 

Lemma 1.1.1. [13, pp. 122-124, Entries 10, 11, 12] If 

( 
2F1 (~, ~; 1; 1 - 0:)) q = exp -7r---=-:7--~-'----

2F10, ~; 1; 0:) 

and z is as defined above, then 

<p(q) = y'Z, 

<p(-q) = y'Z(I- 0:)1/4, 

<p( _q2) = y'Z(1 _ 0:)1/8, 

'ljJ(q) = ~ (~) 1/8 

'ljJ(_q) = ~ (0:(1; Ct)) 1/8 

V;(q2) = ~y'Z (~) 1/4 

f(q) = y'Z (ex(l - ex)) 1/24 
16q 



and 

Ct 

( )

1/24 

f( -q) = vIz(l - Ct)1/24 -
16q 

f(_q2) = viz (a(l- a))1/12 
16q 

4 

Suppose that fJ has degree n over Q. If we replace q by qn above, then the same 

evaluations hold with a replaced by fJ and z replaced by Zn:= 2F1 (~,~; l;fJ). 

Ramanujan also studied "mixed" modular equations, in which four distinct mod

uli appear. We now define such a modular equation. Let K, 1<.."', L 1 , L~, L2 , L~, L3 , 

and L; denote complete elliptlc integrals of the first kind corresponding, in pairs, 

to the moduli fo, ..J!3, .JY, and ..fJ, and their complementary moduli, respectively. 

Let n1, n2, and n3 be positive integers such that 'n3 = nl'n2. Suppose that the 

equalities 

and (1.1.8) 

hold. Then a "mixed" modular equation is a relation among the moduli va, ..J{J, 

.JY, and ..fJ that is induced by (1.1.8). It is then said that fJ, "Y, and <5 are of degrees 

n1, n2, and n3, respectively, over a. The multiplier m connecting a and fJ and the 

multiplier m' connecting "Y and J are then defined by 

Zl , zn2 
'nL = - and m = -, 

Znl zn3 

where Zr = <p2(qr). For example, we recall from [13, p. 384, Entry l1(x)] that 

( 
fJ6) 1/4 + ((1 -#)(1 - (5)) 1/4 _ (fJ6(1 - fJ)(l - (5) ) 1/4 

a"Y (1 - a)(1- "Y) a"Y(l - 0')(1 - "Y) 

_ 4 (fJ6(1 - fJ)(l - 6)) 1/6 = rnrn', 
a"Y(l - a)(l - "Y) 

where, fJ, "Y and <5 have degrees 3, 5 and 15, respectively, over a, and m and m' are 

the multipliers connecting a, fJ and "Y, 6, respectively. 
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1.2 Partitions 

A partztion A = (AI, A2, ... , Ak) of a positive integer n is an ordered set of positive 

integer parts Az such that n = Al + A2 + ... + Ak, Al 2: A2 2: ... 2: Ak· We also 

often write the partition A of n as Al + A2 + ... + Ak. Let p(n) denote the number of 

partitions of n. For example, p(5) = 7, since there are seven partitions of 5, namely, 

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. 

The generating function for p(n) is given by 

Similarly, (-q; q)oo is the generating function for the number of partitions of a 

positive integer into distinct parts. 

Among many remarkable properties of p(n), we only record Ramanujan's famous 

partition congruences, namely, for any nonnegative integer n, 

and 

p(5n + 4) == 0 (mod 5), 

p(7n + 5) == 0 (mod 7), 

p(l1n + 6) == 0 (mod 11). 

A partition is often represented with the help of a diagram called a Ferrers

Young diagram. The Ferrers-Young diagram of the partition n = Al + A2 + ... + Ak 

is formed by arranging n nodes in k rows so that the zth row has Ai nodes. For 

example, the Ferrers-Young diag?am of the partition 4 + 2 + 1 + 1 of 8 is 

• • • • 
• • 
• 
• 
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The nodes in the Ferrers-Young diagram of a partition are labeled by row and 

column coordinates as one would label the entries of a matrix. Let Aj denote the 

number of nodes in column j. The hook number H(i,j) of the (i,j) node is defined 

as the number of nodes directly below and to the right of the node including the 

node itself. That is, H(i, j) = Ai + Aj - j - i + 1. A partition A is said to be at-core 

if and only if it has no hook numbers that are multiples of t. 

1.3 Overpartitions, overpartition pairs and regu
lar partitions 

In [22], S. Corteel and J. Lovejoy defined an overpartition of n as a partition of 

n in which the first occurrence of a number can be overlined. For example, there are 

14 overpartitions of 4. These are 4, 4,3 + 1, "3 + 1,3 + 1, "3 + 1,2 + 2,2 + 2,2 + 1 + 1, 

2 + 1 + 1, 2 + 1 + 1,2 + 1 + 1, 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1. Since the overlined 

parts of an overpartition form a partition into distinct parts and the non-overlined 

parts of an overpartition form an unrestricted partition, the generating function of 

p(n), the number of overpartitions of n, is 

The function p( n) has been studied recently by a number of mathematicians 

including Hirschhorn and Sellers [33, 34], Mahlburg [51] and Kim [40]. Over-

partitions have been used in combinatorial proofs of many q-series identities and 

these partitions arise quite naturally in the study of hypergeometric series (see 

[22, 23,24,49, 52]). 

Lovejoy [44] defined an overpartition pair of n as a pair of overpartitions (J.L, A) 

where the sum of all the parts is n. For convenience, it is assumed that there is only 

one overpartition of zero denoted by 0. For example, there are 12 overpartition pairs 

of 2, namely, (2, 0), (2, 0), (1 + 1, 0), (1 + 1, 0), (1, 1), (11), (1, I), (1 I), (0, 2), (0, 2), 

(0,1+ 1), and (0, 1+ 1). The generating function for the number of overpartition 



7 

pairs, pp(n), is given by 

Recently, various arithmetic properties of pp( n) have been studied by Bring

mann and Lovejoy [19], Chen'and Lin [21] and Kim [41], It has become clear that 

overpartition pairs play an important role in the theory of q-series and partitions, 

They provide a natural and general setting for the study of q-series identities and 

q-difference equations [46, 47, 48]. In [35], Hirschhorn and Sellers studied the arith

metic properties of overpartitions having only odd parts, More recently, Lin [43J 

investigated various arithmetic properties of overpartition pairs into odd parts. 

Next, a partition of n is called k-regular if none of its parts are divisible by k. 

Clearly, the generating function of bk ( n), the number 'of k-regular partitions of n, is 

given by 

00 (k k) "b ( ) n q;q 00 
~ k n q = 
n=O (q;q)oo 

The function bk(n) has been studied by various mathematicians. For example, 

Hirschhorn and Sellers [38], Furcy and Penniston [28], Webb [61] and Lovejoy and 

Penniston [50J. Recently, Cui and Gu [26] and Keith [39] found several arithmetic 

properties and infinite families of congruences for some k-regular partitions. 

1.4 Polygonal number 

A polygonal number is a number which can be represented as dots arranged in 

the shape of a regular polygon. For example 1, 3, 6, 10,··· are triangular numbers, 

because they can be represented as dots arranged in the shape of triangh; which is 

evident from the following diagram. 

• 
• • • • • • • 

• • • • • 
• • • • • • • 



In general, for k 2': 3, the nth k-gonal number Fk(n) is given by 

1:' ._ L' ( ) _ (k: -.2)n2 
- (k: - 4)n 

rk .- rk n - 2 . 
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By allowing the domain for Fk(n) to be the set of all integers, we see that the 

generating function Gk(q) of Fk(n) is given by 

n=-oo n=-<)O 

We take G6 (q) as the generating function for triangular numbers instead of G3 (q) 

as G3 (q) generates each triangular number twice, while G6 (q) generates them once 

only. III terms of Rarnanujan's general theta function a.., defined in (1.1.1), 

(1.4.1) 

From (1.4.1), the resp.ective generating functions of squares, triangular numbers, 

pentagonal numbers, heptagonal numbers, octagonal numbers and dodecagonal num

bers are 

and 

G4 ( q) = f( q, q) = <p(q), 

G6 (q) = f(q, q3) = 1jJ(q), 

G5 (q) = f(q, q2), 

G7(q) = f(q, q4), 

Gs(q) = f(q, q5), 

1.5 Work carried out in this thesis 

If Tk(n) and tk(n) denote the number of representations of a positive integer n 

as a sum of k integer squares and as a sum of k triangular numbers, respectively, 

then 

(1.5.1) 
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and 

t, t,(n)qn'~ (t, q'(J+ll/2) , ~ ""(q). (1.5.2) 

Gauss [29] showed that l3 (n) > 0, in other words, every number is the sum of 

three triangular numbers. Andrews [3] provided a proof of this fact via q-series. In 

[31] and [32], Hirschhorn and Sellers found many arithmetic properties of T3(n) and 

t3(n) by manipulating q-series and theta functions. Their main identities are given 

in the following two theorems. 

Theorem 1.5.1. We have 

00 00 

L T3(27n + 9)qn = 5 L r3(3n + l)qn, (1.5.3) 
n=O n=O 
00 00 

(1.5.4) 
n=O n=O 

and 

00 00 00 

L T3(27n)qn = 4 L T3(3n)q7! - 3 L T3(n)q3n. (1.5.5) 
n=O n=O n=O 

Theorem 1.5.2. We have 

00. 00 00 

L t3(27n + 3)qn = 4 L t3(3n)qn - 3 L t3(n)q3n+l, (1.5.6) 
n=O n=O n=O 
00 00 

(1.5.7) 
n=O n=O 

and 

00 00 

L t3(27n + 21)qn = 5 L t3(3n + 2)qn. (1.5.8) 
n=O n=O 

On p. 310 of his second notebook [53], Ramanujan recorded the following two 

beautiful theta function identities. If :.p(q), 'tf;(q), and J (-q) are as defined in (1.1.3)

(1.1.5), then 

(1.5.9) 
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and 

'lj;3(q1/3) _ 'l/J3(q) 1/3f3(-q3) 2/3P(_q6) 
'l/)(q) - 'l/J(.q3) + 3q f( _q) + 3q f( _q2) . (1.5.10) 

The first proofs of (1.5.9) and (1.5.10) were given by Berndt [14, p. 185, Entry 

33] by using Ramanujan's modular equations and a method of parameterizations. 

Baruah and Bora [7} gave alternative proofs by using other theta function identities 

of Ramanujan. Recently, Baruah and Nath [11] deduced (1.5.9) and (1.5.10) while 

studying the coefficients of 1.fJ3(q)/I.fJ(q3) and'l/J3(q)/'l/J(q3). 

In Chapter 2, we prove Theorem 1.5.1 and Theorem 1.5.2 by using the above 

two theta function identities. 

Next, Chen and Lin [20] used a Lambert series to prove some infinite families 

of congruences modulo 5 of the number of two colored partitions (also called bi

partitions) where the odd parts are distinct. Inspired by their work, in Chapter 3 

of the thesis, we establish many infinite families of congruences modulo 3 and 7 of 

coefficients of some theta functions by using Lambert series. 

Iu Chapter 3, we abo estaulish many infiuite families of congruences of coeffi

cients for t2(n), t5(n) and ts(n). Some of our results are stated below: 

For any 0' EN, we have 

and 

t2 (320:n + 7 x 3
2

:-

1 

- 1) == 0 (mod 3), 

( 
23 X 320:-1 - 5) 

t5 320 n + 8 == 0 (mod 3), 

ts(72on + 3 X 720
-

1 
- 1) == 0 (mod 7), 

ts(72on + 5 X 720
-

1 
- 1) == 0 (mod 7), 

ts(720n + 6 X 72
0:-1 - 1) == 0 (mod 7). 

We also establish families of congruences modulo 3 for coefficients of each of the 
. 1 

functIOns 'l/J4(q2) and 'l/J4(q)' 
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In [25], S. Cooper found the series expansions for six infinite products of theta 

functions 

and 

He then established new and simple proofs for theorems on the number of represen

ta,tions of a positive integer by the quadratic forms j2 + J k + 4k2, 2j2 + j k + 2k2, 

j2 + 15k2 and 3l + 5k2 and by the quadratic polynomials j(j + 1)/2 + 15k(k + 1)/2 

and 3J(J + 1)/2 + 5k(k + 1)/2. In our thesis, we establish some new arithmetic 

properties of Y2 (q) and Yl(-q). We also establish some results on the number of 

representations of a positive integer by a sum of certain polygonal numbers. 

For example, if D(n) is defined by 

00 

Y2(q) = L D(n)qn := q'lj)(q3)'Ij;(q5) + q2'1j)(q)7}I(q15) , 
n=O 

then 

D(3Q n) = D(n), 

and 



By using certain dissections, we find, for example, that 

and 

r{5G5 + Gd(5n + 3) = r{G5 + 5G6 }(n), 

r{G5 + 5G6 }(5n + 1) = r{5G5 + G6 }(n), 

12 

where r{G i + Gj}(n) denotes the number of representations of n as a sum of an 

i-gonal number and a j-gonal number. 

Similarly, if E(n) is defined by 
00 

n=O 

then some of our results are 

and 

E(3Q n) = E(n), 

E(5Q n) = E(n), 

r{G4 + 5Gg}(5n) = r{5G4 + Gg}(n) , 

T{G4 + 5Gg}(5n + 1) = 2T{Gg + B}(n), 

r{5G4 + Gg}(5n + 8) = r{G4 + 5Gg}(n), 

H.M. Farkas and 1. Kra [27] observed that theta constant identities or modular 

,equations can be interpreted or can be transcribed into partition identities. Perhaps 

the most elegant of their three partition theorems is the following result [27, p. 202, 

Theorem 3]. 
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Theorem 1.5.3. Let S denote the set cons~stmg of one copy of the pos~twe mtegers 
and one add~t20nal copy of those pos~twe mtegers that are mult~ples of 7 Then for 
each pos~twe mtegers 1", the number of part~t20ns of 21" mto even elements of S ~s 

equal to the number of part~t20ns of 2k + 1 mto odd elements of S 

Hirschhorn [37] gave a different proof of the above theorem by estabhslung the 

eqmvalent q-senes Identity The leferee of the paper [37] pomted out that the above 

theorem IS eqmvalent to a modular equatlOn of degree 7 recorded by RamanuJan In 

fact, that modular equatlOn was first proved by Guetzlafi [30] m 1834 Ral1lanujan 

also recorded four similar modular equatlOns of degrees 3, 5, 11 and 23 All those 

five modular eqUFttlOns were established ('Ftrher by Russel [GG, GG] Ftnd Schroter [G9] 

Berndt [16] estabhshed the five partltlOn Identities 111lphed by the five modular equa

tions of Schroter, Russel and Ramanujan S 0 Warnaar [60] found a generahzatlOn 

of the q-senes Identity associated to Theorem 1 5 3 and gave a combmatonal proof 

of this more general Identity In fact, Baruah and Berndt [5] showed that Warnaar's 

Identity IS eqUivalent to a theOiem of RamanuJan recorded m his second notebook 

[13, p 47, corollary] Baruah and Berndt [5, 6] also showed that certam other mod

ular equatIOns and theta functIOn Identities of Ramanujan Imply elegant pal tltlOn 

IdentltlCs Several of these IdentltlCs are fOi t-cores 

SKim [42] generahzed one of the WarnaaI 'b results and proVided entllely biJec

tive proofs of the IdentltlCs for modulo 3 and 7 

Recently, C Sandon and F Zanello [57] deterlllllled a ulllfied cOl1lbmatonal 

framework to look at a large numbel of colored partltlOn IdentltlCs, and studlCd 

combmatonally the five IdentltlCs, proved by Berudt [16] correspondmg to mod

ular equatIOns of pnme degrees 3, 5, 7, 11, and 23 of the Schrotel, Russell, and 

RarnanuJan type In [58], they further found several new and highly non-trIVIal 

colored partitlOn IdentltlCs by usmg their master biJectIOn, Ie, Theorem 21m [57], 

and conjectured 29 more IdentltlCs (m fact, they conjectured 30 IdentltlCs, but an

alytic proof of one of the IdentltlCs was already given by Baruah and Berndt m [5, 

Theorem 8 1]) Their conjectures are fOi mulated m terms of certam set5 of mtegers 

satlsfymg the conditIOns of their master bijectIOn and the partitlOn Identities are 
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stated as corollanes As mentIOned by Berndt and Zhou [17], these conjectures and 

G010llaf"les are d2ffe1ent jorrnulatwns oj the same phenomena, the21 corollanes ale 

not less general than the correspondmg conjectures Three of theIr conjectured Iden

tItIes are proved analytIcally by Berndt and Zhou [17] WIth the help of RamanuJan's 

formulas for multlphers In a forthcommg project [18], they proved all the remammg 

conjectures of Sandon and Zanello [58] 

Followmg Sandon and Zanello [58], for gIven mtegers C ~ 1, 0::; A, ::; C/2 and 

o ::; B, ::; C /2, let S be the set contammg one copy of all posItIve mtegers congruent 

to ±A. modulo C for each 2, and let T be the set contammg one copy of all posItIve 

mtegers congruent to ±B, modulo C for each 2 Let Ds(N) (respectIvely, DT(N)) 

be the number of partItIOns of N mto dlstmct clements of S (ref:>pectlvely, T), where 

such partitions require to have an odd number of parts if no A, (respec

tively, no B,) is equal to zero. Then the theorems and conjectures on colOled 

partItIOns of Sandon and Zanello m [57] and [58] are IdentItIes connectmg Ds(N) 

and DT(N) For example, COlollary to Conjecture 324 m [58] can be stated as 

follows 

Conjecture 1.5.1. Let S be the set contammg one copy of the even pos2twe mtegers 
that are not mult2ples of 25, and T be the set contammg one copy of the odd pos2twe 
mtegers that are not mult2ples of 25 Then, for any N ~ 4, 

Ds(N) = DT(N - 3) 

An eqUIvalent form of the above conjecture, whIch has been proved by Berndt 

and Zhou [17] by usmg a 25th degree modular equatIOn of RamanuJan, can be stated 

as follows 

Theorem 1.5.4. If Sand T arp as defined m Corollary 1 5 1, then, for any N ~ 2, 
the number of part2twns of 2N mto an odd number of d2stmct elements of S 2S 

equmumerous to the number of part2twns of 2N - 3 mto d2stmct elements of S 

As mentIOned earher, Berndt and Zhou [17] also proved two SImIlar conjectures 

of Sandon and Zanello [58] as well as several new partItIOn IdentItIeS ansmg from a 

certam kmd of RamanuJan's modulal equatIOns mvolvmg multlphers 
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Now, refer to the bold-faced underhned text III the above, If we do not lestnct 

the panty of number of partltlOns lllto dlStlllct clements of S (or, T), then some of 

the partltlOn Identities conjectured by Sandon and Zanella [58] tahe different forms 

In Chapter 4, we present new partltlOn IdentltlCs without restnctlllg the panty of 

number of partItlOns lllto dlStlllct clements of S (or, T) We also prove 17 conJectUles 

of Sandon and Zanella [58] that do not requlle restllctlOns on the panty of number 

of partItlOns lllto dlStlllct clements of S (01 T) These correspond to corollanes to 

Conjectures 3 26, 332, 334-338, 340, 341, 343-346, and 348-351 III [58] 

In each of Oul pal titian Identities, the number of partitions of a pO~ltlVe lllteger 

n llltO dlStlllct clement~ of a particular set A Will be denoted by PA(n) For eXdmple, 

the Identity analogous to the prevlOUS theorem IS 

Ps(2N) = 2PT (2N - 3) + a(N), 

where 
~ ( ) n (q, q)oo 
~ a n q = (25 25) 
n=O q ,q 00 

It follows from Euler's famous pentagonal numbel theorem that a(N) IS the dlffel

ence of the number of partltlOns of N llltO an even number of du,tlllct non multiples 

of 25 and the number of partltlOns of N llltO an odd number of dlStlllct non multiples 

of 25 

In the same chapter, we also plOve analogous colored partltlOn IdentltlCs of the 

remallllllg 11 conjectural IdentltlC~ [58] by USlllg the theOlY of RamanuJan's theta 

functlOns We also present some new colored partltlOn IdentltlC~ of the same type 

It IS already mentlOned III the prevlOUS sectlOn that Berndt and Zhou [17, 18] and 

we found partItlOn Identities conJectUled by Sandon and Zanella [58] and analogous 

Identities anslllg from RamanuJan's modular equatlOns lllvolvlllg multlphels In 

Chaptel 5, we fiud that lhfkrcnt par tltlOU theoletIc mterpletatlOu" can be obtamcd 

from those modulal equatlOns lllvolvlllg multlpher~ Some of the Identities dre for 

overpartltlOns, overpartltlOn parrs and regular partItlOns 
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FOl example, by usmg, the two modula1 equatlOns [13, p 230, Entry 5(Vll)] 

m 2 = (~) 1/2 + (~) 1/2 _ (,8(1 - ,8)) 1/2 , 
a 1 - a a(l - a) 

~ = (::)1/2 + (~)1/2 _ (a(l- a))1/2 
m 2 ,8 1 - ,8 ,8(1 - ,8) , 

where ,8 has deg1ee 3 ove1 a and m IS the multIplIer connectmg 0 and ,8, we find 

the followmg theorem 

Theorem 1.5.5. Let A(n) denote the number of partztzons of n mto parts congruent 
to ±1 modulo 6 havmg 4 colors, B(n) denote the number of partztwns of n mto 
dzstmct odd parts not multzples of 3 havmg 4 colors or even parts congruent to ±4 
modulo 12 havmg 4 colors, and C(n) denote the number ofpartztwns ofn mto parts 
congruent to ± 1 modulo 3 havmg 4 colors Then jor n 2: 1 

A(2n + 1) - B(2n - 1) = 4C(n) 

SImIlarly from the mIxed modular equatIOn [13, p 384, Entry l1(IX)] 

(
,8,) 1/8 + ((1 -,8)(1 -,)) 1/8 _ (,8,(1- ,8)(1 -,)) 1/8 = _ {Tn 
oJ (1- a)(l - J) oJ(l - a)(l - J) V;t' 

where ,8, , and 6 are of degrees 3, 5 and 15, respectIvely, over a, and m and rn' are 

the multIplIers connectmg a, ,8 and " J 1ebpectIvely, we fwd the followmg, lebult 

Theorem 1.5.6. Let A(n) denote the number of partztwns of n mto dzstmct odd 
parts that are not multzples of 3 and 5 or mto even parts that are not multzples of 3 
and 5, and B(n) denote the number of overpartztwns of n mto parts not multzples 
of 3 and 5 Then, for any n 2: 2, 

2A(2n + 1) = B(n) 

Several of the results of thIS kmd are dIscussed m Chapter 5 



Chapter 2 

Applications of Two Theta 
Function Identities of Ramanujan 

2.1 Introduction 

In this chapter, we give natural proofs of Theorem 1.5.1 and Theorem 1.5.2 by 

using two beautiful identities of Ramanujan, namely (1.5.9) and (1.5.10) mentioned 

in the introductory chapter. We say "natural" because these two theta function 

identities of Ramanujan show that their right hand sides can be interpreted as 

dissections in terms of generating functions ofT3(3n), T3(3n + 1) and T3(3n + 2), and 

generating functions of t3(3n), t3(3n + 1) and t3(3n + 2), respectively. In the next 

section, we present some simple properties of theta functions which will be used in 

the subsequent sections. In Section 2.3, we prove Theorem 1.5.1 and in Section 2.4, 

we prove Theorem 1.5.2. 

The contents of this chapter appeared in [9]. 

2.2 Preliminary results 

In this section, we state some results which will be used to derive our results 

related to r3(n) and t3(n). After Ramanujan: we also define 
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which is the generating function for the number of partitions of a positive integer 

into distinct odd parts. 

Lemma 2.2.1. [13, p. 39, Entries 24(ii)-(iv)] We have 

f3( -q) = 'P2( -q)'ljJ(q) , (2.2.1) 

X(q)X( -q) = X( _q2), (2.2.2) 

X(q) = f(q) = ( <p(q) ) 1/3 = ;p(q) = f( _q2) () 
f( _q2) 'ljJ( -q) f(q) 'ljJ( _q) . 2.2.3 

The results in the following lemma can be easily derived by manipulating q

products. 

Lemma 2.2.2. 

0"(_ ) = f( -q)f( _q4) 
'f/ q f(_q2)' 

f(-q) 
X( -q) = f( _q2)" 

Lemma 2.2.3. [13, p. 51, Example (v)] We have 

(2.2.4) 

Lemma 2.2.4. [13, p. 350, Eq. (2.3)] We have 

2 <p( _q3) 
f(q, q ) = ( ). 

X -q 
(2.2.5) 

Lemma 2.2.5. [13, p. 49, Corollaries (i) and (ii)] We have 

(2.2.6) 

and 

(2.2.7) 



Lemma 2.2.6. [7] We have 

Lemma 2.2.7. [4, Eq. (53)] We have 

Lemma 2.2.8. [2] If 

then 

Lemma 2.2.9. If 

then 

3 f( _q)f2( _q6) 
a(q) = '1'( -q ), b(q) = f( -q2)f( _q3)' 

3() 8 1.3() '1'4 ( -q) 
a q - qu q = ( 3) . 

'1' -q 

P(q) = '1'(q3) and Q(q) = 'l/J( _q3), 
X(q) 

Proof. Employing (2.2.3), we l~ave 
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(2.2.8) 

(2.2.10) 

(2.2.11) 

(2.2.12) 

Employing (2.2.8), with q replaced by -q, in (2.2.12), we easily arrive at (2.2.11). 0 
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2.3 Proof of Theorem 1.5.1 

Replacing q by q3 in (1.5.9); we find that 

,3 _ cp4(q3) f3(q9)cp(q3) 2 f3( _q18)c.p(q3) 
'f (q) - c.p(q9) + 6q f(q3) + 12q f( _q6) 

= A(q3) + 6qB(q3) + 12q2C(q3), (2.3.1) 

where 

Since 
00 

cp3(q) = L r3(n)qn, 
n=O 

we readily derive from (2.3.1) that 

(2.3.2) 

and 

Using (2.3.1), (2.2.6), and (2.2.4) in (2.3.2), we filld that 
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Extracting the terms involving q3n, q3n+l and q3n+2 from both sides of (2.3.5), we 

obtain 

and 

respectively. 

Next, employing (2.2.3), we rewrite (2.3.6) as 

~ n 3 j3( _q6)1jJ( _q3) 
~ r3(9n)q = cp (q) + 24q 1jJ( _q) . 

Now, replacing q by -q in (2.2.7), and then using (2.2.5), we obtain 

'¢( -q) = f(_q3, q6) - q'lj;( -l) 

= :p(q'J) _ q1jJ(_q9) 
X(q3) 

= P(q3) _ qQ(q3), 

where P(q) and Q(q) are as defined in Lemma 2.2.9. Therefore, 

1 1 p2(q3) + qP(q3)Q(q3) + q2Q2(q3) 
1jJ( _q) = P(q3) _ qQ(q3) = P3(q3) _ q3Q3(q3) 

Employing (2.3.1) and (2.3.11) in (2.3.9), we find that 

00 

L r3(9n)qn = A(q3) + 6qB(q3) + 12q2C(q3) + 24qf3( _q6)1jJ( _q3) 
n=O 

(2.3.9) 

(2.3.10) 

(2.3.11) 

(2.3.12) 
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Extracting the terms involving q3n, q3n+l and q3n+2 from both sides of (2.3.12), we 

obtain 

(2.3.13) 

(2.3.14) 

and 

(2.3.15) 

respectively. 

Employing Lemma 2.2.9 and Lemma 2.2.2 in (2.3.14), we find that 

(2.3.16) 

Using (2.3.3) in (2.3.16), we readily arrive at (1.5.3). 

Next, employing Lemma 2.2.9, Lemma 2.2.2, and (2.3.4) in (2.3.15), we obtain 

00 

= 3 L r3(3n + 2)qTt, 
n=O 

to complete the proof of (1.5.4). 



Now, from (2.3.13), Lemma 2.2.9, and (2.2.9)' we have 

~ r3(27n)qn = rp4(q) + 24qP( _q2)1j;3( _q3) 
~ rp(q3) 'lj;3( _q) 

rp4(q) X2(q)X( _q2)y;2( _q6)'lj;( _q3)-q;(q6) 
= -rp(-q-3) + 24q ---'---""":'rp--:-( q--:-'3 )-x-( _-'-q-)"-----'---'---'-

= (l(q) + 3rp4(q) - rp4(q3) = 4rp4(q) _ 3rp3(q3) 
rp( q3) rp( q3) rp( q3) . 
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(2.3.17) 

Employing (2.3.2) and (LCd) in the above, we arrive at (Ui.G) to finish the proof. 

2.4 Proof of Theorem 1.5.2 

Replacing q by q3 in (1.5.10), we find that 

,tP4( q3) f3( _q9)'lj;( (l) f3( _q18),tP( q3) 
'lj;3(q) = 1j;(q9) + 3q f( _q3) + 3q2 f( _q6) 

= L(q3) + 3qM(q3) + 3q2N(q3), (2.4.1) 

where 

(2.4.2) 

(2.4.3) 

and 

Employing (1.5.10), with q replaced by -q, (2.2.7), and (2.2.5) in (2.4.2), we find 

that 

00 n _ (1j;3(q3) P(_q9) 2P(-q18)) 3 6 9 
~t3(3n)q - 'lj;(q9) +3g f(-q3) +3q f(-q6) (l(g ,q) +q'lj;(g)) 

(
'lj;3(q3) P( _q9) f3( _q18)) (rp( _q9) ) 

= 'lj;(q9) + 3q f( _q3) + 3q2 f( _q6) X( _q3) + q1j;(q9) . 

(2.4.5) 
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Extracting the terms involving q3n, q3n+l and q3n+2 from both sides of (2.4.5), we 

obtain 

(2.4.6) 

(2.4.7) 

and 

f h(9n + 6)qn = 3 (P( _q3) 1jJ(q3) + f3( _q6) ;p( _q3)) = 6 P( _q6)f2( _q3) 
n=O f( -q) f( _q2) x( -q) f( -q) , 

(2.4.8) 

respectively, where in the last equality we used the identities in Lemma 2.2.2. 

Now, replacing q by -q in (2.2.6), we have 

where a(q) and b(q) are as defined in Lemma 2.2.8. Therefore; we have 

1 1 a'2(q3) + 2qa(q3)b(q3) + 4q2b2(q3) 

( ) = (3) (= 3( ) (2.4.9) !p -q a q - 2qb q3) a q3 - 8q3b(q3) 

Employing (2.4.1) and (2.4.9) in (2.4.7), we find that 
00 

I,>3(9n + 3)qn = L(q3) + 3qM(q3) + 3q2 N(q3) + 3X( _q3)f4( _q3) 

(2.4.10) 

Comparing the terms involving q3n on both sides of the above identity, and then 

applying Lemma 2.2.8, we deduce that 

~ t3(27n + 3)qn = L(q) + 3a2
(q)X( -q)r( -q)) 

~ a3(q) - 8q3(q) 

= 1jJ4(q) + 3!P3( _q3)x( -q )r( -q) 
1jJ( q3) !p4 ( _q) 
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Employing (2.2.3), the above can be rewritten as 

(2.4.11) 

Using (2.2.8) in (2.4.11), we obtain 

to arrive at (1.5.6), with further aids from (2.4.2) and (1.5.2). 

Next, comparing the terms involving q3n+l on both sides of (2.4.10), and then 

applying Lemma 2.2.8 and Lemma 2.2.2, we find that 

(2.4.13) 

The identity (1.5.7) now follows from (2.4.13) and (2.4.3). 

Finally, comparing the terms involving q3n+2 on both sides of (2.4.10), and then 

applying Lemma 2.2.8 and Lemma 2.2.2, we obtain 

(2.4.14) 

and then with the aid of (2.4.4), the identity (1.5.8) follows easily. 



Chapter 3 

Arithmetic Properties of the 
Coefficients of Some Theta 
Functions 

3.1 Introduction 

RamanuJan recorded many IdentltlCs mvolvmg Lambel t senes m hIS notebooks 

[53] and the lost notebook [54] In a flagment pubhshed wIth hIS lost notebook 

[54, pp 353-355], RamanuJan plovlded a hst of twenty IdentItIes mvolvmg Lambert 

senes and products or quotIents of theta functIOns Several of the IdentltlCs mvolvmg 

Lambert senes have anthmetlcal mterpretatIOns Some of these are related to the 

number of rep I esentatIOns of an mtegel as a sum of squares or as a sum of tnangular 

numbers We state m the mtroductOlY chapter that Chen and Lm [20] used a 

Lambert senes to prove some mfimte famIlIes of congruence" modulo 5 of the number 

of bIpartItIOns where the odd parts are dlstmct In thIS chapter, we dISCUSE> several 

Lambert senes IdentItIes to establIsh mfilllte famIlIes of congruences modulo 3 and 

7 of the coefficIents of some theta functIOns 

The chaptel I~ orgalllzed ~ follow~ In SectIOn 3 2, thIee mhmte farll1lIe~ of 

congruences modulo 7 for t8(n), the numbel of leplesentatIOns of n a.6 a 5um of 

eIght tnangular numbers, are estabhshed In SectIOn 3 3 two mfilllte famlhes of 

congruences modulo 3 for t2(11), the number of representatlons of 11 as a sum of 

two tnangular numbers, are obtamed In SectIOns 3 4-3 6, we dISCUSS some mfilllte 
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families of congruences modulo 3 for coefficients of three more functions. 

In the introductory chapter we mentioned that Cooper [25J found series expan

sions for the following six infinite products of theta functions as 

f2( _q3)j2( _q5) 
Z1 (q) = f( -q)f( _q15) , 

F( -q)F( _q15) 
Z2(q) = q f( -q3)f( ~q5) , 

f(-q)f( -q6)f( -qlO)f( _qI5) 
YI (q) = f( -q2)f( _q30) (3.1.1) 

f(_q2)f(_q3) f( _q5)f( _q30) 
Y2(g) = q f( -g)f( _qI5) , (3.1.2) 

f( -q)f( -q6)f( -qlO)f( _qI5) 
Y3(q) = q I( -q3)f( _q5) , 

and 

f( -q2)f( _q3)f( -q5)f( _g30) 
Y4 (q) = q I( -(6)I( _qIO) 

From [25, p. 82, Theorem 2.2J we observe that YI(-q) = r.p(q3)r.p(q5)+r.p(q)r.p(q15) 

and Y2(q) = q'lj;(q3)'Ij;(q5) + q2'1j;(q)'Ij;(qI5). In Section 3.7, we establish some arith

metic properties for YI ( -q) and Y2 (q) and discuss some results on the number of 

representations of a positive integer by a sum of certain polygonal numbers. 

3.2 Infinite families of congruences modulo 7 for 

In this section, we establish three infinite families of congruences modulo 7 for 

ts(n ). 

Theorem 3.2.1. For any Q E N, we have 

ts(49n + 20) == ts(49n + 34) == ts(49n + 41) == 0 (mod 7), 

ts(72un + 3 x 72u
-

1 
- 1) == 0 (mod 7), 

ts(72
0:n + 5 x 72

0:-1 - 1) == 0 (mod 7), 
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and 

tS(72Qn + 6 X 72a - 1 
- 1) == 0 (mod 7). 

Before proving the theorem, we present the following lemma. 

Lemma 3.2.2. For any r with r to (mod 7), we have 

Proof of Lemma 3.2.2. Clearly, 

(3.2.1) 

Now, (14n + r)k is a multiple of 7 if and only if k == 0 (mod 7). It follows that 

00 DO 00 

"" (7) 7n "" "" q(14n+r)k ~ar n q = ~ ~ 
n==O n==O k=:O(mod 7) 

00 00 

= L L q(14n+r)7j . 

n==O j==l 

Replacing q7 by q and using (3.2.1), we complete the proof. o 

Proof of Theorem 3.2.1. From [13, p. 302, Entry 17(i)], we recall the Lambert series 

for q'lj;(q)'Ij;(q7) as 

00 q14n+l 00 q14rt+3 00 q14n+5 

q'lj;(q)'ljJ(q7) = L 1 _ q14n+l - L 1 _ q14rt+3 - L 1 _ q14n+5 
n==O n==O rt==O 

00 q14n+9 00 q14n+ll 00 q14n+l3 

+ ~ 1 - q14rt+9 + ~ 1 - q14n+ll - ~ 1 _ q14n+13 . (3.2.2) 

If 
00 

q'lj;(q)'Ij;(q7) =: L A(n)qn, 
n==O 

then from (3.2.2) and Lemma 3.2.2, we find that 

00 

q?jJ(q)?j)(l) = L A(7n)qn. 
n==O 
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Now, setting k = 8 in (1.5.2), we have 

00 

1j}(q) = L: ts(n)qn. 
n=O 

Since 

(1 - qn)7 == (1 - q7n) (mod 7) 

and 

(3.2.3) 

we easily deduce that 

Thus, 

00 

n=O 

00 

== L: A(n)qn (mod 7). (3.2.4) 
n=O 

Extracting the terms q7n from both sides of the above and then replacing q7 by q, 

we obtain 

00 00 

L ts(7n - l)qn == L: A(7n)qn = q7j;(q)7j;(q7) (mod 7). (3.2.5) 
n=l 

From (3.2.4) and (3.2.5), 

00 00 

n=l n=O 

Equating the coefficients of qn+l from both sides; we find that 

ts(7n + 6) == ts(n) (mod 7). 



Agam, settmg a = q, b = q3 and n = 7 m [13, p 48, EntlY 31], we have 

'lj;(q) = f(q91, ql05) + q21 f(q7, qlS9) + qf(q77 q1l9) + q14f(q21, q175) 

+ q3 f(q63, q210) + q7 f(q35, q161) + q6'lj;(q49) 
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(3 2 6) 

Employmg (326) m (3 2 5), and then extlactll1g the telms mvolvll1g q7n+a, where 

a = 3,5,6 and 7, from both sIdes of the resultll1g IdentIty, we fiud that 

ts(49n + 20) = ts(49n + 34) = ts(49n + 41) = 0 (mod 7), (327) 

and 

00 00 

(328) 
n=O n=O 

From (324), (325) and (328), we arnve at 

ts(49n + 48) = ts(7n + 6) = ts(n) (mod 7) (329) 

From (327), (329) and mathematlcalll1ductIOn, we deduce the deSIred ldentl-

tlCS of the theorem to complete the proof o 

Remark 3.2.3. Note that A(n) = t(l 7)(n - 1), where t{l,7)(n) %s the number of 

representatwns of a nonnegatwe mteger n as a sum of a trzangular number and 7 

t%mes of another tnangular number 

3.3 Infinite families of congruences modulo 3 for 

In thl~ sectIOn, we estabhsh two ll1fullte farrllhes of cong,rueuce~ modulo 3 fOl t2(n) 

For notatIOnal convemence, we assume that all congruences from thIS sectIOn of thIS 

chapter onward are modtilo 3, unless othel WIse stated 
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Theorem 3.3.1. For any a E N, we have 

and 

We present the following lemma to prove the theorem. 

Lemma 3.3.2. For any r with ri=-O (mod 3), we have 

Proof of Lemma 3.3.2. Clearly, 

00 00 3n+r 00 00 

""b (71)qn = "" q = """"q(3n+r)(2k+1). 
~ r ~ 1 _ q6n+2r ~ ~ 
n=O n=O n=O k=O 

(3.3.1) 

Since (371 + r)(2k + 1) is a multiple of 3 if and only if k == 1 (mod 3), we have 

00 00 00 

n=O n=O k:l(mod 3) 

00 00 

= L L q(3n+r)(6t+3). 

n=O t=O 

Replacing q3 by q and using (3.3.1), we complete the proof of Lemma 3.3.2. 0 

Proof of Theorem 3.3.l. From [13, p. 226, Entry 4(i)] we consider the Lambert 

series for q'IjJ5(q)'lj)(q3) - 9q2'lj;(q)'ljJ5(q3) as 

q 22q2 42q4 52q5 
q'IjJ5(q)'IjJ(q3) _ 9q2'IjJ(q)'ljJ5(q3) = _____ + __ _ + ... 

1 - q2 1 - q4 1 - q8 1 _ qlO 

00 (3n + 1)2q3n+l 00 (371 + 2)2q3n+2 
= L 1 _ q6n+2 - L 1 _ q6nH 

n=O n=O 
00 q3n+l 00 q3n+2 

== "" - "" 6 4 (mod 3). (3.3.2) ~ 1 - q6n+2 ~ 1 _ q n+ 
n=O n=O 
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Assuming 

00 

q7ji(q)7jJ(q3) - 9q27jJ(q)7jJ5(q3) =: L B(n)qn, 
n=O 

from (3.3.2) and Lemma 3.3.2, we obtain 

00 

q7jJ5(q)7jJ(q3) _ 9q27jJ(q)7jJ5(q3) = L B(3n)qTL. (3.3.3) 
n=O 

By setting k = 2 in (1.5.2), we have 

00 

7jJ2(q) = L t2(n)qTL 
n=O 

Now, since 

and 7jJ(q) IS as defined in (3.2.3), we find that 

(3.3.4) 

Thus, 

00 

q 2:= t2(n)qn = q7jJ2(q) 
n=O 

Extracting the terms q3n from both sides of the above and then replacing q3 by q, 
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we arrive at 

f t2(3n - l)qn == 2:::=0 ~(3n)qn 
, n=l 'l/J (q) 

_ q'l/J5(q)'l/J(q3) - 9q2'l/J(q)'l/J5(q3) 
= 1j;2(q) (mod 3) 

_ q1j;5(q)'l/J(q3) 
= 'l/J2(q) 

= q'lj}(q)'l/J((/) (3.3.6) 

== q1j;2(q3) (mod 3) 
00 

== I'> 2 (n)q3n+l , 
n=O 

Equating the coefficients of q3n+l from both sides, 

(3.3.7) 

Now we recall from [13, p. 49, Corollary (ii)] that 

(3.3.8) 

By the Jacobi triple product identity, (1.1 2), and the definition of <p(q) and X(q), 

we have 

f( 2) _ ( . 3) ( 2. 3) (3. 3) _ t.p( _q3) q, q - -q, q 00 -q ,q 00 q ,q 00 - ( ). 

X -q 
(3.3.9) 

With the help of the above, we rewrite (3.3.8) as 

<p( _q9) 9 
'l/J(q) = ( 3) + q1j;(q ). 

X -q 
(3.3.10) 

Employing the above in (3.3.6), and extracting the terms involving q3n+l and 

q3n+2 from both sides of the resulting identity, we find that 

(3.3.11) 

From (3.3.7), (3.3.11) and mathematical induction, we derive the desired identi-

ties of the theorem and hence complete the proof. o 
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Remark 3~-3.3. The results discussed in this section can also be derived from the 

Lambert series [13, p. 223, Entry 3(iii)] jor q'lj} (q)'ljJ2 (q3) as 

2 2 3 q 2q2 4q4 5qS 
q'lj; (q)'lj; (q ) = -1 -2 + -1 -4 + -1 -8 + 1 10 + ... -q -q -q -q 

by proceeding in a similar way. 

3.4 An infinite family of congruences modulo 3 

for t5(n) 

In this section, we establish an infinite family of congruences modulo 3 for ts(n), 

the number of representations of n as a sum of five triangular numbers. 

Theorem 3.4.1. For any r with.,. =1= 0 (mod 3), we have 

ts(9n + 8) == 0 (mod 3) 

and 

( 
23 X 320

-
1 

- 5) 
t5 320n + 8 == 0 (mod 3). 

Proof From [13, p. 223, Entry 3(iii)], we recall the Lambert series for q'lj;2(q)'l/J2(q3) 

as 

2 2 3 q 2q2 4q4 5qs 
q'lj; (q)'l/J (q ) = -1 -2 + -1 -4 + -1 -8 + 1 10 + ... -q -q -q -q 

00 (3n + l)q3n+l 00 (3n + 2)q3n+2 
= L 1- q6n+2 + L 1 _ q6n+4 

n=O . n=O 

Thus, 

(3.4.1) 



Considering 

00 

q'lj;2(q)lj;2(q3) =: L C(n)qn, 
n=O 

from (3.4.1) and Lemma 3.3.2, we arrive at 

00 

q'lj;2(q)'Ij;2(q3) = L C(3n)qn. 
n=O 

Now, setting k = 5 in (1.5.2), we have 

00 

'lj;5(q) = L t5(n)qn. 
n=O 

Employing (33.4), we find that 

00 

q L t5(n)qn = q'lj;5(q) 
n=O 

= q'lj}(q)'Ij;3(q) 

= q'lj}(q)'Ij;(q3) 

_ q,tf;2(q)'l/)2(q3) 

'tf;( q3) 
~oo C(n)qn 

= L.m=O (mod 3) 
- ¢(q3) . 
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(3.4.2) 

Extracting the terms q3n from both sides of the above and then replacing q3 by 

q and utilizing (3.3.10), we arrive at 

(3.4.3) 

Extracting the terms q3n+2 from both sides of the above and replacing q3 by q, 
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we have 

co 

L ts(9n + 5)qn == 1ji(q)'lj;(q3) 
n=O 

n=O 

Equating the coefficients of qn from both sides, we obtain 

ts(9n + 5) == ts(n) (mod 3). (3.4.4) 

Also, extracting the terms q3n+3 from both sides of (3.4.3), we have 

ts(9n + 8) == 0 (mod 3). (3.4.5) 

From (3.4.4), (3.4.5) and mathematical induction, we arrive at the desired iden

tities of the theorem. 

o 

3.5 An infinite family of congruences modulo 3 

for the coefficients of 'lj;4( q2) 

In this section, we discuss an infinite family of congruences modulo 3 for the 

coefficients of 'lj;4( q2). 

Theorem 3.5.1. If 

co 

L L(n)qn := '¢}4(q2), 
n=O 

then 

£(9n + 5) == 0 (mod 3) 

and for any Q EN·, 
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We present the following lemma to prove the theorem. 

Lemma 3.5.2. For any r wzth r = ± 1 (mod 6), we have 

00 00 6n+r 00 

L dr(n)qn := L 1 _q qI2n+2r = L dr(3n)qn. 
n=O n=O n=O 

Proof. The proof is similar to the proof of Lemma 3.3.2. So details are omitted. 0 

Proof of Theorem 3.5.1. From [13, p. 223, Entry 3(i)], we recall the Lambert series 

for q'¢(q2)'¢(q6) as 

2 6 q q5 q7 
q'¢(q ),¢(q ) = 1 - q2 - 1 - qIO + 1 _ q14 

00 q6n+l 00 q6n+5 

= ~ 1- qI2n+2 - ~ 1 _ q12n+1O· 
n=O n=O 

(3.5.1) 

Assuming 

00 

q'¢(q2)'¢(q6) =: ~ A(n)qn, 
n=O 

from (3.5.1) and Lemma 3.5.2, we fiud that 

00 

q'¢(q2)'¢(q6) = ~ A(3n)qn. 
n=O 

Employing (3.3.4), we have 

00 

q ~ L(n)qn = q'¢4(q2) 
n=O 

= q'¢( q2)lji( q2) 

= q'¢(q2)'¢(q6) (mod 3) 
00 

= ~ A(n)qn (mod 3). (3.5.2) 
n=O 

Extracting the terms q3n from both sides of the above and then replacing q3 by q, 

we find that 

00 00 

(3.5.3) 
n=I n=O 
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From (3.5.2) and (3.5.3), we have 

00 00 

L L(3n - l)gn == L L(n)qn+l (mod 3). 
n=l n=O 

Equating the coefficients of qn+1 from both sides, we obtain 

L(3n + 2) == L(n) (mod 3). (3.5.4) 

Again, employing (3.3.10) in (3.5.3) and then extracting the terms involving 

q3n+2 and q3n+3, and replacing q3 by q, we find that 

L(9n + 5) == 0 (mod 3), (3.5.5) 

and 

00 

L L(9n + 8)qn == q'lj;( q2)'lj;( q6) 
n=O 

00 

== L L(n)qn+J(mod 3). (3.5.6) 
n=O 

From (3.5.4)-(3.5.6) and mathematical induction, we complete the proof. 0 

Remark 3.5.3. Note that L(n) = 0 for odd nand L(n) = t4(n/2) for even 11. 

3.6 An infinite family of congruences modulo 3 

for the coefficients of 'lj;4~q) 
In this section, we discuss an infinite family of congruellces modulo 3 for the 

. 1 
coefficIents of 'lj;4 (q) . 

Theorem 3.6.1. If 

00 1 
L P(n)qn := 'lj;4( )' 
n=O q 
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then 

P(9n + 8) == 0 (mod 3), 

and for any Q E N, 

( 
5 X 3

0 + 1) P 30 +1n + 2 == 0 (mod 3). 

Assuming 

00 

q'lj}(q)?j;(q3) - 9q2'!f;(q)'t/}(q3) =: L B(n)qn, 
n=O 

from (3,6.1) and Lemma 3.3.2, we obtain 

00 

q?j;5(q)?j;(q3) _ 9q2?j;(q)?j;5(q3) = L B(3n)qn (3.6.2) 
n=O 

Employing (3.3.4), we have 
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Extracting the terms q3n from both sides of the above and then replacing q3 by 

q and utilizing (3.3.10), we arrive at 

(3.6.4) 

Extracting the terms q3n+2 from both sides of the above, we have 

00 00 

L P(9n + 5)qn == 'l/J(q)'l/J(q3) == L P(3n - l)qn-l (mod 3). (3.6.5) 
n=O n=l 

,Equating the coefficients of qn from both sides, we arrive at 

P(9n + 5) == P(3n + 2) (mod 3). (3.6.6) 

Also, equating the coefficients of q3n+3 from (3.G.4), we find that 

P(9n + 8) == 0 (mod 3). (3.6.7) 

From (3.6.6), (3.6.7) and mathematical induction, we achieve the desired identi-

ties of the theorem to complete the proof. o 

3.7 Arithmetic properties of some k-gonal num-

bers 

In the introductory chapter, we define a k-gonal nUI1).ber. Using (1.4.1), we give the 

respective generating functions of squares, triangular numbers, pentagonal numbers, 
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heptagonal numbers, octagonal numbers and dodecagonal numbers. We define two 

more theta functions A (q) and B (q) as 

n=-oo 

and 

00 

B(q) : = L qn(5n-2) = f(q3, q7) 
n=-oo 

In this section we discuss arithmetic properties of coefficients of two infinite 

products of theta functions and some results on the number of representation of a 

positive integer by sums of polygonal numbers. 

We again recall from [25, p. 82, Theorem 2.2] that 

and 

where Y1(q) and Y2 (q) are as defined in (3.1.1) and (3.1.2), respectively. 

Theorem 3.7.1. Let D(n) be defined by 

00 

L D(n)qn := Y2(q), 
n=O 

where Y2(q) is as defined in (3.1.2). Let r{Gt + GJ}(n) denote the number of repre-

sentatwns of n as a sum of an ~-gonal number and a j-gonal number. Then 

D(3Q n) = D(n), 

D(5an) = D(n). 

r{5G5 + G6 }(5n + 3) = r{G5 + 5G6 }(n), 

r{G5 + 5G6 }(5n + 1) = r{5G5 + G6 }(n), 

r{5G5 + G6 }(5n + 2) = 0, 

(3.7.1) 

(3.7.2) 

(3.7.3) 

(3.7.4) 

(3.7.5) 



and 

r{5G5 + G6}(5n + 4) = 0, 

r{G5 + 5G6{(5n + 3) = 0, 

r{G5 + 5G6}(5n + 4) = 0, 

r{5G5 + G6 }(n) = r{5G5 + G6 } (520:n + 5
2

0:; 1) , 
. ( 2(5

2Q 1)) r{G5 + 5G6}(n) = r{G5 + 5G6 } 520.n + 3 - , 

r{5G5 + G6 }(5n) = r{G5 + A}(n), 

r{5G5 + Gd(5n + 1) = r{G5 + G7 }(n), 

r{G6 + 3A}(3n + 1) = r{3G6 + A}(n), 

T{05 + 3A}(3n + 2) = 0, 

r{G6 + 3A}(3n) = r{G5 + A}(n), 

r{3G6 + A}(3n + 2) = r{G6 + 3G7 }(n), 

r{3G6 + A }(3n + 1) = 0, 

r{3G6 + G7 }(3n) = r{G6 + 3A}(n) , 

r{3G6 + G7 }(3n + 2) = 0, 

r{G6 + 3G7 }(3n + 1) = r{3G6 + G7 }(n), 

r{G6 + 307 }(3n) = r{G5 + G6 }(n), 

T{06 + 307 }(3n + 2) = 0. 
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(3.7.6) 

(3.7.7) 

(3.7.8) 

(3.7.9) 

(3.7.10) 

(3.7.11) 

(3.7.12) 

(3.7.13) 

(3.7.14) 

(3.7.15) 

(3.7.16) 

(3.7.17) 

(3.7.18) 

(3.7.19) 

(3.7.20) 

(3.7.21) 

(3.7.22) 

Proof. We recall the 3- and 5-dissections of 1jJ{q) from [13, p. 49, Corollary (ii)] as 

(3.7.23) 

and 

(3.7.24) 
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Therefore, 

00 

2: D(n)qn = q?jJ(q3)?jJ(q5) + q2?jJ(q)?jJ(qI5) 
n=O 

= q?jJ(q3){f(qI5, q30) + q5?jJ(q45)} + q2{J(q3, q6) + q?jJ(q9)}?jJ(qI5). 

(3.7.25) 

Extracting the terms q3n from both sides and replacing q3 by q, we fiud that 

00 00 

2: D(3n)qn = L D(n)qn 
n=O 

Equating the coefficIents of qn from both sides of the above, we obtain 

D(n) = D(3n). (3.7.26) 

Again, by employing (3.7.24), we have 

00 

L D(n)qn = q'lj)(q3)?jJ(q5) + q2?jJ(q)'Ij)(qI5) 
n=O 

= q{f(q30, q45) + q3 f(ql5, q60) + q9?jJ(q75)}?jJ(q5) 

+ q2{f(qlO, q15) + q3 J(q5, q20) + q3'1j)(q25)}'l/J(qI5). (3.7.27) 

Extracting the terms involving q5n from both sides of the above, replacing q5 by q 

and then equating the coefficIents of qn from both sides. of the resulting identity, we 

find that 

D(n) = D(5n). (3.7.28) 

From (3.7.26), (3.7.28) and mathematical induction, we readily arrived at (3.7.1) 

and (3.7.2). 

Again, extracting the terms q3n+1 and q3n+2 from (3.7.25) and replacing q3 by q, 

we find that 

00 00 

(3.7.29) 
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and 

00 00 

L D(3n + 2)qn = 7j;(q5)f(q, q2) = L r{G5 + 5G6}(n)qn. (3.7.30) 
n=O n=O 

Similarly by extracting the terms q5n+l, q5n+2, q5n+3 and q5nH from (3.7.27) and 

replacing q5 by q, 

00 00 

L D(5n + l)qn =·7j;(q)f(q6, q9) = L r{G6 + 3A}(n)qn, (3.7.31) 
n=O n=O 
00 00 

(3.7.32) 
n=O n=O 
00 00 

(3.7.33) 
n=O n=O 

and 

00 00 

L D(5n + 4)qn = 7j;(q)f(q3, q12) = I>"{G6 + 3G7 }(n)qn. (3.7.34) 
n=O n=O 

By employing (3.7.24) in (3.7.29) we easily establish (3.7.3), (3.7.5), (3.7.6), (3.7.11) 

and (3.7.12). Similarly, using a 5-dissection of f(q, q2) in (3.7.30), we prove (3.7.4), 

(3.7.7) and (3.7.8). From (3.7.3) and (3.7.4), we readily conclude (3.7.9) and (3.7.10) 

by mathematical induction. Employing (3.7.23) in (3.7.31), we arrive at the results 

(3.7.13)- (3.7.15). Using a 3-dissection of f(q2, q3) in (3.7.32), we deduce (3.7.16) 

and (3.7.17). Similarly, by employing 3-dissections of f(q,q4) and 7j;(q) in (3.7.33) 

and (3.7.34), respectively, we arrive at the remaining five results to complete the 

proof of the theorem. o 

Theorem 3.7.2. Let E(n) be defined by 

00 

L E(n)qn := Y1 ( -q), 
n=O 

where Y1(q) is as defined in (3.1.1) and let r{G.+GJ}(n) tS as defined in the pTevious 



theorem. Then 

E(3'-'n) = E(n), 

E(5'-'n) = E(n), 

r{G4 + 5Gs}(5n) = r{5G4 + Gs}(n) , 

r{G4 + 5Gs}(5n + 1) = 2r{Gs + B}(n), 

r{G4 + 5Gs}(5n + 4) = 2r{Gs + G12 }(n), 

r{C4 + 5Cs}(5n + 2) = 0, 

r{G4 + 5Gs}(5n + 3) = 0, 

r{5G4 + Gs}(5n + 8) = r{G4 + 5Gs}(n) , 

r{5G4 + Gs}(5n + 2) = 0, 

r{5G4 + Gs}(5n + 4) = 0, 

r{5G4 + GS}(n) = r{5G4 + GS} (52'-'71 + 5
2

'-'3- 1) , 
r{G4 + 5Gs}(71) = r{G4 + 5Gs} (52'-'71 + 5(52~ - 1)) , 

r{3G4 + G12 }(371 + 1) = r{G4 + 3B}(n), 

r{3G4 + G12 }(371 + 2) = 0, 

r{G4 + 3B}(3n) = r{3G4 + B}(71), 

r{G4 + 3B}(371 + 1) = 2r{Gs + B}(71), 

r{G4 + 3B}(371 + 2) = 0, 

r{3C4 + B}(371 + 7) = r{G4 + 3G12 }(n), 

r{3G4 + B}(371 + 2) = 0, 

r{G4 + 3G12 }(3n) = r{3G4 + G12 }(n), 

r{G4 + 3G12 }(371 + 1) = 2r{Gs + G12 }(n), 

45 
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and 

r{ G4 + 3G12 }(3n + 2) = O. 

Proof. The proof is similar to that of Theorem 3.7.1. So we omit the details. 0 



Chapter 4 

Colored Partition Identities 
Conjectured by Sandon and 
Zanello 

4.1 Introduction 

As mentioned in the introductory chapter, this chapter deals with colored par

tition identities. In the next six sections, we prove 17 of the conjectures in [58] 

and find analogous partition identities for the remaiuiug 12 conjectures. It would 

. be clear from our proofs of the partition identities that more such colored partition 

identities could be found. In the last section of this chapter, we present some new 

colored partition identities of the same type. 

The contents of this chapter appeared in [10]. 

We now state some theta function identities which will be used in the subsequent 

sections of this chapter. 

Lemma 4.1.1. [13, p. 45, Entry 29] If ab = cd, then 

f(a, b)f(c, d) + f( -a, -b)f( -c, -d) = 2f(ac, bd)f(ad, bc) (4.1.1) 

and 

f(a, b)f(c, d) - f( -a. -b)f( -c. -d) = 2af (blc. ac2 d) f (bid, acd2
) . (4.1.2) 
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Lemma 4.1.2. [13, p. 40, Entry 25] We have 

and 

:p(q) + <p( _q) = 2<p(q4), 

cp(q) _ <p( _q) = 4q'lj;(q8), 

cp2(q) _ cp2( _q) = 8q'lj;2(q4), 
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4.2 Partition identities analogous to Conjectures 

3.24, 3.25 and 3.27 of [58] 

Conjectures 3.24, 3.25 and 3.27 of [58] have been proved by Berndt and Zhou [18] 

by employing a certain kind of Ramanujan modular equation involving multipliers. 

In this section, we present three analogous partition identities without restricting 

the parity of the number of distinct elements of S (and/or, T). It is worthwhile 

to mention that the same kind of partition identities may be obtained from other 

analogous modular equations of Ramanujan involving multipliers. 

Theorem 4.2.1. (Analogues to Corollary to Conjecture 3.24 of [58] and to Theorem 

3.3 of [17]) Let S be the set containing one copy of the even positive integers that are 

not multiples of25, and T be the set containing one copy of the odd positive integers 

that are not multiples of25. Let a(N) be the difference of the nv:rnbeT of partitions of 

N into an even number of distinct non multiples of 25 and the number of partitions 

of N into an odd number of distinct non multiples of 25. Then Ps(2) = 2 + a(l) 

and for N > 1, we have 

Ps(2N) = 2Pr(2N - 3) + a(N). (4.2.1) 
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Proof. From [13, p. 291, Entry 15(i)], we recall a modular equation of degree 25 as 

(~) 1/8 + (~) 1/8 _ (,8(1 - ,8)) 1/8 _ 2 (,8(1 - ,8)) 1/12 = 1nm' 1/2 
a 1 - a a(1- a) a(l - a) (), 

where ,8 has degree 25 over cx. Transcribing this modular equation with the aid of 

Lemma 1.1.1, we have 

which can be transformed into the q-product identity 

Thus, 

Equating the coefficient::; of q2N from both sides of the above, and noting that 

~ n f(-q) 
La(n)q = f(- 25)' 
n=O q 

we easily arrive at (4.2.1). o 

Example: n = 5 m (4.2.1). 

Then Ps(10)=3; the relevant partitions of 10 are 10, 8 + 2 and 6 + 4; PT(7)=1; 

the relevant partition of 7 is 7, and a(5) = 1. 

Corollary 4.2.2. For N ~ 0, 

and, for N ~ 1, 

Ps(10N + 6) = 2PT(10N + 3), 

Ps (10N + 8) = 2PT(10N + 5), 

Ps(10N + 2) = 2PT(10N - 1). 

(4.2.2) 

(4.2.3) 

(4.2.4) 



Furthermore, 

a(10) = a(17) = a(20) = a( 43) = a( 45) = a(67) = a(117) = 0; 

z.e., 

Ps(20) = 2PT(17), Ps(34) = 2PT(31), Ps(40) = 2PT(37), Ps(86) = 2PT(83), 

Ps(90) = 2PT(87), Ps(134) = 2PT(131), Ps(234) = 2PT(231), 

and 

a(25n) > 0,0.(2517, + 5) > 0,0.(2517, + 7) > 0,0.(2517, + 17) > 0, a(25n + 22 > 0; 
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a(25n + 2) < 0,0.(2517, + 10) < 0,0.(2517, + 12) < 0,0.(2517, + 15) < 0, a(25n + 20) < O. 

Proof. We recall from [13, p. 82J that 

00 n I( -q) I( _qlO, _q15) 2 f( _q5, _q20) 
~ a(n)q = f( _q25) = f( _q5, _q20) - q - q f( _qlO, _q15)" 

Extracting various terms from both sides of the above, we find that 

and 

0.(1) = -I, 0.(571, + 1) = 0, for n 2: 1, 

a(5n + 3) = 0 = a(5n + 4), for n 2: 0, 

00 n f(_q2,_q3) 2:= a(5n)q = f( _ _ 4) , 
n=O q, q 

~ n f( -q, _q4) 
L..,.. 0.(571, + 2)q = - f( _ 2 _ 3)" 
n=O q, q 

From (4.2.5) and (4.2.1), we arrive at (4.2.2)-(4.2.4). 

Next, let ,(17,) and 6(n) be defined by 

00 00 f( 2 3) 1 
2:= ,(71,)qn := L a(5n)qn = f(--q '-=-~) = -1/5 R( ) 
n=O n=O q, q q q 

(4.2.5) 
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and 

00 00 f( 4) 
'" 6(n)qn := '" a(5n + 2)qn = - -q, -q = _q-l/5 R(q), 
L; L; . f(-q2, _q3) . 
n=O n=O 

where R(q) is the famous Rogers-Ramanujan continued fraction, defined by 

ql/5 q q2 q3 
R(q) := -1- + 1 + 1 + 1 + ... ' Iql < 1. (4.2.6) 

The coefficients I(n) and 6(n) have been extensively studied by various authors. 

We refer to Chapter 4 of [1] for many references. In particular, from [1, pp. 111-113, 

Corollary 4.2.1 and Corollary 4.2.2]' we have 

1(2) = 1(4) = 1(9) = 0,6(3) = 6(8) = 6(13) = 6(23) = 0, 

1(5n) > 0, 1(5n + 1) > 0, 1(5n + 2) < 0, 1(5n + 3) < 0, 1(5n + 4) < 0, 

6(5n) < 0, 6(571 + 2) < 0, 6(571 + 1) > 0, 6(5n + 3) > 0, 6(5n + 4) > O. 

Therefore, 

a(10) = a(20) = a(17) = a( 42) = a( 45) = a(67) = a(117) = 0, 

a(25n) > 0, a(2571 + 5) > 0, a(25n + 7) > 0, a(2571 + 17) > 0, a(2571 + 22) > 0, 

a(2571 + 2) < 0, a(25n + 10) < 0, 0,(2571, + 12) < 0, (I,(25n + 15) < 0, 

a(25n + 20) < 0, 

which completes the proof. o 

Theorem 4.2.3. (Analogues to Corollary to Conjecture 3.25 of [58] and to Theorem 

. 2.7 of [17]) Let S be the set containing 2 copies of the even positive integers that are 

not multiples of 13, and T be the set containing 2 copies of the odd positive integers 

that are not multiples of 13. Let a(N) be the diffeTence of the numbeT of 2-colored 

partitions of N into an even number of distinct non multiples of 13 and the number 
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of 2-colored partitions of N into an odd number of distinct non multzples of 13. Then 

Ps(2) = 4 + a(l) and for any N > 1, we have 

Ps(2N) = 2PT (2N - 3) + a(N). (4.2.7) 

Proof. If (3 has degree 13 over a and m is the multiplier connecting a and (3, then 

from [13, p. 376, Entry 8(iii)], we have 

( ~)1/4 + (~)1/4 _ ((3(1- (3))1/4 _ 4 ((3(1- (3))1/6 = m, 
a 1 - a a(1- a) a(1- a) 

which can be transcribed, with the help of the identities in Lemma 1.1.1, into 

The above can be further transformed into 

Thus, 

Now, the generating function of a(n) is given by 

00 n f2( -q) L a(n)q = P( _ 13)" 
n=O q 

Equating the coefficients of q2N from both sides of the above, we easily arrive at the 

desired identity to complete the proof. o 

Example: n = 5 zn (4.2.7). 

Then Ps(10) = 14 as there are two copies of each of the types 10, 6 + 2 + 2 and 

4 + 4 + 2 and 4 additional copies of each of the forms 8 + 2 and 6 + 4; PT (7) = 6, 

the relevant partitions of 7 are 2 copies each of the types 7, 5 + 1 + 1 and 3 + 3 + 1, 

and a(5) = 2. 
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Theorem 4.2.4. (Analogues to Corollary to Conjecture 3.27 of [58J and to Theorem 

2.5 of [17]) Let S be the set containing 4 copies of the even positive integers that are 

not multiples of 7, and T the set containing 4 copies of the odd positive integers 

that are not multiples of7. Furthermore, let a(N) be the diffeTence of the numbeT of 

4-colored partitions of N into an even number of distinct non multiples of 7 and the 

number of 4-colored partitions of N into an odd number of distinct non multiples of 

7. Then 

Ps(2) = 8 + a(l) and for N > 1, Ps (2N) = 2PT (2N - 3) + a(N). (4.2.8) 

Proof. If (3 has degree 7 over a and Tn is the multiplier connecting a and (3, then, 

from [13, p. 314, Entry 19(v)] 

( ~)1/2 + (~)1/2 _ ((3(1- (3))1/2 _ 8 ((3(1- (3))1/3 = 7n2 , 

a 1 - a a(l - a) a(l - a) 

which can be transcribed, with the help of Lemma 1.1.1, into 

Transforming the theta functions into q-products, with the aid of (1.1.3)-(1.1.5), we 

find that 

which can be written as 

00 { 00 00 } r( 2) ~ Ps(n)qn = q3 ~ PT(n)qn - ~ PT(n)( -q)" + 8q2 + f4( ~:14)' (4.2.9) 

Now, the generating function of a(n) is given by 

Thus, equatillg the coefficiellt.s of q2N from both sides of (4.2.9), we easily arrived 

at (4.2.8) to complete the proof. o 
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Example n = 3 m (4 2 8) 

Then Ps(6) = 24, the relevant partltlOns of 6 are 4 copIes each of the types 6 

and 2 + 2 + 2 and 16 addltlOnal COplCS of the fOlm 4 + 2, PT (3) = 8, the relevant 

partltlOns of 3 are 4 copIes each of the types 3 and 1 + 1 + 1, and a(3) = 8 

4.3 Conjectures 3.51 and 3.26 of [58] 

Theorem 4.3.1. (Corollary to Conjecture 3 51 of [58]) Let S be the set conta~mn9 

one copy of the even pos~twe ~ntegers, 2 copws of the odd pos~twe mtegers, one more 

copy of the pos~twe mult~ples of 14, and 2 more cop~es of the odd pos~twe mult~ples 

of 7, let T be the set conta~nm9 2 cop~es of the even pos~twe mtegers, one copy of 

the odd pos~twe mtegers, 2 more cop~es of the pos~twe mult~ples of 14, and one more 

copy of the odd posdwe mult~ples of 7 Then, for any N ~ 1, 

Ds(N) = 2DT (N - 1), 

or equwalently, 

Ps(N) = 2PT (N - 1) 

Proof We recall from Berndt s book [13, p 304] that 

(431) 

Transformmg thIS mto q-products wIth the aId of (1 1 3)-(1 1 5) and cancelmg 

(q2, q2)00(q14, q14)oo from both sIdes we find that 

( 2)2 ( 7 14)2 (2 4) (14 28) 2q -q, q 00 -q , q 00 - q , q 00 q , q 00 = ( 2) (7 14) q,qooq,q 00 

Multlplymg both sIdes by (_q2, q2)00( _q14, q14)00 and then usmg Euler's IdentIty 

(-q, q)oo = (q, q2)~}) we obtam 

(_q, q2)~( _q7, q14)~(_q2) q2)00( _q14, q14)00 

= 2q(_q,q2)00(_q7,q14)00(_q2 q2)~(_q14,q14)~ + I, 
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which is equivalent to 

00 00 

n=O n=O 

Equating the coefficientt; of qN, we arrive at the desired result. o 

Example: n = 5 . 

Then Ps(5) = 8, the relevant partitions of 5 are 2 copies each of the types 5, 

4 + 1, 3 + 2 and 3 + 1 + 1; PT ( 4) = 4, the relevant partitions of 4 are 2 copies of 4 

and 1 copy each of the types 3 + 1 and 2 + 2. 

Conjecture 4.3.1. (Corollary to Conjecture 3.26 of [58]) Let S be the set contaming 

3 copies of the odd positive integers and 3 more copies of the odd positive multiples of 

7, and T the set containing 3 copies of the even positive integers and 3 more copies 

of the posztive multzples of 14. Then, for any N :2: 3, 

Ds(N) = 4DT(N - 3). 

We prove the following equivalent version of the conjecture. 

Theorem 4.3.2. Let Sand T be as defined m ConjectuT'e 4·3.1. Then, for any 

N :2: 1, 

Ds(2N + 1) = 4DT(2N - 2), (4.3.2) 

or equzvalently, 

Ps (2N + 1) = 4PT(2N - 2). (4.3.3) 

Proof. Cubing (4.3.1), we find that 

cp3(q)cp3(q7) _ cp3( _q2)cp3( _q14) = 8q3Vi(q)'l/)3(q7) 

+ 6q1jJ(q)1jJ(q7)cp(q)cp(q7)cp( _q2)cp( _q14), 
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which can be transformed, with the aid of (1.1.3)-(1.1.5), into 

Dividing both sides of the above identity by (q2; (2)~( q14; (14)~ (_q; (2)~( _q7; (14)~ 

and then using the trivial identity (q2; q4)00 = (q; q2)00( -q; q2)oo, we arrive at 

( . 2)3 ( 7. 14)3 (. 2)3 ( 7. 14)3 _ 8' 3 1 6 -q, q 00 -q ,q 00 - q, q 00 q ,q 00 - q ( 2. 4)3 ( 14. 28)3 + q, q,qooq,q 00 

which by Euler's identity (-q; q)oo = (q, q2)~} reduces to 

Thus, 

00 00 00 

n=O n=O n=O 

or 

00 00 00 

n=O n=O n=O 

Comparing the coefficieuts of q2N+1 from both sides of the above identities, we 

readily arrive at (4.3.2) and (4.3.3) to complete the proof. o 

Example: n = 3 in (4.3.3). 

Then Ps(7) = 24, the relevant partitions of 7 are 6 copies of the type 7 and 9 

copies each of the types 5 + 1 + 1 and 3 + 3 + 1; PT ( 4) = 6, the relevant partitions 

of 4 are 3 copies each of the types 4 and 2 + 2. 

Remark 4.3.3. The above two theorems have also been proved by Berndt and Zhou 

(iB} by using Ramanujan's modular equations, 
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4.4 Partition identities in Conjectures 3.38, 3.28, 

3.30, and 3.42 of [58] 

Conjecture 4.4.1. (Corollary to Conjecture 3.38 of [58]) Let S be the set contammg 

3 copzes of the odd posztzve mtegers that are not multzples of 3, one copy of the odd 

poszizve multzples of 3 that are not multzples of 9, and 4 copzes of the odd posztzve 

multzples of 9; let T be the set contazmng 3 copzes of the even posztzve mtegers that 

are not multzples of 3, one copy of the posztzve multzples of 6 that are not multzples 

of 18, and 4 copzes of the posztzve multzples of 18. Then, for any N ~ 3, 

Ds(N) = 2DT (N - 3). 

We prove the following equivalent theorem. 

Theorem 4.4.1. If Sand T are as defined m Con]ect7J,Te 4.4 1, then Os(l) = 3 

and for N > 1, 

Ds(2N + 1) = 2DT (2N - 2) (4.4.1) 

or equzvalently, 

Ps (2N + 1) = 2PT (2N - 2) (4.4.2) 

Proof. First we recall from (3.3.10) that 

Replacing q by -q and then employing the trivial identity X3 (q) = <p(q)/'lj;( -q), w? 

have 

( 4.4.3) 
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Again, from [14, p. 202, Entry 50 (i)], we recall that 

(4.4.4) 

Multiplying the previous two identities, we have 

(4.4.5) 

Next, by [13, p. 358, Entries 4(i) and (ii)], 

'P( _q18) + q ('Ij.;( q9) _ 'Ij.;( _q9)) = 1 
<p( _q2) 'Ij.;(q) '1/)( -q) 

and 

Replacing q by -q in (4.4.5) and then subtracting from (4.4.5) and using the 

above two identities, we obtain 

X3(q)X3(q9) X3( -q)X3( _q9) <p( _q18) <p( _q2) 
'X2(q3) - X2( _q3) = 2q + 3q <p( _q2) + q:P( _q18) , 

= 2q + ( 2)~ ( 18) {<p2( _q2) + 3<p2( _q18)} . 
<p -q :p-q 

( 4.4.6) 

Now, by [13, p. 49, Corollary (i)], 

Noting by (l.l.2), that 

we rewrite the previous identity as 

( 4.4.7) 
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that is, 

Again, by [7, Eq. (3.37)], 

Multiplying the above two identities and then replacing q by _q2: we find that 

(4.4.8) 

The above identity can be rewritten as 

00 00 00 

L Ds(n)qn - L Ds(n)( -q)" = 6q + 4q3 L DT(n)qn 
n=O n=O n=O 

or 

00 00 00 

L PsCn)qn - L Ps(n)( -q)" = 6q + 4q3 L PT(n)qn. 
n=O n=O n=O 

Equating the coefficients of q2N+l from both sides of the above identities, we readily 

arrive at (4.4.1) and (4.4.2) to finish the proof. o 

Example: n = 3 in (4.4.2). 

Then Ps(7) = 12, the relevant partitions of 7 are 3 copies of 7 and 9 copies of 

the type 5 + 1 + 1; PT(4) = 6, the relevant partitions of 4 are 3 copies each of the 

types 4 and 2 + 2. 

Remark 4.4.2. The identity (4.4.1) has also been established by Berndt and Zhou 

(l8) by using Ramanujan's mod1dar equatwns. 



60 

Conjecture 4.4.2. (Corollaty to Conjecture 328 of [58]) Let S be the set contammg 

3 copzes of the even posztwe mtegers that are not multzples of 9, and T be the set 

contammg 3 copzes of the odd posztwe mtegers that are not multzples of 9 Then, 

for any N ~ 4, 

Ds(N) = Dr(N - 3) 

An eqUlvalent form of the above conjecture has been proved by Berndt and Zhou 

[18] Here we find the followmg analogous result 

Theorem 4.4.3. Let Sand T be as defined m Conjecture 4 4 2 and let a(N) be the 

dzfference of the number of 3-colored partztwns of N mto an even number of dzstmct 

non multzples of 9 and the number of 3-colored partztwns of N mto an odd number 

of dzstmct non multzples of 9 Then, Ps(2) = 3 + a(l) and for N > 1, we have 

Ps(2) = 3 + a(l) and Ps (2N) = 2Pr (2N - 3) + a(N), jor N > 1 (44 10) 

Proof Multlplymg (3 310) by y;(q9) and (447) by q'lj;(q9) and then subtractmg the 

second from the first, we have 

where we have also used the tllvIal IdentItIeS X(q)X( -q) = X( _q2), cp(q)cp( -q) = 

y;2(_q2) and 'Ij;(q)t/J(-q) = t/J(q2)cp(_q2) Replacmg q by _q2 m (447) and then 

usmg It m the above IdentIty, we obtam 

(4411) 

Cubmg, we have 
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Dividing both sides of the above by 7jJ3(q)7jJ3(q9) and using ~~~~ = X(q)X( _q2) and 

then simplifying further, we find that 

(4.4.12) 

Replacing q by -q in (4.4.12) and then adding the resulting identity with (4.4.12), 

we have 

Now, Ramanujan's third degree modular equation 

can be transformed into (see [5, Theorem 4.1]) 

Multiplying both sides of the above by f3~ -=-~j) and noting that 

f( -q) = X( -q)f( _q2), we find that 

X3( _q3) X3(q3) X( -cP) 
X( -q) - X(q) = 2q X3( _q6)" 

Employing the above, with q replaced by q3, in (4.4.13), we obtain 

which can be recast as 

(4.4.13) 

(4.4.14) 

(4.4.15) 
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where 

and 

X3( _q)x6( _q9) X3(q)X6(q9) 
A= + . X3( _q3). X3(q3) 

From (4.4.9) and (4.4.14), we have 

X3(q)X3(q9) X3( -q)X3( _q9) X2( _q6) 
. - = 6q + 4q3 ----;:-:-----;;-;---;:-;-'---:-;:-:-

X2(q3) X2( _q3) X3( _q2)x3( _qI8) 
(4.4.16) 

and 

X3(q9) X3( _q9) 3 X( _q6) 
X(q3) - X( _q3) = -2q X3( _qI8)' ( 4.4.17) 

Multiplying (4.4.16) and (4.4.17), we find that 

4 X( _q6) 6 X3( _q6) 
2L = A + 12q X3( _qI8) + 8q X3( _q2)X6( _qI8)' (4.4.18) 

Multiplying (4.4.15) by 2 and then subtracting (4.4.18), we obtain 

3 6 X3( _q6) 
2L = 2q R + A - 8q 3( 2) 6( 18) . X -q X -q 

(4.4.19) 

W . l'fi d . f A 8 6 X3( _q6) W d thO b e want a snnp 1 e expreSSlOn or - q 3( 2) 6( 18)' e 0 IS Y 
X -q X -q 

employing some results involving Ramanujan's cubic continued fraction [13, p. 345], 

G(q), defined by 

qI/3X( _q) qI/3 q + q2 
G(q):= X3( _q3) = -1- + 1 + ... ' 

, We note from [1, pp. 95-96, Theorem 3.3.11 that 

G(q)G( -q) + G(q2) = 0, 

G(q) + G( -q) + 2G2( _q)G2(q) = 0, 

Iql < 1. (4.4.20) 

(4.4.21 ) 

( 4.4.22) 
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and 

(4.4.23) 

Now, by (4.4.3) and (4.4.4), 

and 

Multiplying the above two identities, we obtain 

Thus, 

( 4.4.24) 

where (4.4.21)-(4.4.23) have also been utilized to arrive at the last expression. 

But, by [13, p. 95, Entry l(iv)], 

2 1 f3( _ql/3) 
4G (q) - 3 + G(q) = ql/3 J3( _q3)' 

Employing the above, with q replaced by q6, in (4.4.24), , 

6 X3( _q6) 2 P( _q2) 
A - 8q 3( 2) 6( 18) = 12q + 2 P( 18)' X -q X -q -q 

and hence, (4.4.19) reduces to 
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In terms of Ps(n) and PT(n), the above can be recast as 

Equating the coefficientti of q2N from both sides of the above, and also noting that 

Note that 

~ n _ J3(-q) 
0 a(n)q - J3(- 9)' 
n=O q 

we arrive at the desired result (4.4.10). 

o 

Example: n = 3 in (4.4.10). 

Then Ps(6) = 13, the relevant partitions of 6 are 3 copies of the form 6, 9 copies 

of the form 4+2 and one copy of the form 2+2+2; PT (3) = 4, the relevant partitions 

of 3 are 3 copies of the form 3 and one copy of the form 1 + 1 + 1 and a(3) = 5. 

Example: n = 5. 

Then Ps(10) = 42, the relevant partitions of 10 are 3 copies each of 10 and 

4 + 2 + 2 + 2 and 9 copies each of the type 8 + 2, 6 + 4, 6 + 2 + 2 and 4 + 4 + 2; 

PT (7) = 21, the relevant partitions of 7 are 3 copies each of 7 and 9 copies each of 

the type 5 + 1 + 1 and 3 + 3 + 1 and a(5) = O. 

Theorem 4.4.4. (Corollary to Conjecture 3.30 of [58]) Let S be the set containing 

one copy of the odd positive integers that are not multzples of 9 and 2 copies of 

the even posztive integers that are not multzples of 9, and T be the set containing 2 

copies of the odd posztzve zntegers that are not multzples of 9 and one copy of the 

even positive integers that are not multiples of 9. Then, for any N ~ 2, 

Ds(N) = DT(N - 1). 

Berndt and Zhou [18] proved the above theorem. Here we present an analogous 

theorem involving Ps(n) and PT(n). 



Theorem 4.4.5. If 5 and T are as defined in Conjecture 4.4.4, then 

where 

Ps(3N + 1) = PT(3N), 

Ps(3N + 2) = PT(3N + 1), 

Ps(3N) = PT(3N - 1) + a(N), 

00 n X3( _q3) 1 
La(n)q = (_) = C( )' 
n==O X q q 
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(4.4.25) 

(4.4.26) 

(4.4.27) 

with C(q) = q-I/3G(q), where G(q) is Ramanujan's cubic continued fraction as 

defined by (4.4.20). 

Furthermore, a (n) is nonzero except 2f n = 5 and 8. 

Proof. Transforming the theta functions in (4.4.11) into q-products by using (1.1.3)

(1.1.5), we find that 

(_q; q2)oo( _q2; q2)~ = q (_q; q2)~( _q2; q2)00 + X3( _q9) 
(_q9; qIS)oo( _qIS; qIS)~ (_q9; qIS)~( _qIS; qlS)oo X( _q3) . 

In terms of Ps(n) and PT(n), the above can be written as 

00 00 3( 9) L Ps(n)qn = q L PT(n)qn + X (.=-q3) . 
n==O n==O X q 

Equating the coefficients of q3N+I, q3N+2 and q3N, from both sides of the above, we 

readily arrive at (4.4.25)-(4.4.27), respectively. 

Now, Hirschhorn and Roselin [36, Theorem 1.5] proved that a6n > 0, a6n+l > 0, 

a6n+2 > 0, a6n+3 < 0, a6n+4 < 0, a6n+5 < 0 except a5 = as = O. Thus we finish the 

proof. o 

Example: n = 2 m (4.4.25). 

Then Ps(7) = 12, the relevant partitions of 7 are 7, 3 + 2 + 2, 2 copies each of the 

types 6 + 1, 5 + 2 and 4 + 3 and 4 additional copies of the form 4 + 2 + 1; PT ( 6) = 12, 

the relevant partitions of 6 are 6, 4 + 2, 3 + 3, 4 + 2 + 1 and 4 copies each of the 

types 5 + 1 and 3 + 2 + 1. 
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Example n = 2 ~n (4426) 

Then Ps(8) = 16, the relevant partltlOns of 8 ale 7 + 1, 5 + 3, 4 + 4, 3 + 2 + 2 + 1, 

2 copIes each of the types 8, 5 + 2 + 1, 4 + 3 + 1 and 4 + 2 + 2 and 4 addltlonal COPIeS 

of the form 6 + 2, Pr(7) = 16, the relevant partltlOns of 7 ale 2 COpIes each of the 

types 7, 6 + 1, 5 + 2, 5 + 1 + 1,4 + 3,4 + 2 + 1, 3 + 3 + 1 and 3 + 2 + 1 + 1 

Example n = 2 m (4427) 

Then Ps(6) = 9, thc relevant partltIOns of 6 are 5 + 1, 2 COPIeS each of the typcs 

6 and 3 + 2 + 1 and 4 addItIOnal COPICS of the fOlm 4 + 2, Pr(5) = 8, the relevant 

partItIOns of 5 are two copIes each of the types 5, 4 + 1, 3 + 2 and 3 + 1 + 1 and 

a(2) = 1 

Theorem 4.4.6. (Analogue to Corollary to Conjecture 342 of [58]) Let 5 be the 

set contammg 2 cop~es of the posztwe mtegers that are not multzples of 4, and 2 

more copzes of the posztwe multzples of 3 that are not multzples of 4, let T be the 

set contammg 2 copzes of the posztzve mtegers that are not congruent to 2 modulo 4, 

and 2 more copzes of the poszlzve multzples of 3 that are not congruent to 2 modulo 

4 Then Ps(l) = 2 and for N ~ 1, 

Ps(2N + 1) = 4Pr (2N - 1) 

Proof We recall from [13, p 232] that 

whIch can be transformed mto 

( 2)2 ( 3 6)2 ( 2)2 (3 6)2 4q -q, q 00 -q ,q 00 - q, q 00 q ,q 00 = (2 4)2 (6 12)2 q,q ooq,q 00 

(4428) 

Replacmg q by q2 m the above, multiplymg both SIde5 of the lesultmg IdentIty 

by (-q, q2)~( _q3, q6)~ and then usmg Euler's IdentIty and the trIVIal IdentIty 
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We rewrite the above as 

00 00 

n=O n=O 

Replacing q by -q in (4.4.29) and then subtracting the resulting identity from 

(4.4.29)' 

00 00 

L Ps(n)qn - L Ps(n)( -qt (4.4.30) 
n=O n=O 

_ (q2; q4)~(q6; q12)~ {( _q; q2)~( _q3; q6)~ _ (_q; q2)~( _q3; q6)~} 

= 4q' {t, Pr{n)q" - t, Pr{n){ -q)"} . (4.4.31) 

Employing (4.4.28) in (4.4.30), 

t, Ps{n)q" - t, Ps{n){ -q)" = 4q + 4q' {t, Pr{n)q" - t, Pr{n)( -q)"} . 

Equating the coefficients of q2N+l from both sides, we complete the proof. 0 

Example: n = 2. 

Then Ps(5) = 16, the relevant partitions of 5 are 2 copies each of the types 5 

and 2 + 2 + 1, 4 copies of the type 3 + 1 + 1 and 8 additional copies of the form 3 + 2; 

Pr(3) = 4, the relevant partitions of 3 are 4 copies of 3. 

4.5 Conjectures 3.32, 3.33, 3.31, 3.35 - 3.37 and 

3.52 of [58] 

Theorem 4.5.1. (Corollary to Conjecture 3.32 of [58]) Let S be the set contaznzng 

2 copzes of the posztwe integers that are ezther odd or multzples of 8, and 7 copzes of 
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the positwe integer that are congruent to 2 modulo 4; let T be the set contaming 4 

copies of the positwe integers that are either odd or multzples of 8, and 2 copies of 

the positive integers that are congruent to 2 modulo 4. Then, for any N 2: 1, 

Ds(N) = 2DT (N - 1) 

or equivalently, 

Ps(N) = 2PT (N - 1). 

Proof. By Lemma 4.1.2, 

cp(q) - cp( -q) = 2q 'lj;(q8) 
cp(q) + cp( _q) cp(q4)· 

Thus, 
cp2(q) - cp(q)cp( -q) = 2q :.p(q)'lj;(q8) 
. :.p(q) + cp( _q) :.p(q4) 

Adding cp( -q) to both sides of the above and then using Lemma 4.1.2 again, 

Dividing both sides by cp( -q), 

which can be transformed into 

where we also applied Euler's identity (-q; q)oo = (q; q2)~} and the trivial identity 

(q; q2)00( -q; q2)00 = (q2; q4)00. 

Since the above is equivalent to 

00 00 
L Ds(n)qn = 2q L DT(n)qn + 1 
n=O n=O 
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or equivalently, 

00 00 

2:: Ps(n)q" = 2q 2:: Pr(n)q" + I, 
,,=0 ,,=0 

equating the coefficients of qN from both sides, we readily arrive at the desired 

result. o 

Example: n = 5. 

Then Ps(5) = 58, the relevant partitions of 5 are 2 copies of the type 5, 14 copies 

of the type 3 + 2 and 42 additional copies of the type 2 + 2 + 1; Pr(4) = 29, the 

relevant partitions of 4 are 2 + 2, 12 copies of the type 2 + 1 + 1 and 16 additional 

copies of the type 3 + 1. 

Theorem 4.5.2. (Corollary to Conjecture 3.33 of [58]) Let S be the set containing 

4 copies of the positwe integers that are either odd or congruent to 4 modulo 8, and 

2 copies of the positive zntegers that are congruent to 2 modulo 4; let T be the set 

containing 2 copies of the positive integers that are either odd or multiples of 8, and 

7 copies of the positwe integers that are congruent to 2 modulo 4. Then, for any 

N 2 2, 

Ds(N) = Dr(N - 1). 

The above theorem has been proved by Berndt and Zhou [18]. In the following 

theorem we prove an analogous result. 

Theorem 4.5.3. If Sand T are as defined in Theorem 4.5.2, then Ps(l) = 4, 

Pr(O) = 1, and for N 2 1, 

Ps(2N + 1) = 2Pr (2N) (4.5.2) 

and 

Ps(2N) = 2Pr (2N - 1) + a(N), (4.5.3) 
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where 

Proof. It is easy to see, or by Lemma 4.1.2, 

( 4.5.4) 

Multiplying both sides by t.p2(q2) and again using the identities of Lemma 4.1.2, 

that is, 

1 1 
t.p(q)V/(q4) = 2q?jJ(q8)t.p2(q2) + "2t.p( _q)p2(q2) + "2t.p( _q)t.p2(q) 

1 1 = 2q?jJ(q8)t.p2(q2) + "2t.p( _q):.p2(q2) + "2t.p( -q) {t.p2(q2) + 4q?jJ2(q4)} 

= 2q?jJ(q8)t.p2(q2) + 'P( _q)t.p2(q2) + 2qt.p( _q)7.j?(q4). 

Dividing both sides by t.p( _q)?jJ2(q4) and simplifying by using t.p(q)?jJ(q2) = 7jJ2(q), 

Expressing in q-products, 

which is equivalent to 

Equating the coefficients of q2N+1 and q2N on both sides, we easily arrive at (4.5.2) 

and (4.5.3), respectively. o 
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Example n = 2 m (4.5.2) 

Then Fs(5) = 64, the relevant partltlOns of 5 are 4 copIes each of the types 5 

and 2 + 2 + 1, 8 copies each of the types 3 + 2 and 2 + 1 + 1 + 1, 16 copies of the 

form 4 + 1 and 24 additIOnal copies of the form 3 + 1 + 1; FT ( 4) = 32, the relevant 

partitions of 4 are 4 copies of the form 3 + I, 7 copies of the type 2 + 1 + 1 and 21 

additIonal copIes of the form 2 + 2. 

Example: n = 2 m (4.5.3). 

Then Fs(4) = 34, the relevant partitions of 4 are 2 + 2, 1 + 1 + 1 + I, 4 copies 

of the type 4, 12 copies of the type of 2 + 1 + 1 and 16 additional copies of the form 

3 + 1; FT(3) = 16, the relevant partItions of 3 are 2 copies of 3 and 14 addItional 

copies of the form 2 + 1 and a(2) = 2 

Theorem 4.5.4. (Corollary to Conjecture 3.31 of [58]) Let S be the set contammg 

4 copzes of the posztzve mtegers that are ezther odd or congruent to 4 modulo 8, and 

2 copzes of the posztwe mtegers that are congruent to 2 modulo 4, let T be the set 

contammg 4 copzes of the posztwe mtegers that are ezther odd or multzples of 8, and 

2 copzes of the posztwe mtegers that are congruent to 2 modulo 4. Then, for any 

N22, 

Ds(N) = 2DT(N - 2) 

A proof of the above theorem can be found 111 Berndt and Zhou [18] We find 

the following result. 

Theorem 4.5.5. If Sand T are as defined m Theorem·4.5.4, then Ps(l) = 4 and 

for N 2 1, 

Ps(2N + 1) = 4PT(2N - I), 

Fs(2N) = 4PT(2N - 2) + a(N), 

where 

(45.6) 

(4.5.7) 
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Proof. From (4.5.1) and (4.5.5), we have 

and 

Thus, \ 

which is equivalent to 

Equating the coefficients of q2N+l and q2N from both sides, we readily deduce (4.5.6) 

and (4.5.7). o 

Example: n = 2 in (4.5.6). 

Then Ps(5) = 64, the relevant partitions of 5 are 4 copies each of the types 5 

and 2 + 2 + 1, 8 copies each of the types of 3 + 2 and 2 + 1 + 1 + 1, 16 copies of the 

form 4 + 1 and 24 additional copies of the form 3 + 1 + 1; PT (3) = 16, the relevant 

partitions of 3 are 4 copies of each of the types 3 and 1 + 1 + 1, 8 additional copies 

of the form 2 + 1. 

Example: n = 2 in (4.5.7). 

Then Ps(4) = 34, the relevant partitions of 4 are 2 + 2, 1 + 1 + 1 + 1,4 copies of 

the type 4, 12 additional copies of the form 2 + 1 + 1 and 16 more copies of the type 

of 3 + 1; PT (2) = 8, the relevant partitions of 2 are 2 copies of 2 and 6 additional 

copies of the type 1 + 1 and a(2) = 2. 

Theorem 4.5.6. (Corollary to Conjecture 3.35 of [58]) Let S be the set containzng 2 

copies of the odd positive integers, 3 copzes of the positive integers that are congruent 
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to 2 modulo 4, 6 copies of the posztwe integers that are congruent to 4 modulo 8, 

and 4 copies of the positwe multiples of 8; let T be the set containing 2 copies of the 

odd positive integers, 3 copies of the posztive integers that are congruent to 2 modulo 

4, 4 copies of the positive integers that are congruent to 4 modulo 8, and 6 copies of 

the positive multiples of 8. Then, for any N ~ 1, 

Ds(N) = 2DT (N - 1) 

or equivalently, 

Ps(N) = 2PT (N - 1). 

Proof. Replacing q by -q in (4.5.4) and then dividing both side by cp(-q), 

cp(q4) = 2q 'ljJ(q8) + 1 
cp(-q) cp(-q) , 

which can be transformed into 

(_q; q2)~( _q2; q4)~( _q4; q8)~( _q8; q8)~ 

= 2q( _q; q2)~( _q2; q4)~( _q4; q8)~( _q8; q8)~ + 1. 

Thus, 
00 00 

n=O n=O 

or equivalently, 

00 00 

L Ps(n)qn = 2q L Pr(n)qn + 1. 
n=O n=O 

Equating the coefficients of qN from both sides, we arrive at the desired result. 0 

Example: n = 5. 

Then Ps(5) = 28, the relevant partitions of 5 are 2 copies each of the types 5 

and 3 + 1 + 1, 6 copies each of the types 3 + 2 and 2 + 2 + 1 and 12 additional copies 

of the form 4 + 1; Pr(4) = 14, the relevant partitions of 4 are 3 copies of each of the 

types 2 + 2 and 2 + 1 + 1 and 4 additional copies of the forms 4 and 3 + 1. 
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Theorem 4.5.7. (Corollary to Conjecture 3.36 of [58]) Let S be the set containing 

2 copies of the positive integers and 2 more copies of the odd positive mtegers; let 

T be the set containing 2 copies of the odd positwe mtegers, 3 copies of the positwe 

integers that are congruent to 2 modulo 4, 4 cop~es of the positwe integers that are 

congruent to 4 modulo 8, and 6 coptes of the pos~twe multiples of 8. Then, for any 

N ~ 1, 

Ds(N) = 4Dr (N - 1) 

or equivalently, 

Ps(N) = 4Pr (N - 1). 

Proof. From Lemma 4.1.2, 

cp(q) = 4q'ljJ(q8) + cp(_q). 

Dividing both sides by cp( -q) and then transforming into q-products, we find that 

Since the above is equivalent to 

00 00 

L Ds(n)qn = 4q L Dr(n)qn + 1 
n=O n=O 

Of, equivalent to 

00 00 

n=O n=O 

we complete the proof by comparing the coefficients of qN from both sides. 0 

Example: n = 5. 

Then Ps(5) = 56, the relevant partitions of 5 are 4 copies each of the types 5 

and 2 + 2 + 1, 8 copies each of the types 4 + 1, 3 + 2 and 2 + 1 + 1 + 1 and 24 
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additional copies of the form 3 + 1 + 1; PT (4) = 14, the relevant partitions of 4 are 

3 copies of each of the types 2 + 2 and 2 + 1 + 1 and 4 additional copies of the forms 

4 and 3 + 1. 

Theorem 4.5.8. (Corollary to Conjecture 3.37 of [58]) Let S be the set containing 2 

copies of the odd positive zntegers, 3 copzes of the positzve integers that are congruent 

to 2 modulo 4, 6 copies of the positive integers that are congruent to 4 modulo 8, 

and 4 copies of the positive multiples of 8; let T be the set contazning 2 copies of 

the positive integers and 2 more copzes of the odd positzve integers. Then, for any 

N 21, 

or equzvalently, 

Proof. It is easy to see, or by Lemma 4.1.2, 

<p(q) + ip( -q) = 2<p(r/), 

which can be transformed into 

Dividing both sides by 2(q; q2)~, and then employing Euler's theorem (q; q2)oo = 
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which can be rewritten in eIther of the forms 

1 00 1 00 

2 L Dr(n)qn + 2 = L Ds(n)(/' 
n==O n==O 

and 

Companng the coefficlellts of qN hom Loth SIdes, we fUllsh the plOof o 

Example: n = 5. 

Then Ps(5) = 28, the relevant partitions of 5 are 2 copies each of the types 5 

and 3 + 1 + 1, 6 copies each of the types 3 + 2 and 2 + 2 + 1 and 12 additional copies 

of the form 4 + 1, Pr(5) = 56, the relevant partitIons of 5 are 4 COPlCS of each of the 

types 5 and 2 + 2 + I, 8 COPlCS each of the types 4 + 1, 3 + 2 and 2 + 1 + 1 + 1 and 

24 additional copies of the form 3 + 1 + 1. 

Theorem 4.5.9. (Corollary to Conjecture 3 52 of [58]) Let S be the set contammg 

2 cop~es of the odd pos~twe mtegers, one copy of the even pos~twe mtegers that are 

not mult~ples of 16, and one more copy of the pos~twe odd mult~ples of 8; let T be 

the set conta~mng 2 cop~es of the odd pos~twe mtegers, one copy of the even pos~twe 

mtegers that are not odd mulhples of 8, and one more copy of the pos~twe mulhples 



77 

of 16. Then, for any N ~ 2, 

Ds(N) = DT(N - 2). 

Theorem 4.5.9 has been proved by Berndt and Zhou [18]. We present the fol

lowing result involving Ps(n) and PT(n). 

Theorem 4.5.10. If Sand T are as defined in Theorem 4.5.9, then Ps(l) = 2, and 

for N ~ 1, 

where 

Ps(4N + 1) = 2PT(4N - 1), 

Ps(4N + 2) = 2PT(4N), 

Ps(4N + 3) = 2PT(4N + 1), 

Ps(4N) = 2PT(4N - 2) + a(N), 

00 n _ X4( _q2) 
La(n)q - 2(_)' 
n=O X q 

( 4.5.8) 

(4.5.9) 

(4.5.10) 

(4.5.11) 

Proof. With repeated applications of the identities in Lemma 4.1.2, we have 

\O( q) (\0' (q') - 2q',p'( q')) ~ \O( q) ( (I'( q') +21'( -q') )' _ 2q' (1"( q') -8'" ( -q')) ) 

1 
= _r.p(q) (r.p2(_q2) + r.p2(_q4)) 

2 
1 

= 2r.p(q)r.p( _q2) (r.p( _q2) + :p(q2)) 

= r.p( q )r.p( _q2)r.p( q8) 

= r.p( _q2)r.p(q8) (2q'rjJ(q8) + r.p(q4)) 

= 2qr.p( _q2)r.p( q8)1jJ( q8) + r.p( _q2)r.p( q8)r.p( q4). 

Hence, 
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Dividing both sides by cp( _q2)c.p(q8)1j;(q8), 

c.p(q)cp(q8) = 2q2 c.p(q)1j;(q8) + 2q + :p(q4) 
:p( _q2)'!j;(q8) c.p( _q2)c.p(q8) '!j;(q8) , 

which can be transformed into 

Thus, 

00 00 4( 8) 
~ PS(n)qn = 2q2 ~ PT(n)qn + 2q + ~2( =~4)' 

Equating the coefficients of q4N+l, q4N+2, q4N+3, and q4N from both sides of the 

above, we finish the proof. o 

Example: n = 1 in (4.5.8). 

Then Ps(5) = 8, the relevant partitions of 5 are 2 copies of each of the types 5, 

4 + 1, 3 + 2 and 3 + 1 + 1; PT (3) = 4, the relevant partitions of 3 are 2 copies of each 

of the types 3 and 2 + 1. 

Example: n = 1 in (4.5.9). 

Then Ps(6) = 12, the relevant partitions of 6 are 6, 4 + 2, 4 + 1 + 1, 3 + 3 and 4 

copies of each of the types 5 + 1 and 3 + 2 + 1; PT(4) = 6, the relevant partitions of 

4 are 4, 2 + 1 + 1, 4 copies of the type 3 + 1. 

Example: n = 1 in (4.5.10). 

Then Ps(7) = 16, the relevant partitions of 7 are 2 copies of each of the types 7, 

6 + 1, 5 + 2, 5 + 1 + 1,4 + 3,4 + 2 + 1, 3 + 3 + 1 and 3 + 2 + 1 + 1; PT (5) = 8, the 

relevant partitions of 5 are 2 copies of each of the types 5, 4 + 1, 3 + 2 and 3 + 1 + 1. 

Example: n = 2 in (4.5.11). 

Then Ps(8) = 23, the relevant partitions of 8 are 6 + 2, 6 + 1 + 1, 4 + 2 + 1 + I, 
3 + 3 + 2, 3 + 3 + 1 + I, 2 copies of the type 8 and 4 copies of each of the types 7 + I, 
5 + 3, 5 + 2 + 1 and 4 + 3 + 1; PT(6) = 12, the relevant partitions of 6 are 6, 4 + 2, 

4 + 1 + 1,3 + 3,4 copies of each of the types 5 + 1 and 3 + 2 + 1 and a(2) = -1. 
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4.6 Conjectures 3.39 and 3.40 of [58] 

Theorem 4.6.1. (Corollary to Conjecture 3.39 of [58]) Let S be the set containing 

2 copzes of the positive integers that are not multzples of 10, one more copy of the 

odd positive integers, and one more copy of the odd positive multiples of 5; let T 

be the set contaming 2 copies of the posztive integers that are not odd multiples of 

5, one more copy of the even positive integers, and one more copy of the positive 

multiples of 10. Then, for any N ~ 2, 

Ds(N) = 2DT (N - 2). 

Berndt and Zhou [18] have proved Theorem 4.6.1. Here we give an analogous 

result. 

Theorem 4.6.2. If Sand T a7'e as defined m Theo'f"ern 4·6.1, then Ps (1) = 2+b(1) 

and for N > 1 

Ps(N) = 4PT (N - 2) + b(N), 

where 

Proof. Recall from [5, p. 1039, equation (7.16)] that 

Employing Euler's identity (-qj q)oo = (qj q2)~}, the above can be written as 

(-q; q);, ( 5 10) ( 2) (q5; q10)~ 
( 

10. 10)2 -q; q 00 -q; q 00 - (. 2) -q ,q 00 q, q 00 

4 2 (-q; q)~ ( 2 2) ( 10 10) 2 
= q ( 5. 10)2 -q; q 00 -q ; q 00 + q. 

-q ,q 00 



80 

Thus, 
00 00 (5 10)5 L PS(n)qn = 4q2 L PT(n)qn + 2q + f: q2) 00. 

n=O n=O q, q 00 

Equating the coefficients of qN from both sides, we finish the proof. o 

Example: n = 5. 

Then P s (5) = 30, the relevant partitions of 5 are 2 copies of the type 2 + 1 + 1 + 1, 

3 copies of the type 2 + 2 + 1, 4 copies of the form 5, 6 copies of each of the forms 

4 + 1 and 3 + 2, 9 additional copies of the form 3 + 1 + 1; PT (3) = 8, the relevant 

partitions of 3 are 2 copies of the type 3 and 6 copies of the type 2+ 1 and b(5) = -2. 

Theorem 4.6.3. (Corollary to Conjecture 3.40 of [58]) Let S be the set containing 

3 copies of the even positive integers, one copy of the odd posztive integers, 3 more 

copies of the odd positive multiples of 5, and one more copy of the positive multiples 

of 10; let T be the set containzng 3 copzes of the odd positive mtegers, one copy of 

the even posztive integers, one more copy of the odd posztive multzples of 5, and 3 

more copies of the posztive multiples of 10. Then, for any N ~ 1, 

Ds(N) = DT(N - 1) 

or equivalently, 

Ps(N) = PT(N - 1). 

Proof. From [1, p. 28, Entries 1.7.1 (i), (iv)], we have 

and 
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where R(q) is the Rogers-Ramanujan continued fraction as defined in (4.2.6). Multi

plying the above identities and simplifying by using the trivial identity cp( q ),tf;( q2) = 

'lj;2(q), we find that 

cp(q5)'lj;(q2) _ qcp(q)'lj;(qlO) + 'lj;2(q) _ q'lj;2(q5) = 2q3/5 f(q, q9)f(q4, q6) :(~Jr (4.6.1) 

Since, by [13, p. 262, Entry 10(v)], 

identity (4.6.1) reduces to 

Now, setting a = q, b = q4, C = q2, and d = q3 in (4.1.1), 

But, by Jacobi's triple product identity, (1.1.2), 

f( -q, -q4)f( _q2, _q3) = (q; q5)oo(q2; q5)oo(q3; q5)oo(q4; q5)oo(q5; q5)~ 

= (q; q)oo(q5; q5)oo, 

and hence, from (4.6.3), we have 

Employing (4.6.4) in (4.6.2), 

((J(q5)'lj;(q2) _ q((J(q)'lj;(qlO) = { 2q3/5 f(q, q9)f(q4, q6) ~1(~J) _ 2f(q3, q7)f(q4, q6)} 

+ (q; g)oo(q5; q5)oo. (4.6.5) 

Now, R(q) has the product representation 
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and therefore, 

R(q) -3/5 (q,q6,q9,ql1,qI4,qI9;,q20)00 
--=q 
R(q4) (q2,q3,q7,q13,qI7,q18;q20)00' 

(4.6.6) 

On the other hand, by employing Jacobi's triple product identity, (1.1.2), and chang-

ing the base to q20, we have 

From (4,6,6) and (4.6.7), 

q3/5 J~~])f(q,qg)f(q4,q6) - f(q3,q7)f(q4,q6) = 0, 

and hence, from (4.6.5), 

The above is equivalent to 

(4.6,7) 

( 5 10)2 (10 10) (q4; q4)00 ( 2)2 (2 2) (q20; q20)00 ( ) (5 5) 
-q ; q 00 q ; q 00 ( 2. 4) - q -q; q 00 q ; q 00 ( 10. 20) = q; q 00 q ; q 00' 

q ,q 00 q ,q 00 

Dividing both sides by (q; q)00(q5; q5)00 and then employing (q; q)oo = (q; q2)00(q2; q2)oo 

and Euler's identity, we find that 

(-l; q2)~( _q; q2)00( _q5; qIO)~( _qIO; qlO)oo 

= q( _q; q2)~( _q2; q2)00( _q5; qlO)oo( _qlO; qIO)~ + 1. 

Since the above can put either of the forms 

00 00 
L Ds{n)qn = q L Dr{n)qn + 1 
n=O n=O 

and 

00 00 

n=O n=O 

we complete the proof by equating the coefficients of qN from both sides of the above 

two identities. o 
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Example n = 5 

Then Ps(5) = 13, the lelevant partltlOns of 5 ale 3 COPICS of each of the types 

4 + I, 3 + 2 and 2 + 2 + 1 and 4 additlOnal COPIC& of the type 5, Pr(4) = 13, the 

relevant partItlOns of 4 are 4, 3 COPIeS of the type 2 + 1 + 1 and 9 additlOnal copIes 

of the type 3 + 1 

4.7 Conjectures 3.34, 3.29, 3.41, 3.43 - 3.50 of 

[58] 

Theorem 4.7.1. (Corollary to Conjecture 334 of [58]) Let 5 be the set contammg 

one copy of the posztwe mtegers congruent to ±1 modulo 6, 5 copzes of the posztzve 

mtegers congruent to ±2 modulo 6, and 6 copzes of the posztwe multzples of 3, let T 

be the set contazmng 5 copzes of the posztwe mtegers congruent to ±1 modulo 6, one 

copy of the posztwe mtegers congruent to ±2 modulo 6, and 6 copzes of the posztzve 

multzples of 3 Then, for any N ~ 1, 

Ds(N) = Dr(N - 1) 

or equwalently, 

Ps(N) = Pr(N - 1) 

Proof Addmg (4 1 1) and (4 1 2), we find that . 
f(a, b)f(c, d) = af(b/c, ac2d)f(b/d, acd2

) + f(ac, bd)f(ad, bc) (471) 

Settmg a = q, b = q5, C = q3 and d = (lm the above, we have 

(472) 

Replacmg q by -q m the above, we have 

(473) 



Multiplying the previous two identities, we find that 

f4( q4, q8) _ q2 f4(q2, qIO) = f(q, q5)f( _q, _q5)cp(q3)c.p( _q3) 

= f(q, q5)f( -q, _q5)<p2( _q6), 
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(4,7.4) 

Now, setting a = q, b = q5, C = -q and d = _q5 in (4,7,1) and noting that 

f(-1,u) = 0, we find that 

(4,7.5) 

Using the above in (4.7.4), we have 

(4.7.6) 

Replacing q2 by q in (4,7.6) and then noting, by (1.1.2), that 

we have 

Dividing both, sides by the last expression, employing (1.1.2), and then simplifying, 

we deduce that 

(4.7.7) 

where, here and the sequel, 

Since (4.7.7) can be written 

00 00 

n=O n=O 
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or eqUIvalently, 

00 00 

L Ps(n)qn = q L Pr(n)qn + 1, 
n=O n=O 

we complete the proof by equatmg the coefficIents of qN from both sides. 0 

Example· n = 5. 

Then Ps(5) = 46, the relevant partitlOns of 5 are 5, 5 copIes of the type 4 + 1, 10 

copies of the type 2 + 2 + 1 and 30 additional copies of the type 3 + 2; Pr(4) = 46, 

the relevant partitions of 4 are 4, 5 copIes of the type 1 + 1 + 1 + 1, 10 copies of the 

type 2 + 1 + 1 and 30 additional copies of the type 3 + 1 

Theorem 4.7.2. (Analogue to Corollary to Conjecture 3 29 of [58]) Let 5 be the set 

contmnmg 4 copzes of the poszt2ve 2ntegers that are ezther congruent to ±1 modulo 

6 or to ±4 modulo 12, and T be the set contammg 4 copzes of the posztwe mtegers 

that are ezther congruent to ±1 modulo 6 or to ±2 modulo 12 Then, Ps(l) = 4 and 

for N ~ 1, 

Ps(2N + 1) = PT (2N - 1) (4.7.8) 

Furthermore, let U be the set contaznmg one copy of the even posdwe mtegers and 

one more copy of the even posztwe mtdtzples of 3, V be the set contammg two copzes 

of the odd pos2twe mtegers and two more copzes of the odd posdwe mult2ples of 3, 

W be the set contammg two cop2es of the even posztwe mtegers and two more cop2es 

of the even posztwe mult2ples of 3. If 5' = 5 U U and T' = T U U, then 

PSI(2N) = PT ,(2N - 2) + Pv(N) + 4Pw (N - 1) (4.7.9) 

Proof. Dlvidmg both sides of (4.7.6) by r( _q12) and then transforming into q-

products, we find that 
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Multiplying both sides of the above by (_q±l; q6)~ and then simplifying by using 

Euler's identity, we have 

(_q±l; q6)~(_q±4; q12)~ = q2( _q±l; q6)~( _q±2; q12)~ 

+ (_q; q2)!o(q2; q4)00(q3; q6)~(q6; q12)00, 

which can put in the form 

00 00 

n=O n=O 

Replacing q by -q in (4.7.10) and then subtracting the identity from (4.7.10), we 

have 

~ Ps(n)q" - ~ Ps(n)( -q)" ~ q' {~PT(n)q" - ~ PT(n)( -q)" } 

+ (q2; q4)00(q6; q12)00 X {( _q; q2)~((l; q6)~ _ (q; q2)~( _q3; q6)~} . 

(4.7.11) 

Now, we note from [62, p. 84, Corollary 3.3) that 

Squaring, we get 

1./(q)t.p2( _q3) = t.p2( _q4)t.p2( _q12) + 4q2'IjJ2( _q2)'ljJ2( -l) 

+ 4qt.p( _q4)t.p( _q12)'lj;( _q2)'lj;( _q6). (4.7.12) 

Replacing q by -q in (4.7.12) and then subtracting the resulting identity from 

(4.7.12), we find that 

which can be transformed into 

(4.7.13) 
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Employing (4.7.13) in (4.7.11), 

t, Ps(n)q" - t, Ps(n) ( -q)" ~ q' {t, Pr(n)q" - t, Pr(n)( -q)"} + 8q. 

from which, by equating the coefficients of q2N+l from both sides, we arrive at 

(4.7.8). 

Now we prove (4.7.9). 

Replacing q by -q in (4.7.10) and then adding the resulting identity with (4.7.10), 

that is, 

00 00 

L Ps(n)qn + L Ps(n)( _q)n 
n=O n=O 

~ g' {t, Pr(n)g" + t, Pr(n) ( -g)" } + (q'; q')oo(g'; g")oo 

X {( _q; q2)~(q3; q6)~ + (q; q2)~( _q3; q6)~} , 

~ g' {t, Pr(n)q" + t, Pr(n)( -q)"} 

+ (_q; q2)~(q3; q6)~ + (q; q2)~( _q3; q6)~ 
(_q2; q2)00( _q6; q6)00 ' 

t, Ps,(n)q" + t, Ps,(n)( -q)" ~ q' {t, p,..(n)q" + t, p,..(n)( -q)" } 

+ (_q; q2)~(q3; q6)~ + (q; q2)~( _q3; q6)~. 

(4.7.14) 

Again, replacing q by -q in (4.7.12) and then adding the resulting identity with 

(4.7.12), we have 

which is equivalent to 

(_q; q2)~(q3; q6)~ + (q; q2)~( _q3; q6)~ = 2( _q2; q4)~( _q6; q12)~ 

+ 8q2( _q\ q4)~( _q12; q12)~. 



Employing the above identity in (4.7.14), we have 

t, Ps,(n)qn + t, Ps,(n)( -q)" = q' {t, PT'(n)qn + t, PT,(n)( -q)"} 

+ 2( _q2; q4)!,( _q6; q12)!, + 8q2( _q\ q4)!,( _q12; q12)!,. 

Equating t.he coefficients of q2N from both sides of the above and noting that 

00 

2: Pv(n)q" = (-q; (l)!'( -(l; (6)!, 
n~O 

and 

00 

I: Pw(n)q" = (_q2; q2)!,( _q6; q6)!" 
,,=0 

we readily arrive at (4.7.9) to finish the proof 

Example: n = 3 m (4.7.8). 
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o 

Then Ps(7) = 44, the relevant partitions of 7 (:lre 4 copies of the type 7, 16 copies 

of the type 4 + 1 + 1 + 1, 24 additional copies of the type 5 + 1 + 1; PT(5) = 44, the 

relevant partitions of 5 are 4 copies of the type 5, 16 copies of the type 2 + 1 + 1 + 1 

and 24 additional copies of the type 2 + 2 + 1. 

Corollary 4.7.3. If 5' and T' aTe defined m Theo1·em 4· 7 2, then 

PSI(4N + 2) = PTI(4N) + 3Pv (2N + 1) 

and 

Proof. It is known from Berndt's paper [16
2 

Theorem 3.1] that Pv(2N + 1) = 

2Pw (2N). Therefore, from (4.7.9), 

PSI(4N + 2) = PT I(4N) + Pv(2N + 1) + 4Pw (2N) = PT I(4N) + 3Pv (2N + 1) 



and 

PSI(4N) = PT I(4N - 2) + Pv(2N) + 4Pw (2N - 1) 

= PT I(4N - 2) + Pv(2N + I), 

since Pw(2N - 1) = 0 as W contains only even elements. 
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o 

Theorem 4.7.4. (Corollary to Conjecture 3.41 of [58]) Let S be the set containing 2 

copies of the even positive integers, 2 more copies of the positwe integers congruent 

to ±2 modulo 12, and 4 copies of the odd multiples of 3; let T be the set contaimng 

2 copzes of the even posztive integers, 4 more copies of the posztive multiples of 12, 

one copy of the odd positwe integers, and one more copy of the odd multiples of 3. 

Then, for any N ~ 2, 

Ds(N) = 4DT (N - 2) 

or equivalently, 

Ps(N) = 4PT (N - 2). 

Proof. Setting a = q, b = q5, C = _q3, and d = _q3 ill (4.1.2), we find that 

(4.7.15) 

Multiplying both sides of (4.7.15) by t.p( _q3) and then adding :.p2(q3)f(q, q5) to both 

sides, we have 

, t.p(q3) {t.p(q3)f(q, q5) _ :.p( -q3)f( _q, _q5)} = f(q, q5) {(/(q3) _ t.p2( _q3)} 

+ 2qt.p(-q3)f2(-l, _qlO). (4.7.l6) 

Again applying (4.7.15) and the third identity of Lemma 4.1.2, with q replaced by 

q3, in (4.7.16), we find that 
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Dividing both sides of the above by c.p( _q3)f2( _q2, _qlO) and then transforming to 

q-products, we obtain 

+ 1, 

which is clearly 

00 00 

L Ds(n)qn = 4q2 L Dr(n)qn + 1 
n=O n=O 

or equivalently, 

00 00 

L Ps(n)qn = 4q2 L Pr(n)qn + 1. 
n=O n=O 

Equating the coefficients of qN from both sides of the above, we find the desired 

result. o 

Example: n = 6. 

Then Ps(6) = 20, the relevant partitions of 6 are 2 copies of the type 6, 4 copies 

of the type 2 + 2 + 2, 6 copies of the type 3 + 3 and 8 additional copies of the type 

4 + 2; Pr(4) = 5, the relevant partitions of 4 are 2 + 2, 2 copies of each of the types 

4 and 3 + 1. 

Theorem 4.7.5. (Corollary to Conjecture 3.44 of [58]) Let S be the set containing 

one copy of the positive zntegers that are not odd multiples of 6, one more copy of the 

positive multiples of 3 that are not odd multiples of 6, 2 more copies of the positive 

zntegers that are congruent to ±2 modulo 12, and 3 more copies of the positive 

integers that are congruent to ±4 modulo 12; let T be the set containing 2 copies 

of the positzve integers that are not congruent to 6 or ±4 modulo 12, one copy of 

the posztzve integers that are congruent to ±4 modulo 12, and one more copy of the 

positive integers that are congruent to ±1 modulo 6. Then, for any N ~ I, 

Ds(N) = Dr(N - 1) 
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or equivalently, 

Ps(N) = Pr(N - 1). 

Proof. Setting, in turn, a = c = q, b = d = q5 and a = c = q, b = d = q2, in Lemma 

4.1.1, we find that 

and 

f2(q, q5) + f2( _q, _q5) = 2f(q2, qlO)cp(q6), 

f2(q, q5) _ f2( _q, _q5) = 4qf(q4, q8)7j;(q12) , 

f2(q, l) + f2( -q, -l) = 2f(q2, l)(()(q3), 

(4.7.17) 

(4.7.18) 

(4.7.19) 

( 4.7.20) 

Multiplying (4.7.18) by qf(q2, qlO) and then using (4.7.20) with q replaced by q2, we 

have 

qf2(q, q5)f(q2, qlO) 

= 4q2 f(q4, q8)f2(q2, qlO)7j;(q12) + qf(q2, qlO)f2( _q, _q5) 

= f( q4, q8) (J2(q2, q4) _ f2( _q2, _q4)) + qf(q2, qlO)f2( _q, _q5) 

= f2(q2, q4)f(q4, q8) _ (J2( _q2, -q4)f(q\ q8) _ qf(q2, qlO)f2( _q, _q5)) . 

Again, by (4.7.17)-(4.7.20), 

f2( _q2, _q4)f(q4, q8) _ qf(q2, qlO)f2( _q, _q5) 

= f2(q4, q8)cp(q6) _ 2q2 f(q2, qlO)f(q4, q8)1j;(q12) _ qf2(q2, qlO)cp(q6) 

+ 2q2 f(q2, qlO)f(q4, q8)7j;(q12) 

= (()(q6) (J2(q\ q8) _ qf2(q2, qlO)) 

= c.p(q6)c.p( -q3)f( _q, _q5), 

( 4.7.21) 

(4.7.22) 
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where (4.7.3) is used to get the last equality. 

Employing (4.7.22) in (4.7.21), we get 

Multiplying the equation by f(q4, q8) and then transforming the terms into q

products, and then simplifying further, we find that 

(4.7.23) 

Thus, 

00 00 

n=O n=O 

or equivalently, 

00 00 

L Fs(n)qn = q L FT(n)qn + 1. 
n=O n=O 

Equating the coefficients of qN from both sides, we complete the proof. 0 

Example: n = 7. 

Then Ps(7) = 32, the relevant partitions of 7 are 7, 3 + 3 + 1, 2 + 2 + 2 + 1, 3 

copies of the type 5 + 2, 6 copies of the type 3 + 2 + 2, 8 copies of the type 4 + 3 

and 12 additional copies of the type 4 + 2 + 1; PT (6) = 32, the relevant partitions 

of 6 are 3 + 3, 2 copies of each of the types 4 + 2 and 3 + 1 + 1 + 1, 3 copies of each 

of the types 4 + 1 + 1 and 2 + 2 + 1 + 1, 9 copies of the type 5 + 1 and 12 additional 

copies of the type 3 + 2 + 1. 

Theorem 4.7.6. (Analogue to Corollary to Conjecture 3.45 of [58]) Let S be the 

set containing 2 cop~es of the positive mtegers that are not congruent to 0 or ±2 

modulo 12, one copy of the'positive integers that are congruent to ±2 modulo 12, 
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and one more copy of the positive integers that are congruent to ±1 modulo 6; let 

T be the set containing one copy of the positive integers that are not odd multiples 

of 6, one more copy of the posztwe multiples of 3 that are not odd multzple's of 6, 2 

more copies of the positive integers that are congruent to ±2 modulo 12, and 3 more 

copies of the positive integers that are congruent to ±4 modulo 12. Then, for any 

N 2: 1, 

Ps(2N) = 2PT(2N - 1) + a(2N) ( 4.7.24) 

and 

Ps(2N + 1) = 2PT(2N), ( 4.7.25) 

where 

00 X3( _q3)X3( _q6) L a(n)qn = ( ) ( 2)' 
n=O X -q X -q 

(4.7.26) 

Proof From (4.7.17)-(4.7.20) and Lemma 4.1.2, we have 

r.p( q6) f2 (q, q5) _ 2q'lj;( q12) f2 (q2, q4) 

= (I(q2, qlO)rp2(q6) + 2qf(q4, l)rp(q6),t/J(qI2)) 

_ 2q (J(q4, q6)r.p(q6)'Ij;(qI2) + 2q2 f(q2, qlO)'Ij;2(qI2)) 

= f(q2, qI0) (r.p2(q6) _ 4q3'1j;2(qI2)) = f(q2, qlO)r.p2( _q3). 

Transforming the above intp q-products, multiplying both sides by 

(-q; q)oo( _q±4; qI2)00/( _q6; qI2)~ and then simplifying further, we deduce that 

(-q; q )~( _q±2; qI2)00( _q±l; q6)00 2 (-q; q )oo( _q3; q3)00( _q±2; q12)~( _q±4; qI2)~ 
= q (_qI2; qI2)~( _q±2; qI2)~ (_q6; qI2)~ 

X3( _q3)X3( _q6) 
+ ( ) ( 2)' (4.7.27) X -q X -q 

which also states that 

00 00 00 

L ?s(n)qn = 2q L ?T(n)qn + L a(n)qn, (4.7.28) 
n=O , n=O n=O 
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where a(n) is as defined in (4.7.26). Equating the coefficients of q2N and q2N+l from 

both sides of (4.7.28), we deduce (4.7.24) and 

Ps(2N + 1) = 2PT(2N) + a(2N + 1), (4.7.29) 

respectively. 

But, by (4.4.14), we have 

00 00 

La(n)qn - La(n)(-qt = 2q. 
n=O n=O 

Equating the coefficients of q2N+l from both sides of the above, we have a(l) = 1 

and for n ~ 1, a(2n + 1) = 0, and therefore, (4.7.29) reduces to (4.7.25). 0 

Example: n = 2 ~n (4.7.25). 

Then Ps(5) = 18, the relevant partitions of 5 are 2 + 1 + 1 + 1, 2 copies of the 

type 3 + 2, 3 copies of the type 5, 6 copies of each of the types 4 + 1 and 3 + 1 + 1; 

PT ( 4) = 9, the relevant partitions of 4 are 2 copies of the type 3 + 1, 3 copies of the 

type 2 + 2 and 4 additional copies of the type 4. 

Theorem 4.7.7. (Analogue to Corollary to Conjecture 3.43 of [58]) Let S be the 

set containing 2 copies of the positive integers that are not congruent to 0 or ±2 

modulo 12, one copy of the pos~tive mtegers that are congruent to ±2 modulo 12, 

and one more copy of the positive integers that are congruent to ±1 modulo 6; let 

T be the set containing 2 copies of the positive integers that are not congruent to 6 

or ±4 modulo 12, one copy of the positive integers that are congruent to ±4 modulo 

12, and one more copy of the posztzve integers that are congruent to ±1 modulo 6. 

Then, for any N ~ 1, 

Ps(2N) = 2PT(2N - 2) + a(2N) (4.7.30) 

and 

Ps (2N + 1) = 2PT(2N - 1), (4.7.31) 
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where a(n) is as defined in (4.7.26). 

Proof. Define 

A . = (-q; q)oo (_q3;'q3)oo (_ ±2. 12)2 (_ ±4. 12)3 
. ( 6. 12) ( 6. 12) q, q 00 q , q 00' -q , q 00 -q ,q 00 

B (-q; q)Zx, (±4 12) ( ±1 6) 
: = ( 6. 12)2 ( ±4. 12)2 -q ;q 00 -q ;q 00, -q ,q 00 -q , q 00 

and 

C . = (-q; q)Zx,( _q±2; q12)00( _q±l; q6)00 
. (_q12; q12)~( _q±2; q12)~ . 

From (4.7.23) and (4.7.27), we have 

A = qB + 1 

and 

00 

C = 2qA + L a(n)qn, 
n=O 

where a(n) is defined by (4.7.26). It is easily seen from the above that 

00 

C=2q2B+2q+ La(n)qn, 
n=O 

which is equivalent to 

00 00 00 

L Ps(n)qn = 2q2 L Pr(n)qn + L a(n)qn + 2q, 
n=O n=O 

where S and T are as given in the statement of the theorem. Equating the coefficients 

of q2N and q2N+1, respectively, from both sides of the above, and also noting that 

a(2N + 1) = 0, we readily arrive at (4.7.30) and (4.7.31) to complete the proof. 0 

Example: n = 2 in (4.7.31). 

Then Ps(5) = 18, the relevant partitions of 5 are 2 + 1 + 1 + 1, 2 copies of the 

type 3 + 2, 3 copies of the type 5, 6 copies of each of the types 4 + 1 and 3 + ~ + 1; 

Pr(3) = 9, the relevant partitions of 3 are 1 + 1 + 1, 2 copies of the type 3 and 6 

copies of the type 2 + 1. 
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Theorem 4.7.8. (Corollary to Conjecture 3.46 of [58]) Let S be the set containing 

2 copies of the positive integers that are not odd multiples of 3, one more copy of 

the positive integers that are congruent to ±2 modulo 12, and 2 more copies of 

the positive odd multiples of 6; let T be the set containing 2 coptes of the posttive 

integers that are not odd multtples of 3, one more copy of the positive mtegers that 

are congruent to ±4 modulo 12, and 2 more copies of the positive multiples of 12. 

Then, for any N 2:: 1, 

Ds(N) = 2Dr(N - 1) 

or equivalently, 

Ps(N) = 2Pr (N - 1). 

Proof. Replacing q by q2 in (4.7.2), we have 

f(q2, qlO)cp(q6) = q2 f2(q4, q20) + f2(q8, q16), 

= (J(q8, q16) _ qf(q4, q20))2 + 2qf(q4. q20)f(q8, q16). (4.7.32) 

But, from [13, p. 46, Entries 30(ii) and 30(iii)], 

(4.7.33) 

Employing (4.7.33) in (4.7.32), we get 

Transforming into q-products and then simplifying, we find that 

(-q; q)Zx, (_q±2. q12) (_q6. q12)2 = 2q (-q; q)Zx, (_q±4. q12) (_q12. q12)2 + 1 
( 3. 6)2 ,00 , 00 (3. 6)2 ,00 , 00 , -q ,q 00 -q ,q 00 

that is 

00 00 

L Ds(n)qn = 2q L Dr(n)qn + 1 
n=O n=O 
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or equivalently, 

00 00 
L Ps(n)qn = 2q L Pr(n)qn + 1 
n=O n=O 

The proffeled partition Identity of the theorem follows unrnedlately. o 

Example: n = 6. 

Then Ps(6) = 20, the relevant partitlOns of 6 are 2 + 2 + 2, 2 COPleS of the type 

4 + 1 + I, 3 copies of the type 2 + 2 + 1 + I, 4 copies of each of the types 6 and 5 + 1 

and 6 additional copies of the type 4 + 2; Pr(5) = 10, the relevant partitions of 5 

are 2 copies of each of the types 5 and 2 + 2 + 1 and 6 additional copies of the type 

4 + l. 

Theorem 4.7.9. (Analogue to Corollary to Conjecture 347 of [58]) Let S be the 

set contaznzng 2 copzes of the posztwe zntegers that are not congruent to 2 modulo 4, 

one more copy of the posztzve zntegers that are congruent to ±1 modulo 6, and one 

more copy of the posztwe zntegers that are congruent to ±4 modulo 12; let T be the 

set contaznzng 2 copzes of the posztwe zntegers that are not multzples of 4, one more 

copy of the posztwe zntegers that are congruent to ±1 modulo 6, and one more copy 

of the posztwe zntegers that are congruent to ±2 modulo 12. Then, for any N > 2 

Pr(N) = Ps(N) + 3U(N - 2), (4.7.34) 

where U(N) zs defined by 

00 n (_q; q2)~( _q±\ q6)00(_q4; q4)00( _q12; q12)00 
~ U(n)q := (q8; q24)~(q16; q24)~ (4735) 

Proof. Baruah and Nath [12, EquatIOn 3.17] proved that 

Replacing q by q2 and then multiplymg both sides by f(q, q5), we find 
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Transforming into q-products and simplifying, we get 

Multiplying both sides of the above by (-q; q2)!:, and simplifying by using Euler's 

identity, we find that 

which is equivalent to 

00 00 00 

L PT(n)qn + 3q2 L U(n)qn = L Ps(n)qn. (4.7.36) 
n=O n=O n=O 

Equating the coefficientti of qN from both sides, we easily arrive at the desired 

identity. o 

Example: n = 5. 

Then Ps(5) = 18, the relevant partitions of 5 are 3 copies of the type 5, 6 copies 

of the types 3 + 1 + 1 and 9 additional copies of the type 4 + 1; PT (5) = 27, the 

relevant partitions of 5 are 3 copies of each of the types 5 and 2 + 1 + 1 + I, 6 copies 

of each of the types 3 + 2 and 3 + 1 + I, 9 additional copies of the type 2 + 2 + 1 

and U(3) = 3, the relevant partitions of 3 are 1 + 1 + 1 and 2 copies of the form 3. 

Theorem 4.7.10. (Corollary to Conjecture 3.49 of [58]) Let S be the set containing 

2 copies of the positive multiples of 6, 2 cop~es of the pos~tive integers that are 

congruent to ±1 modulo 6, one copy of the positive zntegers that are congruent to ±2 

modulo 6, and 4 copies of the odd positive multiples of 3; let T be the set containing 
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4 copies of the posztive multiples of 6, one copy of the posztive integers that are 

congruent to ±1 modulo 6, one copy of the posztive mtegers that are congruent to 

±2 modulo 6, 2 more copies of the positive integers that are congruent to ±2 modulo 

12, and 2 copies of the odd positive multiples of 3. Then, for any N ~ 1, 

Ds(N) = 2DT (N - 1) 

or equivalently, 

Ps(N) = 2PT (N - 1). 

Proof. Setting a = q, b = q5, C = q3, and d = q3 in (4.1.2), 

which can be rewritten, with the aid of the Jacobi triple product identity, (1.1.2), 

as 

where Euler's identity is used in the last equality. The above can be put in the form 

(_q6; q6)~( _q±l; q6)~( _q±2; q6)00( _q3; q6)~ 

= 2q( _q6; q6)~( _q±l; q6)00( _q±2; q6)00( _q±2; q12)~( _q3; q6)~ + I, (4.7.37) 

which is 

00 00 

L Ds(N)qn = 2q L DT(N)qn + I, 
n=O n=O 

or equivalently, 

00 00 

n=O n=O 
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Equating the coefficients of qN from both sides of the above two identities, we 

complete the proof. o 

Example: n = 7. 

Then Ps(7) = 32, the relevant partitions of 7 are 2 copies of each of the types 7, 

5 + 2, 5 + 1 + 1 and 4 + 2 + 1, 4 copies each of the forms 6 + 1, 4 + 3 and 3 + 2 + 1 + 1 

and 12 additional copies of the form 3 + 3 + 1; PT(6) = 16, the relevant partitions 

of 6 are 5 + 1, 3 + 3, 2 + 2 + 2, 3 copies of the type 4 + 2, 4 copies of the type 6 and 

6 additional copies of the type 3 + 2 + 1. 

Theorem 4.7.11. (Corollary to Conjecture 3.50 of [58]) Let S be the set containing 

4 copies of the positive multiples of 6, one copy of the positive integers that are 

congruent to ±1 modulo 6, one copy of the positive integers that are congruent to 

±2 modulo 6, 2 more copies of the positive integers that are congruent to ±4 modulo 

12, and 2 copies of the odd positive multiples of 3; let T be the set containing 2 copies 

of the positive multiples of 6, 2 copies of the positive integers that are congruent to 

±1 modulo 6, one copy of the positive integers that are congruent to ±2 modulo 6, 

and 4 copies of the odd positive multiples of 3. Then, for any N ~ 1, 

1 
Ds(N) = 2 DT(N) 

or equivalently, 

1 
Ps(N) = 2 PT(N). 

Proof Setting a = q, b = q5, C = q3, and d = q3 in (4.1.1), 

( 4.7.38) 

which can be rewritten, with the help of the Jacobi triple product identity and 

Euler's identity, as 
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After simplification, the above gives, 

(4.7.39) 

which is equivalent to 

or equivalently, 

We complete the proof by equating the coefficients of qN from both sides of the 

above two identities. o 

Example: n = 6. 

Then Ps(6) = 11, the relevant partitions of 6 are 5 + 1, 3 + 3, 2 copies of the 

types 3 + 2 + 1, 3 copies of the type 4 + 2 and 4 additional copies of the type 6; 

PT (6) = 22, the relevant partitions of 6 are 4 + 2, 4 + 1 + 1, 2 copies of the type 6, 

4 copies of the type 5 + 1, 6 copies of the form 3 + 3 and 8 additional copies of the 

form 3 + 2 + 1. 

Theorem 4.7.12. (Corollary to Conjecture 3.48 of [58]) Let S be the set contammg 

4 copzes of the posztzve multzples of 6, one copy of the posztzve mtegers that are 

congruent to ±1 modulo 6, one copy of the posztzve mtegers that are congruent to 

±2 modulo 6, 2 more copzes of the posztzve mtegers that are congruent to ±4 modulo 

12, and 2 copzes of the odd posztzve multzples of 3; let T be the set contaznzng 4 copzes 

of the posztzve multzples of 6, one copy of the posztzve mtegers that are congruent to 

±1 modulo 6, one copy of the posztzve mtegers that are congruent to ±4 modulo 12, 

2 copzes of the odd posztzve multzples of 3, and 3 copzes of the posztzve mtegers that 



102 

are congruent to ±2 modulo 12. Then, for any N ~ 1, 

Ds(N) = DT(N - 1) 

or equivalently, 

Ps(N) = PT(N - 1). 

Proof. From (4.7.39) and (4.7.37), we find that 

(_q6; q6)~{ -:-q±l; q6)oo{ _q±2; q6)00{_q±4; q12)~{ _q3; q6)~ 

= q( _q6; q6)~( _q±l; q6)00( _q±2; q6)00( _q±2; q12)~( _q3; q6)~ + l. 

above reduces to 

(_q6; q6)~( _q±l; q6)00( _q±2; q6)00( _q±4; q12)~( _q3; q6)~ 

= q( _q6; q6)~( _q±l; q6)00( _q±4; q12)00( _q±2; q12)~( _q3; q6)~ + 1, 

which can be rewritten as 

00 00 

or equivalently, 

00 00 

n=O n=O 

Equating the coefficients of qN, we complete the proof. o 

Example: n = 7. 

Then Ps(7) = 16, the relevant partitions of 7 are 7, 5 + 2, 3 + 3 + 1, 3 copies of 

the type 4 + 2 + 1, 4 copies of the type 6 + 1 and 6 additional copies of the type 

4 + 3; PT (6) = 16, the relevant partitions of 6 are 5 + 1, 3 + 3, 2 + 2 + 2, 3 copies of 

the type 4 + 2, 4 copies of the type 6, and 6 additional copies of the type 3 + 2 + 1. 
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To conclude this section, for completeness, we state the following theorem which 

is Corollary to Conjecture 3.53 of [58], and an analytic proof of this theorem has 

already been given by Baruah and Berndt [5, Theorem 8.1]. 

Theorem 4.7.13. (Corollary to Conjecture 3.53 of [58]) Let S be the set containing 

one copy of the odd positive integers, one more copy of the odd positive multiples 

of 3, one more of the odd positive multiples of 5, and one more of the odd positive 

multiples of 15; let T be the set containing one copy of the even positive integers, 

one more copy of the positive multiples of 6, one more of the positive multiples of 

10, and one more of the positive multiples of 30. Then, for any N ~ 3, 

Ds(N) = 2DT(N - 3) 

or equivalently, 

Ps(N) = 2PT(N - 3). 

4.8 Some more colored partition identities. 

In this section, we present some more colored partition identities which are anal

ogous to the partition identities discussed in the previous sections. 

Theorem 4.8.1. Let S be the set containing 2 copies of the even positive integers, 4 

more copies of the odd positive multiples of 3, and 2 copies of the positive multiples 

of 4 that are not multiples of 12; let T be the set containing one copy of the odd 

positive integers, one more copy of the odd positive multiples of 3, two copies of the 

even positive integers, and 4 more copies of the odd multiples of 6. Then, for any 

N ~ I, 

Ps(N) = PT(N). 
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Proof. Multiplying (4.7.15) by <p(q3) and then adding '(J2(q3)f(q, q5) to both sides, 

we have 

<p(q3) {<p(q3)f(q, q5) + <p( -q3)f( _q, _q5)} =f(q, q5) {<p2(q3) + <p2( _q3)} 

_ 2q'{J( _q3) f2 ( _q2, _q10), 

which can be rewritten, with the aid of (4.7.38) and Lemma 4.1.2, as 

Transforming the above into q-products and then simplifying, we obtain 

( _q4. q4)2 
(_q2; q2)~( _q3; q6)~ ( 12: 12p = (_q; q2)00( _q3; q6)00( _q2; q2)~( _q6; q12)~ _ q, 

-q ,q 00 

which is equivalent to 

00 00 
L Ps(n)qn = L PT(n)qn - q. 
n=O n=O 

We complete the proof by equating the coefficients of qN from both sides of the 

above. o 

Example: n = 6. 

Then Ps(6) = 16, the relevant partitions of 6 are 2 copies of the type 6, 6 copies 

of the type 3 + 3 and 8 additional copies of the type 4 + 2; PT(6) = 16, the relevant 

partitions of 6 are 5 + 1, 3 + 3, 4 copies of each of the types 4 + 2 and 3 + 2 + 1 and 

6 additional copies of the type 6. 

Theorem 4.8.2. Let S be the set containing 4 copies of the positive integers that 

are congruent to ±1 modulo 6 and 2 copies of the even positive integers that are not 

multzples of 6; let T be the set containing 2 copies of the even positive integers, 2. 

copies of the positive multzples of 12, two more copies of the positive mtegers that, 

are congruent to ±1 modulo 6 and one more copy of the positive integers that are 

congruent to ±4 modulo 12. Then, for any N ~ 1, 

Ps(N) = 4PT (N - 1). 
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Proof. With the help of (4.7.5), we can rewrite (4.7.18) as 

Transcribing the above into q-products, we find that 

which is equivalent to 

00 00 

L Ps(n)qn = 4q L Pr(n)(t + 1. 
n=O n=O 

Now the proffered partition identity is apparent. o 

Example: n = 7. 

Then Ps(7) = 64, the relevant partitions of 7 are 4 copies of each of the types 7 

and 2 + 2 + 1 + 1 + 1, 8 copies of each of the types 5 + 2 and 4 + 1 + 1 + 1, 16 copies 

of the type 4 + 2 + 1 and 24 additional copies of the type 5 + 1 + 1; Pr(6) = 16, the 

relevant partitions of 6 are 2 + 2 + 1 + 1, 2 copies of the type 6, 3 copies of the type 

4 + 1 + 1, 4 copies of the type 5 + 1 and 6 additional copies of the type 4 + 2. 

The next two theorems easily follow from (4.7.38) and (4.7.15), respectively. We 

omit the proofs. 

Theorem 4.8.3. Let S be the set containing one copy of the odd posztive integers, 

one copy of the posztive odd multiples of 3, one copy each of the positive integers 

and the positive multzples of 3; let T be the set contazmng one copy of the positive 

integers, 2 copies of positwe mtegers that are odd multzples of 6, one copy of the 

positive multiples of 3 and 2 more copies of the positive multiples of 4. Then, for 

any N ~ 1, 

Ps(N) = 2Pr (N). 

Theorem 4.8.4. Let S be the set containing one copy of the odd positive integers, 

one more copy of the positive odd multiples of of 3, one copy each of the positive 
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mtegers and the pos~twe mult~ples of of 3, let T be the set conta~mng one copy of 

the pos~twe mtegers, 2 cop~es of the pos~twe mtegers that are odd mult~ples of 2, one 

copy of the pos~twe mult~ples of 3 and 2 more cop~es of the pos~twe mult~ples of 12 

Then, for any N ~ 1, 

Ps(N) = 2PT (N - 1) 

Theorem 4.8.5. Let S be the set contammg 3 cop~es each of the pos~twe mtegers, 

the odd pos~twe mtegers, the pos~twe mult~ples of 3 and the odd pos~twe mult~ples of 

3; let T be the set contammg 6 cop~es each of the odd pos~twe mult~ples of 2 and the 

posttwe multtples of 12 and 3 copzes each of the pos~tzve mtegers and the pos~t2ve 

mult~ples of 3, and let U be the set contazmng 2 copzes each of the posztwe mtegers, 

the posdwe mult~ples of 3, the odd pos~twe mult~ples of 2 and the posztwe mult~ples 

of 12, one copy each of the odd pos~twe mtegers and the odd posztwe mult~ples of 3 

Then, for any N ~ 1, 

Ps(N) = 8PT (N - 3) + 6Pu,(N - 1) 

Proof. We recall from [14, p. 198, Entry 45] that 

Cubing and then dividing both sides by 'lj;3( _q)'lj;3( _q3), we obtam 

which can be easily transformed, with the aid of Euler's identity, mto 

(_q; q2)~( _q; q)~( _q3; q6)~( _q3; q3)~ 

= 8q3( _q2; q4)~( _q12, q12)~( _q, q)~( _q3; q3)~ 

+ 6q( _q2; q4)~( _q; q)~( _q3, q3)~( _q12; q12)~( _q; q2)cX) ( _q3, q6)oo + 1 
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Since the above is equivalent to 

00 00 00 

L Ps(n)qn = 8q3 L PT(n)qn + 6q L Pu(n)qn + 1, 
n=O n=O n=O 

we complete the proof by equating the coefficients of qN from both sides. 0 

Example: n = 4. 

Then Ps(4) = 138, the relevant partitions of 4 are 3 copies of each of the forms 

4 and 2 + 2, 15 copies of the form 1 + 1 + 1 + 1, 45 copies of the form 2 + 1 + 1 and 

72 additional copies of the form 3 + 1; PT (1) = 3, the relevant partitions of 1 are 3 

copies of the form 1 and Pu(3) = 19, the relevant partitions of 3 are 1 + 1 + 1, 6 

copies of the form 3 and 12 additional copies of the form 2 + 1. 

Theorem 4.8.6. Let S be the set containing 6 copies of the odd positwe integers 

that are not multiple of 5 and one copy of the even positive integers; T be the set 

containing 4 copies of the even positive zntegers and 9 copies of the positive multiples 

of 10 and let U be the set contaimng 5 copies of the positive multiples of 10. Then, 

for any N ~ 1, 

Ps(2N + 1) = 32PT(2N - 2) + 6Pu(2N). 

Proof. From [13, p. 278], we recall that 

Cubing, we have 

cp3(q)cp3( _q5) _ cp3( _q)cp3(q5) = 64q3 f3( _q4)f3( _q20) 

+ 12qcp2( _q2)cp2( -qlO)f( -q4)f( _q20). 

Transforming into q-products, we obtain 
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which can further be reduced to 

Thus, 
00 00 00 00 

L Ps(n)qn - L Ps(n)( _q)n = 64q3 L Pr(n)qn + 12q L Pu(n)qn. 
n=O n=O n=O 

Equating the coefficients of q2N+l from both sides, we easily arrive at the desired 

partition identity. o 

Example: n = 2. 

Then Ps(5) = 128, the relevant partitions of 5 are 6 copies of each of the types 

4 + 1, 3 + 2, 1 + 1 + 1 + 1 + 1 + 1, 20 copies of the type 2 + 1 + 1 + 1 and 90 additional 

copies of the type 3 + 1 + 1; Pr (2) = 4, the relevant partitions of 2 are 4 copies of 

the type 2 and Pu(4) = o. 

Theorem 4.8.7. Let S be the set containing one copy of the positive integers that 

are congruent to ±1 modulo 6 and 2 copzes of the positive mtegers that are odd 

multiples of 3; T be the set containmg 2 copies of the positive integers that are 

multzples of 6 and 2 more copies of the positzve integers that are congruent to ±2 

modulo 12 and let U be the set containing 2 copies of the positive multiples of 4 and 

2 more copies of the odd multiple of 6. Then, for any N 2 1, 

Ps(N) = Pr(N - 1) + Pu(N). 

Proof. We can easily transform (4.7.2) into 

which also states that 
00 00 00 

L Ps(n)qn = q L Pr(n)qn + L Pu(n)qn. 
n=O n=O n=O 

Equating the coefficients of qN from both sides, we complete the proof. 0 
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Example: n = 9. 

Then Ps(9) = 4, the relevant partitions of 9. are 2 copies of each of the types 9 

and 5 + 3 + 1; Pr(8) = 4, the relevant partitions of 8 are 4 copies of the type 6 + 2 

and Pu(9) = O. 

Theorem 4.8.8. Let S be the set containing one copy of the odd positive integers 

that are not multiples of 9 and 2 copzes of the even positive integers that are not 

multiples of 18; let T be the set contammg 2 copzes of the even integers and one 

more copy of the even positive mtegers that are not multiples of 6. Then, for any 

N ~ 1, 

Ps(2N + 1) = Pr (2N). 

'proof. We recall from [8, Eq. (8.12)] that 

Dividing both sides by <p( _q2)'Ij)(qI8), transforming into q-products, and then sim

plifying by using Euler's identity, we deduce that 

(_q; q2)00( _q2; q2)~ 
(_q9; qI8)00( _qI8; qI8)~ 

Thus, 

00 00 00 
L Ps(n)qn - L Ps(n)( _q)n = 2q L Pr(n)qn. 
n=O n=O n=O 

Equating the coefficients of q2N+l from both sides, we finish the proof. 

Example: n = 3. 

o 

Then Ps(7) = 12, the relevant partitions of 7 are 7, 3 + 2 + 2, 2 copies of each 

of the types 6 + 1, 5 + 2 and 4 + 3 and 4 additional copies of the type 4 + 2 + 1; 

Pr(6) = 12, the relevant partitions of 6 are 2 + 2 + 2, 2 copies of the type 6 and 9 

additional copies of the type 4 + 2. 
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Theorem 4.8.9. Let S be the set contaming one copy of the odd pos~tzve mtegers 

that are not multiples of 9 and let T be the set contazmng one copy of the even 

posztzve mtegers that are not multzple of 6 and 2 more copzes of the posztzve mtegers 

that are multiples of 18. Then, for any N ~ 1, 

Ps(2N + 1) = PT(2N). 

Proof. From [13, p. 358, Entry 4(i)], we have 

Now, replacing q by _q2 in (4.4.7), we have 

Employing the above in (4.8.2), we fiud that. 

which can be transformed into 

(-q; q2)00 
( _q9; q18)00 

Since the above is equivalent to 

00 00 00 
L Ps(n)qn - L Ps(n)(-qt = 2q L PT(n)qn, 
n=O n=O n=O 

(4.8.1) 

(4.8.2) 

we complete the proof by equating the coefficients of q2N+l from both sides. 0 

Example: n = 7. 

Then Ps(15) = 3, the relevant partitions of 15 are 15, 11 + 3 + 1 and 7 + 5 + 3; 

PT (14) = 3, the relevant partitions of 14 are 14, 10 + 4 and 8 + 4 + 2. 

Theorem 4.8.10. Let S be the set contaming 2 copies of the odd posztzve integers 

that are not multzples of 5 and let T be the set contazmng one copy of the even 
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positive integers and 3 more copies of the pos~tive integers that are multiples of 10. 

Then, for any N ~ I, 

Ps(2N + 1) = 2PT (2N). 

Proof. We recall from From [13, p. 276] that 

But, from Entries 9(vii) and 10(iv) of [13, p. 258 and p. 262], 

Replacing q by q2 in the above and employing it in (4.8.3), we deduce 

which can be transformed into 

(_q; q2)~ 

(_q5; qlO)~ 

The above is equivalent to 

00 

n=O 

(q; q2)~ 4 ( 2 2) ( 10 10)3 

( 
5. 10)2 = q -q ; q 00 -q ; q 00' 

q , q 00 

00 00 

n=O n=O 

(4.8.3) 

and equating the coefficients of q2N+l from'both sides, we finish the proof. 0 

Example: n = 5. 

Then Ps(l1) = 12, the relevant partitions of 11 are 2 copies of each of the types 

11 and 9 + 1 + 1 and 8 additional copies of the type 7 + 3 + 1; PT(10) = 6, the 

relevant partitions of 10 are 6 + 4, 8 + 2 and 4 additional copies of the type 10. 

Theorem 4,8.11. Let S be the set containing one copy of the positive integers 

that are not multiples of 3, one more copy of the odd positive integers that are not 

multiples of 3, 2 more copies of the positive integers and 2 more copies of the odd 
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posztwe mtegers; let T be the set contammg one copy of the posztwe mtegers that are 

not multzples of 3, one more copy of the even posztwe mtegers that are not multzples 

of6, 2 more copzes of the posztzve mtegers and 2 more copzes of even posztzve mtegers. 

Then, for any N ~. 1, 

Ps(N) = 2PT (N) 

Proof. From [13, p. 359], we have 

cp(_q)1j;(q3) + cp(q)1j;(_q3) = 21j;(q2)..p(_q6) 
'ljJ(q) 'ljJ( -q) '1'( _q2) 

Dividing both sides by '1'( _:~~(q3) and then transforming into q-products, we have 

(-q; q)=( -q; q2)oo ( 2)2 ( )2 2 (-q, q)=( _q2; q2)= ( )2 ( 2 2)2 
( 3.3)( 3.6) -q;q=-q;q== (33)( 6.6) -q;g=-q;g= -q , q = -q , q 00 -q , q 00 -q ,q 00 

-1. 

which is clearly 

= 00 

n=O n=O 

Equatmg the coefficIents of qN from both sides, we readily arrive at the desired 

identity. o 

Example: n = 5. 

Then Ps(5) = 180, the relevant partitions of 5 are 6 COplCS of each of the types 

5 and 1 + 1 + 1 + 1 + 1 + I, 12 copies of the type 3 + 2, 18 copies of each of the 

types 4 + 1 and 2 + 2 + 1 and 60 additional copies of each of the types 3 + 1 + 1 and 

2 + 1 + 1 + 1; PT (5) = 90, the relevant partitions of 5 are 3 copies of the type 5, 6 

copies of each of the types 3 + 1 + 1 and 2 + 1 + 1 + I, 12 COplCS of the type 3 + 2, 

18 copies of the type 4 + 1 and 45 addItIOnal copIes of the type 2 + 2 + 1. 

Theorem 4.8.12. Let S be the set contazmng two copzes each of the posztwe mte-

gers, the odd posztzve mtegers, posztzve multzples of 3 and odd posztzve multzples of 
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3 and T be the set contammg two copzes each of the positwe mtegers, even posztwe 

integers, posztwe multzples of 3 and posztwe multzples of 6. Then, for any N 2': 1, 

Ps(N) = 4Pr(N - 1). 

Proof. We note from [14, p. 198, Entry 45] that 

and 

Multiplying together, we have 

Dividing both sides by 'Ij}( _q).¢}2( _q3) and simplifying by Euler's identity, wc obtain 

+ 1, 

which is 

00 00 

L Ps(n)qn = 4q L Pr(n)qn + l. 
n=O 

Equating the coefficients of qN from both sides, we finish the proof. o 

Example: n = 5. 

Then Ps(5) = 88, the relevant partitions of 5 are 4 copies of each of the types 5 

and 2 + 2 + I, 8 copies of each of the types 4 + 1 and 2 + 1 + 1 + I, 16 copies of the 

type 3 + 2 and 48 additional copies of the type 3 + 1 + 1; Pr(4) = 22, the relevant 

partitions of 4 are 4 copies of each of the types 4 and 2 + 1 + I, 6 copies of the type 

2 + 2 and 8 additional copies of the type 3 + l. 



Chapter 5 

Partition Identities Arising from 
Ramanujan's Modular Equations 
Involving Multipliers 

5.1 Introduction 

In continuation to the results in the previous chapter, in this chapter, we establish 

several more new theorems on partition identities arising from Ramanujan's modular 

equations with multipliers. In Section 5.2, we establish 7 partition identities arising 

from modular equations of degrees 3, 5, 7, 9, 13 and 25 involving multipliers. In 

Section 5.3, we establish 6 more partition identities arising from mixed modular 

equations of composite degrees 3, 5, 15; 3, 7, 21; 3, 11, 33; 5, 7, 35 a,nd 3, 13, 

39. Some of the identities are for overpartitions, overpartition pairs and regular 

partitions defined in the introductory chapter. 

5.2 Partition identities arising from modular equa-

tions of degrees 3, 5, 7, 9~ 13 and 25. 

Theorem 5.2.1. Let A(n) denote the number of partitwns of n into parts congruent 

to ±1 modulo 6 having 4 colors, B(n) denote the number of partitions of n into 

distinct odd parts that are not multiples of 3 each having 4 colors or even parts 
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congruent to ±4 modulo 12 having 4 colors and C(n) denote the number of partitions 

of n into parts congruent to ±1 modulo 3 havmg 4 colors. Then, for any n ~ I, 

A(2n + 1) - B(2n - 1) = 4C(n). (5.2.1) 

Proof. We recall the following two modular equations from [13, p. 230, Entry 5(vii)] 

which are reciprocal to each other. If fJ has degree 3 over (,X and rn is the multiplier 

connecting a and fJ, then 

rn2 = (~) 1/2 + (~) 1/2 _ (fJ(l - fJ)) 1/2 

a I-a a(l- a) 

and 

~ = (~) 1/2 + (~) 1/2 _ (a(l _ a)) 1/2 

m 2 fJ 1 - fj fj(l - fj) 

With the aid of Lemma 1.1.1, the above can be transcribed into 

and 

which can further be reduced to the q-product identities 

(5.2.2) 

and 

(5.2.3) 
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Thus, 

00 

= 8q L C(n)q2n. 
n=O 

Equating the coefficients of q2n+I, we arrive at (5.2.1). o 

Example: n = 1. 

Then A(3) = 20 as there are 20 copies of the type 1 + 1 + 1, B(I) = C(I) = 4 as 

there are 4 copies of 1. 

Example: n = 2. 

Then A(5) = 60 as there are 4 copies of 5 and 56 additional copies of the type 

1 + 1 + 1 + 1 + 1, B(3) = 4 as there are 4 copies of the type 1 + 1 + 1, and C(2) = 14 

as there are 4 copies of 2 and 10 additional copies of the type 1 + 1. 

Theorem 5.2.2. Let A(n) denote the number of partitions of n into odd parts not 

multiples of 5 with 2 colors, B (n) denote the number of partztwns of n mto distinct 

odd parts not multiples of 5 havmg 2 colors or even parts not multiple of 5 havmg 2 

colors and C(n) denote the number of partitions of n into parts not multiples of 5 

with 2 colors. Then, for any n ~ 1, 

A(2n + 1) - B(2n - 1) = 2C(n). (5.2.4) 

Proof If fJ has degree 5 over ex and m is the multiplier connecting ex and fJ, then 

from [13, p. 281, Entry 13(xii)], we have 

m = (fi) 1/4 +" (~) 1/4 _ (fJ(1 - (3)) 1/4 

ex 1 - a a(1 - a) 

and 

~ = (~) 1/4 + (~) 1/4 _ (ex(l _ ex)) 1/4 

m fJ 1 - fJ fJ(l - fJ) 
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The above two modular equations are reciprocal to each other. With the help of the 

formulas in Lemma 1.1.1, we transcribe the equations into 

and 

which can be transformed into the q-product identities 

and 

which is equivalent to 

(q2; q2)~ 
(qlO; qlO)~ 

{t, A(n)q" - t, A(n)( -q)"} - q' {t, B(n)q" - t, B(n)( -q)" } 

00 

n=O 

(5.2.5) 

(5.2.6) 

Equating the coefficients of q2n+l from both sides, we deduce (5.2.4) to finish the 

proof. o 

Example: n = 2. 

Then A(5) = 12 as there are 6 copies of the type 3 + 1 + 1 and 6 additional copies 

of the type 1 + 1 + 1 + 1 + 1, B(3) = 2 as there are 2 copies of 3, and C(2) = 5 as 

there are 2 copies of 2 and 3 additional copies of the type 1 + 1 + 1. 
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Theorem 5.2.3. Let A(n) denote the number of partitwns of n into odd parts not 

multiples of7 havmg 4 colors, 8(n) denote the number of partitions of n mto dtstinct 

odd parts not multiples of 7 having 4 colors or even parts not multiples of 7 having 

4 colors, C(n) denote the number of partitwns of n into parts not multiples of 7 

having 4 colors. Then, for any n 2 2, 

A(4n + 1) - 8(4n - 5) = 24C(2n - 1) + 4C(n - 1) (5.2.7) 

and, for any n 2 I, 

A(4n + 3) - 8(4n - 3) = 24C(2n). (5.2.8) 

Proof. We recall the following pair of modular equations, reciprocal to each other, 

from [13, p. 314, Entry 19(v)]. If f3 has degree 7 over 0: and m is the multiplier 

connecting a and f3, then 

m2 = (~) 1/2 + (~) 1/2 _ (f3(1 - (3)) 1/2 _ 8 (fJ(1 - fJ)) 1/3 
0: 1 - a a(l - a) a(l - a) 

and 

49 = (::)1/2 (~)1/2 _ (a(l- a))1/2 _ (a(l- a))1/3 
m2 fJ + 1 - fJ fJ(1 - fJ) 8 fJ(1 - fJ) 

These can be easily transcribed, with the help of the formulas in Lemma 1.1.1, into 

and 

Transforming each of the theta functions in the above into q-products, we find that 

(5.2.9) 
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and 

(q7; q14)~ _ (_q7; q14)~ = q3 {49 (q14; q14)~ _ (_q14; q14)~} + 8q 
(q;q2)~ (_q;q2)~ (q2;q2)~ (_q2;q2)~ . 

(5.2.10) 

(q28. q28)4 
Multiplying (5.2.9) by c/' ( 4: 4)400 and then subtracting from (5.2.10), 

q,q 00 

Thus, 

00 00 

n=O n=O 

Equating the coefficients, in turn, of q4n+1 and q4n+3 from both sides, we easily arrive 

at (5.2.7) and (5.2.8), respectively, to finish the proof. o 

Example: n = 2 in (5.2.7). 

Then A(9) = 984 as there are 4 relevant partitions of 9, 64 relevant partitions of 

the type 5 + 3 + 1, 140 relevant partitions of the type 5 + 1 + 1 + 1 + 1, 20 relevant 

partitions of the type 3 + 3 + 3, 200 relevant partitions of the type 3 + 3 + 1 + 1 + 1, 

336 relevant partitions of the type 3 + 1 + 1 + 1 + 1 + 1 + 1 and 220 relevant partitions 

of the type 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1; B(3) = 4 as there are 4 relevant partitions 

of 3; C(3) = 40 as there are 4 relevant partitions of 3 of the type 3, 16 relevant 

partitions of the type 2 + 1 and 20 additional relevant partitions of 3 of the type 

1 + 1 + 1; and C(l) = 4 as there are 4 relevant partitions of l. 

Example: n = 1 m (5.2.8). 

Then A(7) = 340 as there are 40 relevant partitions each of the types 5 + 1 + 1 

and 3 + 3 + 1, 120 relevant partitions of the type 3 + 1 + 1 + 1 + 1, 120 relevant 
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partitions of the type 1 + 1 + 1 + 1 + 1 + 1 + 1; B(I) = 4 as there are 4 relevant 

partitions of 1; and C(2) = 14 as there are 4 relevant partitions of 2 of the type 2 

and 10 additiqnal relevant partitions of 2 of the type 1 + 1. 

Theorem 5.2.4. Let A(n) denote the number of partitions of n into parts not 

multiples of 9; B(n) denote the number of partitions of n mto distinct parts not 

multiples of 9 or multiples of 4 that are not multiples of 9 and bg(n) denote the 

number of 9-regular partztions of n. Then, for any 17 ~ 1, 

A(2n + 1) - B(2n -1) = bg(n). (5.2.11) 

Proof. If fJ has degree 9 over a and 711, is the multiplier connecting a and fJ, then 

from [13, p. 352, Entry 3(x) and (xi)], we note that 

(
fJ) 1/8 (1 - fJ) 1/8 (fJ(l - fJ)) 1/8 _ - + -- - -vm 
a 1 - a a(l - a) 

and 

(~) 1/8 (~) 1/8 _ (a(l _ a)) 1/8 = 3 
fJ + 1 - fJ fJ(1 - fJ) vm' 

which are reciprocal to each other. With the help of Lemma 1.1.1, the above can 

be transcribed into 

and 

which can further be transformed into the q-product identities 

(5.2.12) 



and 

(q9; ql8)oo _ (_q9; q18)OO = q {3 (qI8; q18)OO _ (_qI8; qI8)OO} . 

(q;q2)00 (_q;q2)00 (q2;q2)00 (_q2;q2)00 

(q36. q36) 
Multiplying (5.2.12) by q ( 4: 4) 00 and then subtracting from (5.2.13), 

q ,q 00 

which can be written as 
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(5.2.13) 

{t, A(n)qn - t, A(n)( -q)"} - q' {t, B(n)qn - t, B(n)( -q)" } 

00 

= 2q L bg(n)q2n. 
n=O 

Equating the coefficients of q2n+I from both sides of the above, we deduce (5.2.11). 

o 

Example: n = 3. 

Then A(7) = 5, the relevant partitions of 7 are 7,5+1+1,3+3+1,3+1+1+1+1 

and 1 + 1 + 1 + 1 + 1 + 1 + I, B(5) = 2, the relevant partitions of 5 are 5 and 4 + 1, 

and &9(3) = 3, the 9-regular partitions of 3 are 3, 2 + 1 and 1 + 1 + l. 
Now we present another partition-theoretic identity arising form (5.2.12). 

Theorem 5.2.5. Let qg(n) denote the number of partitwns of n into distinct odd 

parts that are not multiples of 9 or mto even parts that are not multiples of 9 and 

let 159 denote the number of overpartztions of n that are not multzples of 9. Then, 

for any n ~ 1, 

2qg(2n - 1) = 15g(n) (5.2.14) 
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Proof. Changing the base of each of the q-products into q18, we can reWrIte (5.2.12) 

in the form 

Dividing both sides of the above by (q2,4, ,16; q18)oo, 

which is equivalent to 

Equatmg the coefficients of q2n from both sides, we readily arrive at (5.2.14) to 

complete the proof. o 

Example. n = 5. 

Then q9(9) = 12 and 159(5) = 24. The relevant partitions of 9 are 8 + I, 7 + 2, 

6+3,6+2+ 1,5+4,5+3+1,5+2+2,4+4+ 1,4+3+2,2+2+2+2+1, 

4 + 2 + 2 + I, and 3 + 2 + 2 + 2, and the relevant overpartitions of 5 are 5, 5, 4 + I, 

4+1,4+1,4+1,3+2,3+2,3+2,3+2,3+1+1,3+1+1,3+1+1,3+1+1, 

2 + 2 + 1,2 + 2 + 1,2 + 2 + 1,2" + 2 + 1,2 + 1 + 1 + 1,2" + 1 + 1 + 1,2" + 1+ 1 + I, 

2 + 1+1 + I, 1 + 1 + 1 + 1 + I, and 1+1 + 1 + 1 + 1. 

Theorem 5.2.6. Let A(n) denote the number of partztzons of n znto odd parts not 

multzples of 13 havzng 2 colors; B(n) denote the number of partztzons of n znto 

dzstznct odd parts not multzples of 13 havzng 2 colors or znto parts that are multzples 

of 4 but are not multzples of 13 havzng 2 colors, C(n) denote the number of partztzons 

of n znto parts not multzples of 13 havzng 2 colors. Then, for any n ~ 2, 

A(4n + 1) - B(4n - 5) = 6C(2n - 1) + 2C(n - 1) (5.2.15) 
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and, for any n ~ 1, 

A(4n + 3) - B(4n - 3) = 6C(21/). (5.2.16) 

Proof. If (3 has degree 13 over a and 111 is the multiplier connecting a and (3, then 

we recall from [13, p. 376, Entry 8(iii), (iv)] that 

111 = (fi)1/4 + (~)1/4 _ ((3(1- (3))1/4 _ 4 ((3(1- (3))1/6 
a I-a a(l-a) a(1-a) 

and 

13 _ (~)1/4 + (~)1/4 _ (a(l- 0:))1/4 _ 4 (0:(1- a))1/6 
111 - f3 1 - (3 (3(1 - (3) (3(1 - (3) , 

which are reciprocal to each other. Transcribing the above modular equations, with 

the aid of Lemma 1.1.1, we have 

and 

which can be reduced into 

(5.2.17) 

and 

(q13; q26)~ _ (_q13; q26)~ = q3 {13 (q26; q26)~ _ (_q26; q26)~} + 4q. 
(q; q2)~ (_q; q2)~ (q2; q2)~ (_q2; q2)~ 

(5.2.18) 
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which is equivalent to 

00 00 

n=O n=O 

Equating the coefficients, in turn; of q4n+l and q4n+3 from both sides, we readily 

arrive at (5.2.15) and (5.2.16), respectively, to accomplish the proof. o 

Example: n = 2 in (5.2.15). 

Then A(9) = 66, the relevant partitions of 9 are 2 copies 9, 6 copies of the form 

7 + 1 + 1, 8 copies of the form 5 + 3 + 1, 10 copies of the form 5 + 1 + 1 + 1 + 1, 4 

copies of the form 3 + 3 + 3, 12 copies of the form 3 + 3 + 1 + 1 + 1, 14 copies of the 

form 3 + 1 + 1 + 1 + 1 + 1 + 1 and 10 copies of the form 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, 

B(3) = 2, the relevant partitions of 3 are 2 copi'es of 3, C(3) = 10, the relevant 

partitions of 3 are 2 copies of the form 3, 4 copies each of the forms 2 + 1 and 

1 + 1 + 1, and C(l) = 2, the relevant partitions of 1 are 2 copies of 1. 

Example: n = 1 in (5.2.16). 

Then A(7) = 32, the relevant partitions of 7 are 2 copies of 7, 6 copies of the 

form 5 + 1 + 1,6 copies of the form 3 + 3 + 1, 10 copies of the form 3 + 1 + 1 + 1 + 1, 

8 copies of the form 1 + 1 + 1 + 1 + 1 + 1 + 1, B(I) = 2, the relevant partitions of 1 

are 2 copies of 1, and C(2) = 5, the relevant partitions of 2 are 2 copies of 2 and 3 

copies of the form 1 + 1. 

Theorem 5.2.7. Let A( n) denote the number of partitions of n into odd parts not 

multiples of 25, B(n) denote the number of partitions of n into distinct odd parts 

not multiples of 25 or into multiples of 4 but not multiples of 25, b25 (n) denote the 

25-regular partitions of n. Then, for any n 2 2, 

A(4n + 1) - B(4n - 5) = 2b25 (2n - 1) + b25 (n - 1) (5.2.19) 
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and, for any n ~ 1, 

A(4n + 3) - B(4n - 3) = 2b25 (2n). (5.2.20) 

Proof. If, is of degree 25 over 0: and m is the multiplier connecting 0: and " then 

from [13, p. 291, Entry 15(i), (ii)], we recall that 

..;m = (1) 1/8 + (1 -') 1/8 _ (,(1- ,)) 1/8 _ 2 (,(1 -,)) 1/2 

0: 1 - 0: 0:(1- 0:) 0:(1 - 0:) 

and 

_5 = (~) 1/8 + (~) 1/8 _ (0:(1 _ 0:)) 1/4 _ 4 (0:(1 _ 0:)) 1/2 

Vm, 1 - , ,(1- ,) ,(1 - ,) 

Proceeding as in the previous theorem, we find that 

(5.2.21) 

and 

(q25; q50)00 _ (_q25; q50)00 = q3 {5 (q50; q50)00 _ (_q50; q50)00} + 2q 
(q; q2)00 (-q; q2)00 (q2; q2)00 (_q2; q2)00 . 

(5.2.22) 

(q100. q100) 
Multiplying (5.2.21) by q3 (4: 4) 00 and then subtracting from (5.2.22), 

q ,q 00 

which is clearly equivalent to 

00 00 

n=O n=O 

Equating the coefficients; in turn, of q4n+l and q4n+3 from both sides of the above, 

we deduce (5.2.19) and (5.2.20), respectively. o 
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Example: n = 2 in (5.2.19). 

Then A(9) = 8, the relevant partitions of 9 are 9, i + 1 + 1, 5+3+ 1, 5+ 1 + 1 + 1 + 1, 

3+3+3,3+3+1+1+1,3+1+1+1+1+1+1 and 1+1 = 1+1+1+1+1+1+1, 

B(3) = 1, the relevant partition of 3 is 3, b25 (3) = 3, the relevant partitions are 3, 

2 + 1 and 1 + 1 + 1, and b25 (1) = 1, the relevant partition is l. 

Example: n = 2 in (5.2.20). 

Then A(11) = 11, the relevant partitions of 11 are 11, 9 + 1 + 1, 7 + 3 + 1, 

7 + 1 + 1 + 1 + 1,5 + 5 + 1,5 + 3 + 3,5 + 3 + 1 + 1 + 1,5 + 1 + 1 + 1 + 1 + 1 + 1, 

3 + 3 + 3 + 1 + 1, 3 + 3 + 1 + 1 + 1 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, 

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, B(5) = 1, the relevant partitions of 5 are 5 

and 4 + 1, and b25 (4) = 5, the relevant partitions are 4, 3 + 1, 2 + 2, 2 + 1 + 1, and 

1+1+1+1. 

5.3 Partition identities arIsIng from mixed mod-

ular equations 

Theorem 5.3.1. Let A(n) denote the number of partitzons of n into dzstinct odd 

parts that are not multiples of 3 and 5 or into even parts that are not multzples of 

3 and 5 and B(n) denote the number of overpartitions of n into parts not multiples 

of 3 and 5. Then, for any n 2: 2, 

2A(2n + 1) = B(n). 

Proof. From [13, p. 384, Entry l1(ix)], we have 

(
(3/)1/8 + ((1- (3)(1_/))1/8 _ ((3/(1- (3)(1_/))1/8 = _ (Tn 
aJ (1 - a)(l - J) aJ(l - a)(1 - J) V -:;n;' 

(5.3.1) 

where (3, / and J are of degrees 3, 5 and 15, respectively, over a, and rn and m' 

are the multipliers connecting a, /3 and /, J, respectively. Transcribing the above 



modular equation into q-products, we find that 

(_q±1,±7,±11,±13; q30)00 _ (q±1,±7,±1l,±13; q30)00 = q{ (_q±2,±4,±8,±14; q30)00 

+ (q±2,±4,±8,±14; q30)00}, 

which can be rewritten as 

Using the definitions of A(n) and J3(n) in the above, we have 

00 00 00 
L A(n)qn - L A(n)( -qt = q L B(n)q2n + q. 
n=O n=O n=O 
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Equating the coefficients of q2n+l from both sides of the above, we arrive at (5.3.1) 

to finish the proof. o 

Example: n = 4. 

Then A(9) = 5, the relevant partitions of 9 are 8+ 1,7 +2,4+4+ 1,4+ 2+2+ 1 

and 2 + 2 + 2 + 2 + 1, B(4) = 10, the relevant overpartitions of 4 are 4, 4, 2 + 2, 

'2 + 2,2 + 1 + 1, '2 + 1 + 1,2 + I + 1, '2 + I + 1, 1 + 1 + 1 + 1 and 1+ 1 + 1 + 1. 

Theorem 5.3.2. Let A(n) denote the number of 2-colored part2tions of n mto dis

tinct odd parts that are not mult2ples of 3 and adddional two colors of the parts that 

are ±5 modulo 30 or into even parts that are not multiples of 6 having 2 colors with 

additional 2 colors of the parts that are ±10 modulo 60. Let B(n) denote the number 

of partitions of n into parts that are not multiples of 3 having 2 colors each with 

additional 2 colors of the parts that are ±5 modulo 15 and C(n) denote the number 

of overpartitwn pairs that are not multiples of 3 wzth additional 2 copies of the parts 

that are ±5 modulo 15. Then, for any n ~ 2, 

2A(2n - 3) + 4B(n - 1) = C(n). (5.3.2) 
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Proof. From [13, p. 384, Entry l1(x)], we have 

(
(3b) 1/4 + ((1 - (3)(1 - b)) 1/4 _ ((30(1 - (3)(1 _ b) ) 1/4 

al (1 - a)(l - I) al (l - a)(l - I) 

_ 4 ({3b(l - (3)(1 - 0) ) 1/6 = rn-In', 
crl (l - cr)(l - I) 

where, as in the proof of the previous theorem, (3, 1 and 6 are of degrees 3, 5 and 

15, respectively, over cr, and m and m' are the multipliers connecting 0, (3 and /, 6, 

respectively. We can transcribe the above modular equation into 

q3 {(q±1.±5.±5.±7.±11.±13; q30)~ _ (_q±1.±5.±5.±7.±11.±13; q30)~} 

= 4q2 + {(q±2.±4.±8.±1O.±1O.±14; q30)~ _ (_q±2.±4.±8.±1O.±1O.±14; q30)~} . 

Dividing both sides of the above by (q±2.±4.±8.±1O.±1O.±14; q30)~, 

3 { (q±1.±5.±5.±7.±11:±13; q30)~ (_q±1.±5.±5.±7,±11,±13; q30)~} 

q (q±2,±4,±8,±10,±10,±14; q30)~ - (q±2,±4,±8,±1O.±1O.±14; q30)~ 
1 (_q±2,±4,±8,±10,±10.±14. q30)2 

- 4q2 _ ' 00 + 1 
- (q±2,±4,±8,±1O,±1O,±14; q30)~ (q±2,±4,±8,±1O,±1O,±14; q30)~ , 

which can be put in the form 

{

OO 00 } 00 00 

_q3 ~ A(n)qn - ~ A(n)( -qt = 4q2 ~ B(n)q2n - ~ C(n)q2n + 1. 

Equating the coefficients of q2n from both sides, we deduce (5.3.3) to finish the 

proof. o 

Example: n = 3. 

Then A(3) = 4, the relevant partitions of 3 are 4 copies of the form 2 + 1, 

B(2) = 5, the relevant partitions of 2 are 2 copies of 2 and 3 copies of the form 1 + 1, 

and C(3) = 28, the relevant overpartition pairs of 3 are (2+ 1,0), (2+ 1,0), (2+1,0), 

(2 + I, 0), (0,2+ 1), (0,2+ 1), (0,2 + I), (0,2 + I), (2,1), (2,1), (2, I), (2, I), (1,2), 

(1,2), (1,2), (1,2), (1 + 1,1), (I + 1,1), (1 + 1, I), (I + 1, I), (1,1 + 1), (1, 1+ 1), 

(1,1 + 1), (I, 1+ 1), (1 + 1 + 1,0), (I + 1 + 1,0), (0,1+ 1 + 1), and (0, 1+ 1 + 1). 
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Theorem 5.3.3. Let A(n) denote the number of 2-colored partitions of n mto dis

tinct odd parts without multiples of 3 and 7 or into even parts that are not multiples 

of 6 and 14 having 2 colors. Let B(n) denote the number of partitions of n mto 

parts that are not multiples of 3 and 7 having 2 colors and C(n) denote the number 

of overpartition pairs of n that are not mult~ples of 3 and 7. Then, for any n ~ 2, 

2A(2n + 1) = 4B(n) + C(n --1). (5.3.3) 

Proof Let 13, , and J are of degrees 3,7 and 21, respectively, over a, and m and m' 

be the multipliers connecting a, 13 and " J, respectively. From [13, p. 401, Entry 

13(i)], we have 

(
13,) 1/4 + ((1 - 13)(1 - ,)) 1/4 _ (13,(1 _ 13)(1 _ ,)) 1/4 
a8 (1 - 0')(1 - 8) a6(1 - a)(l - 8) 

4(13,(1-,8)(1-,))1/6 = m 
+ a8(1 - ct)(1 - J) m' 

Transcribing into q-products, 

which can be rewritten as 

{( _q±1,±5,±1l,±13,±17,±19; q42)~ _ (q±1,±5,±1l,±13,±17,±19; q42)~} 

= 4q + q3 {( _q±2,±4,±8,±10,±16,±20; q42)~ _ (q±2,±4,±8,±1O,±l6,±20; q42)~} . 

Dividing both sides by (q±2,±4,±8,±10,±16,±20; q42)~, 

{ 
(_q±1,±5,±11,±13,±17,±19; q42)~ _ (q±1,±5,±1l,±13,±17,±19; q42)~} 

(q±2,±4,±8,±10,±16,±20; q42)~ (q±2,±4,±8,±10,±16,±20; q42)~ 
4q (_q±2,±4,±8,±10,±16,±20; q42)2 

= + q3 00 _ q3 
(q±2,±4,±8,±10,±l6,±20; q42)~ (q±2,±4,±8,±10,±16,±20; q42)~ . 
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Thus, 

Equating the coefficients of q2n+1 from both sides of the above, we easily deduce 

(5.3.3). o 

Example: n = 2. 

Then A(5) = 12, the relevant partitions of 5 are 2 copies of 5, 4 copies of the 

type 4 + 1 and 6 copies of the type 2 + 2 + 1, B(2) = 5, the relevant partitions of 2 

are 2 copies of the type 2, and 3 copies of the type 1 + 1, and C(I) = 4, the relevant 

overpartition pairs of 1 are (1,0), (1,0), (0,1) (0, I). 

Theorem 5.3.4. Let A(n) denote the number of partztions of n into distznct odd 

parts that are not multiples of 3 and multiples of 11 have two colors or into even parts 

that are not multiples of6 and the multiples of 22 have two colors. Let B(n) denote 

the number of partitions of 11, into parts that are not multzples of 3 and multiples of 

11 have two colors and C( 11,) denote the overpartztions of 11, that are not multiples of 

3 and multiples of 11 have two colors. Then, for any n 2 2, 

2A(2n - 3) + 2B(n - 1) = C(n). (5.3.4) 

Proof. From [13, p. 408, Entry 14(i)J, we note that 

( 
f30) 1/8 + ((1 - f3)(1 - 0)) 1/8 _ (f315 (1 - f3)(1 - 0) ) 1/8 

a, (1 - a)(1 - ,) a,(1 - a)(1 - ,) 

- 2 = v'mm' ( 
f30(1 - f3)(1 - 0) ) 1/12 

a,(1 - a)(1 - ,) , 
(5.3.5) 

where f3, , and 6 are of degrees 3, 11 and 33, respectively, over Ct, and m is the mul

tiplier connecting a and f3 and m' is the multiplier connecting, and o. Transcribing 

the above modular equation, 



which can further be transformed into the q-product identity 

Thus, 

q3{ (_q±1,±5,±7,±1l,±1l,±l3,±17,±19,±23,±25,±29,±31; q66)00 

_ (q±1,±7,±1l,±1l,±13,±17,±19,±23,±25,±29,±3\ (66)00} + 2q2 

= (_q±2,±4,±8,±10,±14,±16,±20,±22,±22,±26,±28,±32; q66)00 

_ (q±2,±4,±8,±lO,±14,±16,±20,±22,±22,±26,±28,±32; q66)00. 

Dividing both sides by (q±2,±4,:l:8,±10,±14,±16,±20,±22,±22,±26,±28,±32; q66)00, 

3 { (_q±1,±5,±7,±1l,±1l,±13,±l7,±19,±23,±25,±29,±3\ q66)00 

q (q±2,±4,±8,±10,±14,±16,±20,±22,±22,±26,±28,±32; (66)00 

_ (q±1,±5,±7,±11,±1l,±13,±l7,±l9,±23,±25,±29,±31; q66)00 } 

(q±2,±4,±8,±lO,±14,±16,±20,±22,±22,±26,±28,±32; q66)00 

2q2 
+~~~~--~~~~~~~~~~~~--(q±2,±4,±8,±1O,±l4,±l6,±20,±22,±22,±26,±28,±32; q66)00 

( _q±2,±4,±8,±lO,±14,±16,±20,±22,±22,±26,±28,±32; (66)00 

= (q±2,±4,±8,±10,±14,±16,±20,±22,±22,±26,±28,±32; (66)00 - 1. 

The above can be put in the form 
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(5.3.6) 

from which we readily arrived at. the proffered part.ition identity (5.3.4). 0 

Example: n = 4. 

Then A(5) = 3, the relevant partitions of 5 are 5, 4 + 1 and 2 + 2 + 1, B(3) = 2, 

the relevant partitions of 3 are 2 + 1 and 1 + 1 + 1, and C(4) = 10, the relevant 

overpartitions of 4 are 4, 4, 2 + 2,2 + 2, 2 + 1 + 1,2 + 1 + 1, 2 + I + 1,2 + I + 1, 

1 + 1 + 1 + 1 and I + 1 + 1 + 1. 
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Theorem 5.3.5. Let A(n) denote the number of partitions of n into dzstmct odd 

parts that are not multzples of 5 and 7 or mto even parts not multzples of 5 and 7; 

B(n) denote the number of overpartztwns of n mto parts not multzples of 5 and? 

and C(n) denote the number of partztions of n into even parts not multiples of 5 

and 7. Then, for any n ~ 1, 

2A(2n + 1) = B(n - 1) + 2C(n). (5.3.7) 

Proof. Let /3, "( and 0 are of degrees 5, 7 and 35, respectively, over a, rn be the 

multiplier connecting a and /3, and rn' be the multiplier connecting "( and O. Then, 

from [13, p. 423, Entry 18(vii)], we note that 

(
/3"() 1/8 + ((1- (3)(1- "())1/8 _ (/3"((1- (3)(1- "())1/8 
ao (1 - a)(1- 0) a<5(1- a)(1- 0) 

+ 2 (/3"((1 - (3)(1 - "()) 1/12 ~ _ (in. 
ao(l - a)(l - 0) V ffit 

Transcribing the modular equation into q-products, we obtain 

(_q±1,±3,±9,±11,±13,±17,±19,±23,±27,±29,±31,±33; q70)oo 

_ (q±1,±3,±9,±1l,±13,±l7,±l9,±23,±27,±29,±31,±33; q70)oo 

= q3 {( _q±2,±4,±6,±8,±12,±l6,±18,±22,±24,±26,±32,±34; lO)oo 

+ (q±2,±4,±6,±8,±l2,±16,±18,±22,±24,±26,±32,±34; q 70)00} + 2q. 

Dividing both sides by (q±2,±4,±6,±8,±12,±16,±18,±22,±24,±26,±32,±34; q70)00, 

(_q±1,±3,±9,±1l,±l3,±17,±19,±23,±27,±29,±31,±33; q70)oo 

(q±2,±4,±6,±8,±12,±16,±18,±22,±24,±26,±32,±34; q 70)00 

(q±1,±3,±9,±1l,±13,±l7,±l9,±23,±27,±29,±31,±33; q 70)00 

(q±2,±4,±6,±8,±12,±16,±18,±22,±24,±26,±32,±34; q70)00 

(_q±2,±4,±6,±8,±12,±16,±Hi,±22,±24,±26,±32,±34. q70) 
3+ 3 , 00 =q q (q±2,±4,±6,±8,±l2,±16,±l8,±22,±24,±26,±32,±34; q 70)00 

2q 
+ (q±2,±4,±6,±8,±l2,±16,±18,±22,±24,±26,±32,±34; q70)00' 
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which is equivalent to 

00 00 

L A(n)qn - L A(n)(-q)n 
n=O n=O 

( _q±2,±4,±6,±8,±12,±16,±l8,±22,±24,±26,±32,±34. q 70) 
= q3 + q3 , 00 

(q±2,±4,±6,±8,±12,±l6,±18,±22,±24,±26,±32,±34; q 70)00 

2q 
+ (q±2,±4,±6,±8,±12,±16,±18,±22,±24,±26,±32,±34; q70)00 . 

Extracting the terms involving q2n+l, dividing by q, and then replacing q2 by q, we 

find that 

00 (_q±1,±2,±3,±4,±6,±8,±9,±11,±12,±13,±l6,±17. q35) 
2"'A(2n+1)Qn=Q+Q , 00 
L; (q±1,±2,±3,±4,±6,±8,±9,±1l,±12,±13,±l6,±17. q35) 
~ , 00 

2 
+~~~~~--~~--~~----~--~-

(q±l,±2,±3,±4,±6,±8,±9,±11,±12,±13,±16,±17; q35)00 

00 00 

= q + q L B(n)qn + 2 L C(n)qn. 
n=O n=O 

Equating the coefficients of qn, we readily deduce (5.3.7). o 

Example: n = 4. 

Then A(9) = 9, the relevant partitions of 9 are 9, 8 + I, 6 + 3, 6 + 2 + I, 4 + 4 + I, 

4 + 3 + 2, 4 + 2 + 2 + I, 3 + 2 + 2 + 2 and 2 + 2 + 2 + 2 + I, B(3) = 8, the relevant 

overpartitions of 3 are 3, 3, 2 + 1) 2" + I, 2 + 12 + I) 1 + 1 + 1 and 1+1 + I, and 

C(4) = 5, the relevant partitions of 4 are 4,3 + I, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1. 

Corollary 5.3.6. If B(n) denote the number of overpartitions of n into parts not 

multiples of 5 and 7, then for any n ~ 1, B(n) == 0 (mod 2). 

Proof. It follows easily from (5.3.7). o 

Theorem 5.3.7. Let A(n) denote the number of partitions ofn into distmct odd 

parts not multzples of 3 and 13 or into even parts not multzples of 3 and 13; B(n) 

denote the number of overpartitions of n into parts not multiples of 3 and 13 and 
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C(n) denote the number of partitions of n into parts not multiples of 3 and 13. 

Then, for any n ~ 2, 

2A(2n + 1) = B(n - 1) + 2C(n). (5.3.8) 

Proof If fJ, 1 and 6 are of degrees 3, 13 and 39, respectively, over ex, and m. and 

m' are the multipliers connecting a, f3 and 1,6, respectively, then from [13, p. 426, 

Entry 19(iv, 2nd part)], we note that 

(
fJI) 1/8 + ((1- fJ)(1- I)) 1/8 _ (fJI(1- fJ)(1- I)) 1/8 

a6 (1 - a)(1 - 6) ac5(1 - a)(1 - 6) 

2 (fJI(1- fJ)(1- 1))1/12 (in 
+ a6(1 - a)(1 - 6) = V -:;;,' 

As in the previous theorems, we can transform the above mixed modular equation 

into 

( _q±1,±5,±7,±11,±17,±19,±23,±25,±29,±31,±35,±37; q78)00 

_ (q±1,±5,±7,±1l,±17,±19,±23,±25,±29,±31,±35,±37; q78)00 

= q3 { (_q±2,±4,±8,±10,±14,±16,±20,±22,±28,±32,±34,±38; q78)00 

_ (q±2,±4,±8,± 1O,±14,±16,±20,±22,±28,±32,±34,±38; q78)00} + 2q. 

Dividing both sides by (q±2,±4,±8,±10,±14,±16,±20,±22,±28,±32,±34,±38; q78)00, the above 

idenity reduces to 

Equivalently, 

( _q±1,±5,±7,±11,±17,±19,±23,±25,±29,±31,±35,±37; q78)00 

(q±2,±4,±8,±1O,±l4,±16,±20,±22,±28,±32,±34,±38; q 78)00 

(q±1,±5,±7,±11,±17,±19,±23,±25,±29,±31,±35,±37; q78)00 

(q±2,±4,±8,±1O,±l4,±16,±20,±22,±28,±32,±34,±38; q 78)00 

= q3 (_q±2,±4,±8,±lO,±l4,±l6,±20,±22,±28,±32,±34,±38; q78)00 

(q±2,±4,±8,± 1O,±14,±16,±20,±22,±28,±32,±34,±38; q 78)00 

2q 3 + -q 
(q±2,±4,±8,±1O,±14,±16,±20,±22,±28,±32,±34,±38; q 78)00 . 

00 00 00 00 

L A(n)qn - L A(n)( -qt =q3 L B(n)q2n + 2q L C(n)q2n - q3. 
n==O n==O n==O n=O 

Equating the coefficients of qn, we easily arrive at the proffered partition identity. 0 
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Example: n = 2. 

Then A(5) = 3, the relevant partitions of 5 are 5, 4 + 1, 2 + 2 + 1, B(I) = 2, the 

relevant overpartitions of 1 are 1 and I, and C(2) = 2, the relevant partitions of 2 

are 2 and 1 + 1. 
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