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Abstract of t he  Thesis  

Part 1. 

1.1 Introduction to the problem 

A large Project  with complex Resource and Precedence Corlstralrlts 

gets exponentially complicated for Sequencing and scheduling. In 

practice, the Project Manager would be willing to 'accept an optimal 

solution (set)' within manageable time rather than 'wait for the 

exact solution'. 

This need for optimization has provoked widespread study of the 

problem since the '50s. Operations Research pioneers have christened 

it as the "Resource Constrained Project  Scheduling Problem" or the 

RCPS Problem. 

1.4 Objectives of the work 

The primary objective of this present work would be 

To formulate an algorithm for an optimized solution to the 

RCPS problem. 

To achieve this primary objective, the subsidiary objectives 

identified through a literature survey are : 

i) To study the approaches made tlll date, and the paradigm 

shifts in the approaches, for finding the solution to the 

RCPS Problem. 

ii) To identify knowledge gap(s.1 in one of the approaches. 

iii) Development of the proposed algorithm by incorporating novel 

and feasible concepts. 

1.5 Methodology of the work 

Background study was carried out in the field of Project Management, 

which provided insights about lacunae in its practical domain. The 

niche for this work (The RCPS Problem) was identified while 

literature review was carried out concerning theoretical and 

practical application aspects. 

Based on the identified gaps, the algorithm improvement was carried 

out on the selected approach (Genetic Algorithms). This was then 

implemented through computational experiments. Parameters were set 
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for tuning the algorithm. The work is based on experimentation for 

tuning the test parameters, and analysis of the results thereof for 

accepting the algorithm. 

Finally, the result set was compared with internationally accepted 

test results. This allowed the algorithm to be presented in its 

final form. 

P a r t  2 .  

2 . 1  The  RCPS P r o b l e m  

In the most general form, the RCPS Problem asks the following 

question: 'G iven  a s e t  o f  a c t i v i t i e s ,  a s e t  o f  r e s o u r c e s ,  and a 

measurement o f  per formance ,  what i s  t h e  best w a y  t o  a s s i g n  t h e  

. re sources  t o  t h e  a c t l v l t i e s  such t h a t  t h e  performance 1 s  maxlinized?' 

The underlined segments above are the focus areas of RCPSP 

P a r t  3 .  

3 .1  L i t e r a t u r e  S u r v e y  ( p a r t i a l ,  i n  Tabular form) 

S1 Year - Author / Analysis, Review, Commentary 
No Researcher - 

Exact Methods 

Network Based Approaches 
1 '50s Formulation of the RCPSP; definitions, etc. 

Network Methods (PERT and CPM) for small Projects 
2 1983 Blazewicz Dynamic variations into CPM approach. 
3 1989 Slowinski and Stochastic variations were constructed lnto the CPM 

Weglarz approach. 
4 1990 Neuman These varlatlons were an attempt to bridge PERT and 

CPM, and approach reality 

Network Techniques offer excellent result for small projects. 
But fails miserably to manage large projects. 

Operations Research Approaches 
5 1979 Hindelang and Dynamic Programming formulation for the problem in 

Muth Decision CPM context. 
6 1984 Patterson LPP approach; gets gradually impractical with the 

increase in number of tasks and constraints. 
7 1985 Davis "Many o f  the constraints commonly found i n  real 

scheduling problems do not auger well ' t o  
traditional Operations Research or Mathematical 
Programming techniques" 

8 1997 De, et. al. Have shown that the Hindelang-Muth procedure is 
flawed. (Adapted from Demeulemeester, W i l l y ,  20021 
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S1 Yea'r - Author / Analysis, Revlew, Commentary 
No Researcher 
9 1999 Khamooshl H Attempted cross-breedlnq Dynamlc Programmlnq wlth 

the ~ h a m l c  Prlorlty sched;llng ~ethod (DPS~) , 
whlch dlvldes a project Into phases (cycles), the 
length of whlch depends on the duratlon of the 
project and the perlod of clock cycle 

Whlle such Dynamlc Programming approaches can slgnlflcantly reduce 
computational effort, the chlef concern 1s wlth the large amount of 
space requlred to store the lntermedlate results calculated by these 
algorlthms 

Enumerative Approaches 
10 1978 Stlnson et a1 Branch-and-Bound methodology, as applled for * 
11 1995 Kolisch Project Scheduling 
12 1996 Sprecher & 

Drexl 
13 1996 Wall, MB "Enumera t l v e  methods cannot s o l v e  large  problems, 

the  t r e e  1s slntply too blg"  
14 2000 Stork, F Generated Branch-and-Bound algorithms for 

stochastic RCPS 

Branch and Bound methods have llmlted applicablllty and success for 
large projects They require speclal heurlstlcs to accommodate 
variations In resource constraint formulations 

Heurlstlc Methods 

Near-Optlmal Heurlstlc Approaches 
15 1977 Panwalkar and A survey of schedullng rules, ranglng from slmple 

Iskander priorlty rules to more complex heuristics 
16 1978 Garey e t  a1 Upper bounds (assuming a mlnlmizlng objective) on 

the quallty of a number of approximate heurlstlc 
solutions to RCPSPS 

Single Heurlstlc Approaches 
17 1975 Davis and Comparison of some standard heurlstlcs for solvlng 

I Patterson RCSPs, benchmark problems 
1 8  1982 Kurtulus and Attempt to classlfy individual RCSPs for the 

Davl s purpose of identlfylng appropriate scheduling 
heurlstlcs for thelr solutlon 

19 late Alvarez-Valdes Described a heurlstlc algorithm based on emplrlcal 
' 8 0 s  R et a1 analysls for the RCPSP 

20 1993 Lawrence and A single-heuristic approach to solvlng RCSPs that 
Morton attempts to mlnlmlze welghted tardiness through the 

use of a combination of project-related, activlty- 
related, and resource-related metrlcs 

Multlple Heuristic Approaches 
21 1990 Boctor Inclusion of certaln heuristics can result ~n the 

more frequent development of near-optimal, and 
occasionally optlmal, schedules 

22 1994 Hlldum, D W Larger cornblnatlons of heuristics leads to 
increased ablllty to produce better quallty 
schedules 

I For a relatively large project, wlth multlple constralnts, heurlstlcs 
provldes better and feaslble solutlon set 

Artificial Intelligence Approaches 
23 1994 Hlldum Grouped artiflclal lntelllgence (AI) approach to 

schedullng as either expert systems or knowledge- 
based 

24 Late Hartmann S A1 Techniques for RCPS, also publishes comparatlve 
'90s and Kollsch R statements and benchmark changes of major works 
tlll carrled out for the RCPSP, and its different 
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S1 Year - Author / Analysis, Rev~ew, Commentary 
No Researcher 

date versions. 

Simulated Annealing 
2 5  1 9 9 0  Fayer Initial experimentation of using SA for scheduling 

problems 
2 6  1993  Boctor Reported fairly good performance by a simulated 

annealing approach on the Patterson problems 
27 2 0 0 0  Zbigniew and Accepts a better neighbor solution, but rejects any 

David deterioration 
2 8  2004  Smith Developed variations for moving away from local 

optima 

Tabu Search 
2 9  1 9 8 9  Glover and Pioneer developers of Tabu Search (TS) methodology. 

Greenberg 
30  1994  Pinson et a1 Tabu Search used for scheduling algorithms. 
3 1  1 9 9 7  Gloverand 

Lag una 
32  2007  Glover, F Further avenues of use of TS for use in Scheduling 

for Engineering applications 

Fuzzy System 
33  2003  Hongqi Pan Fuzzy RCPS metaheuristic approach 

Chung-Hsing 
Yeh 

Genetic Algorithm 
34 1 9 7 5  Holland H.J. Pioneer developer of Genetic Algorithms methodology 
3  5  Altus et a1 Attempts to apply Genetic Algorithms to process 
3  6  Rogers J.L. resequencing 
37  1 9 9 6  Wall, M.B. Applied GA to 1 0 - 3 0 0  activities, 3 - 1 0  resource 

PSPs, but parameter negotiations were not carried 
out (PhD work) 

38  1 9 9 7  Sharma, et a1 Different GA operators (crossovers, mutation, 
cloning, skimming, etc) 

3 9  2 0 0 5  Zwikael, et a1 Application approaches for Non-Delay scheduling 
4 0  2 0 0 5  Mendez, et a1 Random key based GA, with an extensive study of the 

basic formula 
4 1  2 0 0 5  Kolisch, Update to a previous survey on different heuristic 

Hartmann approaches. Concluded that GA (and TS) still 
features as the most preferred metaheuristic 
technique 

42 2 0 0 8  Petegham, V .V. Applied bi-population GA for a modified RCPSP 

and Vanhoucke 

Multiple Technique application 
43 1995 Rabelo L .  et Attempted a hybrid approach for real time 

a1 sequencing and scheduling problems by using Neural 
Networks, Genetic Algorithm, Simulation and Machine 
Learning 

44 2006  Kim, J.L.  Designed an adaptive hybrid Genetic Algorithm by 
combining Slmple Genetic Algorithm (SGA) for ylobal 
search with Random Walk Algorithm (RWA) for local 
search, and arrived at a good result for the RCPSP. 

Kolisch and Hartmann ( 2 0 0 5 )  concluded that GA (and TS) still features 
as the most preferred metaheuristic technique for approachinq 
optimality of the RCPSP. 
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S1 Year - Author / Analysas, Revlew, Commentary 
No Researcher 

Dynamic Scheduling, Disruption Management 
44 2002  Kocjan, W Initiated a report on Dynamic Scheduling, by 

attempting to break 'static rules'. 
4 5  2007 Kuster, et al. Teaching the RCPSP to proceed with alternative 

paths, in case of disruption. 

This is one of the contemporary focuses, and is still in a nascent 
stage 

3.2 Gap Identlficatlon 

There is an ever-expanding list of optimization methods with 

ample opportunity for modification and adaptation, to approach 

the RCPS Problem. Because of its relatively superior 

application potential for RCPSP, Genetic Algorithm (GA) has 

been selected for the present work in an attempt to optimize 

the Problem. 

Genetic algorithm has been used extensively for the RCPS 

Problem. However bulk of the focus was on the operators 

(mating and diversity). There has been less significant effort 

spared for the triggers, viz. the project selection parameter 

and the termination parameter. The present work would adapt 

accepted robust versions of the operators and attempt to 

expand the knowledge domain specifically of these two 

triggers. 

Part 4. 

4.1 Genetic Algorithms 

Genetic Algorithms (GA) is adaptation of Nature's 'survival of the 

flttest' dictum. Here problems are solved by an evolutionary process 

resulting in a best (fittest) solution (survivor). They are less 

susceptible to becoming 'stuck' at local optima compared with 

some other types of optimization techniques. 
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P a r t  5 

5 . 1  The Proposed A l g o r l  thm 

The major  components of t h e  proposed a lgor l th rn  1s d e s c r i b e d  I n  

sequence of GA 1s described I n  t h e  following t a b l e  

The Major Components of t h e  Proposed Algorlthrn 

P a r t  6. 
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6 . 1  Implementa t ion  of  t h e  Algorithm 

The programming has been done in C and complled uslng Borland 

C++ complier. 

Work descr lp t lon  
(I t a l l c l z e d  por t lons  marked w l  th  a ' * ' ln&ca t e  novel contr lbut lon)  
Collect  Project  ln format~on 

Calculate the  normal, unconstrained MakeSpan - the length of the project  

Generate schedules, t l l l  the i n l t l a l  populatlon 1s f l l l e d  up 

Allocate a  Unlque Number* to  each schedule, based on Sequence and 

Constrained Mahespan, t o  lnd lca te  ~ t s  ' f l t n e s s  f o r  surv lva l t  

The 'bes t '  so lu t lon  s e t  i s  cloned out a s  e l i t e s  (Solution s e t )  

Depending on the ' f ~ t n e s s  s t rength '  of the paren ts ,  c lonest  a r e  (v i r tua l ly )  

made wlthln the population 

From the (parent) population, two lndlvlduals  a r e  se lec ted  f o r  matlng, by a  

' b e t t e r  spouse' adapta tlon of the 'tournament' methodology 

The two parents  mate t o  produce two offspring, by the  Precedence Set 

Crossover (blnary)  operator ,  whlch 1s  a robust one f o r  Prolect Scheduling 

Introduce d lve r s l t y  by uslng t he  Immlgratlon (unary) operator 

The populatlon schedules a r e  a l loca ted  t h e l r  Unlque Number, and they a r e  

t ransfer red  l n t o  the  Nezt Generation a f t e r  clonlng out the 'best '  solut lon 

s e t  New generation members a r e  retalned b y  (adaptat lon o f )  the Struggle GA 

methodology 

Two d i s t l n c t  c r l t e r i a  were tes ted  - 

a )  Project parameters dependent c r l t e r l o n ,  and 

b)  Project con>ple . l t y  dependent (Adaptive) c r l t e r l o n  

A formula has been developed f o r  the 'adaptive c r l t e r l ~ n ' ~  that  incorporates 

comnple,\lty l eve l  of the Project 
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6.2 Comparative Tests for tunlng the Alqorlthm 

For testing robustness, experimental tests were carried out on 

(selected sets of) internationally recognized benchmark 

instances for the evaluation of solution procedures for the 

RCPSP, provided at the PSPLIB. The last update of the Library 

was noted as on 2nd May, 2008. 

Part 7. 

7.1 Experimental results and Analysis 

For the RCPSP, the 'fittestf solution for a Project would be 

the schedule with the lowest Makespan. The PSPLIB has provided 

the 'best' solution set of the benchmark instances. There are 

published research results on these benchmark instances. These 

were studied vis-2-vis the experimental outcomes of the 

Proposed Algorithm - how good it is by comparing the results 

with the benchmark results. The deviations and analysis 

thereof, provides the necessary information for tuning the 

algorithm for acceptance. 

Part 8. 

8.1 Conclusion 

The present work proposes few acceptable concepts for the 

selection and termination triggers of GA application for 

approaching optimality of the RCPS. The experimental results 

are comparable to the best amongst the published result sets. 

Finally a few directions for further study are hinted at, 

along with indication of possible practical application of the 

proposed model. 
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Chapter One 

Introduction and Background 

In thir Chapter we provide background for a well-established pro blem. Starting 

from a macro-angle, this Chapter final4 focuses on the niche in the knowledge 

domain 6 Project Management that features our chosen problem, which is 

known as the RCPSP. The rationale and background infomation for the 

work is dircussed here. We pec& the o@ective($ of our work and its scope as 

bounday pec$cations. Thir is followed & outline ofthe methodology. Final4 

we present brief outline ofaM Chapters and other content $this thesis. 



II 

Laws o f  Proiect Management 

1. N o  major project IS ever znstalhdon tzme, wzthzn 6udget, or w t t h  the same s taf f  that 

startedzt Yours w t l lno t  6e the first. 

2. Project progress quzckly u n t z l t h q  6ecome 90% comphte, t hen t h q  remazn at  90% 

compbte forever. 

3. One advantage o f f i z z y  project otiJectzves IS that t h q  k t  you avotdthe em6arrassment o f  

esttmatzng the corresponding costs. 

4. W h e n  thzngs are gotng w e 4  somethzng wzlTgo wrong. . W h e n  thzngs just cannot get any worse, t h q  w z l i  

. W h e n  thzngs appear to 6e gozng Getter, you have overlbo&dsomethzng. 

5. I f  project content IS al lowedto changef;eely, the rate o f  change wzlTexceedthe rate o f  

progress. 

6. N o  system IS ever compbtely de6ugged:Pttempts to de6ug a system znevzta6lj zntroduce 

new hugs that are even harder to f i n d  

7, carebssly plhnnedproject wzll ta& three tzmes Conger to comphte than e q e c t e d  a 

care@@ plhnnedproject wzll ta& o n 6  twzce as Long. 

8. R y e c t  teams detest progress reportzng 6ecause zt vzvtdb man fests thew lhckof  progress 

1) 

@s outhned6y 

Amencan Productzoiz andInventory ControlSoczety @@'Iu : llie~ssoczatzoiz for Operatzoizs Nanagement) 

212 aiz attempt to eplhziz tlie consequences of uizcertazizty on Project Nanageinent.) 

Extracted from 
Project Management Engmeermg, Technology, and Implementation 
Shtub,A, BardJ F, Globerson, S 
Prenttce Hall, Englewood Chffs, NJ 07632 
1994, Pule 8 
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1.1 Introduction 

Businesses, industries, organizations and nations of every size and focus count on 

professionally managed Project Management slulls to make them succeed in the 

ever more competitive global marketplace. Project Management is an area that has 

a du-ect bearing on the National as well as International scenario for sustaining the 

economic as well as Industrial growth of the present day. The importance of thls 

area can be gauged from the fact many countries has bodies to monitor , 

infrastructure works of importance. Both Government as well as the Indusuy 

establishes such bodes. India has a full-fledged Union Wnistry with the name of 

Ministry of Statistics and Project Implementation (MOSPI) to monitor macro 

projects. Amongst other activities, thts body regularly publishes statement(s) 

regarding the status of progress of projects undertaken by the Union Government. 

On the international front, the leading body is the UNIDO. The professionals 

coming under the purview of thts field have their own body with the self- 

explaining name Project Management Institute (PMI), whose headquarters is in 

Pennsylvania (USA), with Chapters all over the world. 

Because of its visible impact, the field of Project Management has shown an 

extraordnary growth internationally, especially in the developed nations. 

Indviduals slulled in the field of Engineering and Management are gradually 

gravitating towards the development and management of Projects. Project 

Management tools and techniques, and the related Information System - 

developed especially for especially for Engineering Projects, forms an integral part 

of modern Project Management. 
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1.2 Proiect (MisIMana~ement  In  D e v e l o ~ i n ~  Countries 

Nevertheless, in developing and under-developed nations, the importance attached 

to the area of Project Management, especially by the professionals and powers to 

be, seems to be relatively low. T h s  is especially true in case of Government and 

Semi-Government funded projects. In Indla such projects are generally termed as 

Public Sector Unit (PSU) projects. More often than not, even a small-scale project 

fails to be completed withn the budgeted Time/Cost frame. The resultant is 

massive cost overrun - running into billions of taxpayer money. High time 

overruns - running into years, again in turn is translated into cost overruns. 

To stay on top, new projects and business development must be completed 

quickly, in time and ~ v i i h n  cost budget. Failure on any of these fronts would result 

in massive overruns of the two most important resources - time and cost. T h s  gets 

negatively reflected on the business of a firm, position of the related industry and 

the economy of the nation as a whole. 

Since Independence (1947) ull about the turn of century, Indla has lost over US$ 

15 bilhon due to cost and time overruns in executing major and mega projects in 

the Public Sector, accordlng to a report based on official statistics collated and 

released by the Government as well as FICCI, an apex body of business houses. 

The major contributors to t h s  dubious distinction are the power, railways and 

steel sectors - combined they accounts for around three-fourths of i h s  overrun. 

Citing specific examples of Indlan context, even in short would produce volumes, 

and is left out of the scope of &us thesis. 

At t h s  juncture, it would be pertinent to state a paradoxical fact that this data on 

cost overrun doesn't fully capture the extent of the problem. Paradoxical in the 

sense that there are certain sectors where the time overrun doesn't get converted 

to cost overruns. In areas like power and petrochemicals, equipment prices have 

declined dramatically over the years. So we land up in a peculiar situation where we 

Chapter 1 # Page 4 
I:omulat~on of an O p t ~ m z c d  Algorithm for Rcsourcc Schcduhng and /\llocatlo'n In Prolccts A Gcnetrc AlQonhnr Approach 



have time overrun without cost overruns. In such a situation we have to fall back 

on alternative course of action for converting the time overrun to cost parameters. 

One convenient and plausible way is to use the concept of Opportunity cost in 

terms of the profits foregone and extra costs in other ways. For example, take the 

Inhan Oil Corporation's Panipat Refinery. It had a time overrun of 14 months (at 

the time of the said report), but no cost overruns, with costs frozen at around US$ 

1.2 bilhon (includng US$ 0.5 billion for an associated pipeline project). Yet tlvs 

delay has meant that the country had to import more petrochemical products for 

that period. Also, since IOC would have been entitled to a 12% post tax return for 

the immedate period, when the APM dsmanhng began, the delay meant that 

IOC actually had lost out on an additional profit of around US$ 0.15 bilhon, or 

around 15O/o of its total profits for the year. 

Faulty planning dl result in project failure, whereas hgh-quality project planning 

increases the project's chances of success. Zwikael and Globerson (2004) reports 

on development and implementation of a model (PMPQ) aimed at evaluating the 

quality of project planning. The use of the PMPQ model across industries enabled 

the authors to conclude that Construction and Engineering companies have the 

lvghest level, whlle Production and Maintenance companies have the lowest 

quality of project planning. 

Nevertheless, faulty planning and mismanagement at certain quarters drives the 

cost of a Project to escalate much beyond budgetary limits or acceptable temporal 

variation. Fault into a Project may creep in at design level, control level or at 

esecution level. But the most visible amongst these is esecution level - level at 

whlch the Project Manager operates. 
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1.3 The Proiect Mana~er's Dilemma 

The group, whch had originally formulated or designed the Project, does in most 
/ 

cases lay down schedules that are too far away from achievable reality. In most 

cases the person who would finally control the execution of the plans - the Project 

Manager - is not made a party of the planning phase. Even if he is made so, during 

implementation phases, situation crops up which would call for changes in the 

plans - either subtle or drastic. Couple that with conacting resource allocation 

and inadequate monitoring, and one can very well imagine the resulting chaos that 

the Project Manager faces. The Project Manager faces the unenviable dilemma of 

monitoring the Project for judcious allocation resources in face of multiple 

constraints. 

A project is an open system, fully interacting with the environment - both for 

input(s) as well as output(s). The control and feedback mechanism installed for 

aidng the Project Manager is the only tool that attempts to keep the project witlun 

track to proceed towards its logical and physical conclusion, with minimal negative 

impact. At the macro level, such impacts are very much visible, and are open to 

criticisms. 

The impact on many fronts can be gauged, controlled and remeded to a great 

extent at the micro level. For identifying the points where these checks can be 

incorporated, one needs to go into more details into the relevant portion wvithn 

the field of Project Management. 
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1.4 Proiect Mana~ement  Knowled~e Areas 

PMI have identified nine areas of Project Management ICnowledge. fit is worthwhile 

to note here that I'M1 discourages use ofthe term jrunctions' in this ~~ontehrt, as the t e r n  yunction' 

has been frequently misunderstood to mean an element of a functional organixation.) The nine 

Project Management ICnowledge Areas as outhned in the PMBOIC (2004) are : 

iv. 

vi. 

vll. 

viii. 

ix. 

Project Integration Management, 

Project Scope Management 

Project Time Management 

Project Cost Management 

Project Quality Management 

Project Human Resource Management 

Project Communication Management 

Project k s k  Management 

Project Procurement Management 

Withln the scope of t h s  work, we look further into the 3 r d  and 4 t h  items of the 

above list, i.e. into Project Time Management and Project Cost Management. 

Project Time Management knowledge area identifies five major processes : 

1. Activitv Definition - identifying the specific activities that must be 

performed to produce the various project deliverables, 

2. Activitv sequencing - identifying and documenting interactivity 

dependencies, 

3. Activity duration estimation - estimating the number of work periods 

whch will be needed to complete indvidual activities, 

4. Schedule development - analyzing activity sequences, activity durations, 

and resource requirements to create the project schedule, and, 

5. Schedule control - controlling changes to the project schedule. 
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In Table 1 1 we speclfy rmcro-level posiuon w t h n  Project Tune Management 

Knowledge area, understanmng and controhng of whch ulumately controls the 

macro lmpacts 

Acuvity 
Sequencing 

Outputs 

Acuvity 
Defimuon 

Acuvity hst 
Product Descrlpuon 
Mandatory dependencies 
Discretionary dependencles 
External dependencies 
Cons trunts 
Assump~ons  

Tools and Techniques Malor 
Processes 

Work Breakdown Structures 
Scope Statement 
fistorical InformaUon 
Construnts 
Assump~ons  

Decomposiuon 
Templates 

Inputs 

Acuvity hst 
Supporting de td s  
Work Breakdown 
Structure updates 

Precedence dtagrammng 
method 
Arrow dtagrammng method 
Condtional dagrammng 
method 
Network templates 

I 

Project network 
dagram 
Acuvlty hst updates 
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Acuvlty 
Duratlon 
E s u m a ~ n g  

Schedule 
Development 

Schedule 
Control 

(Adopfedfmm PMBOK) 

Acuvity hst 
Constraints 
Assumptions 
Resource requirements 
Resource c a p a b h ~ e s  
fistoncal in forma~on 

Project network dtagram 
Acuvlty duration esumates 
Resource requlrements 
Resource pool descripuon 
Calendars 
Constramts 
Assumpuons 
Leads and lags 

Project schedule 
Performance reports 
Change requests 
Schedule management plan 

Table 1.1 : Project Time Management Overview 

Espert judgment 
Analogous esurnatlon 
S ~ m u l a ~ o n  

Mathema~cal analysis 
Duratlon compression 

Slmula~on 
Resource levehng heur~sttcs 
Project management software 

Schedule change control 
system 
Performance measurement 
Adduonal plannlng 
Project management software 

Acuvlty durauon 
esumates 
Basis of estunates 
Acuvity list updates 

Project schedule 
Supporting detatls 
Schedule 
management plan 
Resource 
requement  
updates 

Schedule updates 
Corrective action 
Lessons learned 



PMBOIC (2004) has identified micro level components of Project Cost 

Management, and pinpoint control areas under scope. It includes processes 

required to ensure that the project is completed widun approved budget, and 

involves 4 major processes, as depicted in Table 1.2 

1. Resource Planning - deterrm~llng what resources and what quantities of 

each should be used to perform the project activities, 

2. Cost Estimation - developing an approximation of the costs of the 

resources needed to complete the project activities, 

3. Cost Budgeting - Allocating overall cost estimate to individual work items, 

and, 

4. Cost control - controlling changes to the project budget. 

I l ~ v o r k  breakdown structure ( I 

Major 
Processes - Tools and Techniques Inputs 

Resource 
Plannlng 

Outputs 

Cost 
Estunating 

His torlcal m formation 
Scope statement 
Resource pool descripuon 

Cost 

Budgeung 

I I I I I 

Table 1.2 : Project Cost Management Overview 
(Adapted from . PMBO K) 

Work breakdown structure 
Resource requirements 
Resource rate 
Activity durauon estimate 
HIS toncal lnformatlon 
Chart of accounts 

Cost 
Control 
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Expert judgment 
Alternatives identifica~on 

Cost estimates 
Work breakdown structure 
Project schedule 

Resource requirements 

Analogous estimating 
Parametric m o d e h g  
Bottom-up estunating 
Cornputenzed tool 

Cost ba sehe  
Performance reports 
Change requests 
Cost management plan 

Cost estmates 
Support d e t d  
Cost management plan 

Cost estunatlng tools and 
techniques 

Cost ba sehe  

Cost change control system 
Performance measurement 
Adltlonal plannlng 
Computenzed tools 

Rev~sed cost estunates 
Budget updates 
Corrective actions 
Estunate at completion 
Lessons learned 



Project cost management is primarily concerned with the cost of the resources 

needed to complete project activities. From a business and economic point of 

view, it is always the cost figures that are displayed and makes all the dfference. It 

may be noted that any overrun on the Time factor would invariably get reflected 

on the Cost factor due to obvious reasons. Thus it is imperative that these two are 

the prime factors to be controlled. 

The most important tool in the hand of the Project Manager for t h s  impact 

control and management is the Project Monitoring System. T h s  has to operate by 

generating professionally laid down project schedules and correct resource 

allocation for the scheduled jobs. A plan is never static, especially for Projects. As 

soon as a plan is finalized, something endogenous and/or exogenous mandates a 

change in it. This instabhty goes on to upset the subsequent stages, most 

perceptibly the resource allocations. It thus becomes imperative that the resources, 

whch are finite in numbers and quantity, be reallocated. For a relatively small 

project, manual reshuffing might be possible. But for major projects, ths  

invariably demands fast and intehgent computer software, with necessary 

heuristics built in. (The RCl'Sproblem - to be discussed later - is a special case o f  resource 

leveling where the heuristic involved is a limitation on the givantzrj of resource available.) The 

software incorporating th s  set of heuristics would be as fast as the algorithm it 

follows, ceterir paribus. 

Based on the outcomes, the Project acuvities may be resequenced or rescheduled. 

These are invariably inter related, and demands maximum efficiency from the 

Project Manager. His only ally in t h s  battle against Time-Cost overrun is the 

Computer, and (fast algorithm driven) Project Management software that forms 

the Project Monitoring System, wh~ch earlier was referred to as the control and 

feedback mechanism. Amongst the various facets presented in Table 1.1 and Table 

1.2, we are referring to t h s  very small but most important niche. 
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1.5 Proiect Monitorin? Systems 

The most important coniponent of Project Monitoring System is the Project 

Management Information System (PMIS). The periodlcity of reference and 
I 

reporting by Project Monitoring System is a crucial factor, and aims at constant 

checlung and monitoring of the present status of the project. Addltionally it can be 

suitably upgraded to predlct the future parameters of the project based on 

hstorical and other factors. T h s  can be based on any planning technique used in 

the enterprise. Measurement, evaluation, trouble-shooting and improvement of 

performance are the prime objectives of the PMIS. Improvement comes through 

decision-making, whch is based on information. 

For the perspective of our study, Project Management Information System 

generally consists of three modules - 

PMIS/T :: Time Management Information; 

PMIS/C :: Cost Management Information; and 

PMIS/R :: Resources Management Information. 

In addltion to these, the Project Monitoring System would consist of a module to , 

handle information on quality and quality standards. Smularly there would be a 

module to provide information on combined exception report on the total 

performance. 

The system works on certain algorithms, whch are based on pertinent 

assumptions, rules and constraints. To improve on the worlung and performance 

of the software, the algorithms needs to be studled, and newer and faster 

technological innovations needs to be incorporated. In a comparative analysis of 

commercial Project Management software, Mellenticn and Trautmann (2001) 

noted that there is sull a sigmficant performance gap benveens algorithms . 

implemented and those available on research literature. They opined that closing 

ths  gap constitutes a challenge for future research. 
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1.6. Resource Allocation Problem 

Progress and success of projects depend on timely avdability of resources. But 

more often than not, these are h t e d  in numbers and scarce to get. In many cases 

delay occurs in project completion due to the non-avdability of the same resource 

for possible parallel jobs. The problem created due to inadequate resource 

allocation spds over to create a time-overrun problem, whch in turn creates 

problem in the cost management aspect. Procuring addtional resource could 

mitigate t h s  problem. But it is a rule rather than esception that adduonal 

procurement generally fails to be justified from the economical point of view. 

Therefore there is a paradoxical relationshp between resources requirement and 

avdability, and their allocation. 

To study and analyze th s  situation, the problem has been brought into focus 

worldwide by the name of Resource-Constrained Project Scheduling Problem, or 

RCPS Problem (RCPSP). In an ongoing process, various tools and techniques 

have tried to approach optimization of t h s  problem. The present work attempts 

to contribute to the knowledge domain of a specific area pertaining to an approach 

(GenetilAlgon'thm) for optimization of the RCPSP. 

Having placed th s  background information about the field of study, and gradually 

pinpointed deliberation on the specific problem, we now proceed to demarcate the 

bounda'ry specifications of our work. 

Subsequently, an outhne of methodology for the work is presented, followed by 

content description of t h s  thesis. 
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1.7 Boundarv S~ecifications Of The Present Work 

W i h n  the total knowledge domain of Project Management and related Business 

Informatics, our work concentrates on the cbstinctively identified niche. We 

restrain ourselves w i h n  the identified spot to maximize focus and intensity by 

specifically defining the title, objectives and scope of the present work. 

1.7.1 Title of the work 

The present work was triggered by an inquisitive study into cbfferent aspects of 

Project Management, and associated lacunae. During the process, it gradually 

focused into a specific problem, optimization of whch would benefit the Project 

Manager. 

For formulating the optimization model, we sought for a viable approach, and 

finally zeroed onto the Genetic Algorithms approach. 

With the intention of highlighting these two issues, the title of the study is 

composed as 

"Formulation of an Optimized Algorithm for Resource Scheduling 

and Allocation in Projects: A Genetz~.Algonthms Approach" 

1.7.2 Objective of the work 
3 - p .  u 

Based on a background study, the primary objective of t h s  work is ouhne 

"To formulate an algorithm for approachng an optimized solution 

to the RCPS Problem towards minimization of the makespan." 

The primary objective would be acheved by convergence of three subsicbary 

objectives, whch are identified through a literature survey: 
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i) To study the approaches made till date, and the paradtgrn shfts in the 

approaches, for findlng the solution to the RCPS Problem 

ii) To identify knowledge gap(s) in one of the approaches. 

iii) Development of the proposed algorithm by incorporating novel and 

feasible concept(s). 

Subsequent Chapters of t h s  thesis attempts to deliver pertinent portions of each 

of the subsidtary objectives, the whole of whch assemble to address the primary 

objective. 

1.7.3 Scope of the work 

The scope of work is kept sharp on three aspects - the focus, the approach and 

the extent. 

Focus of work is specifically on a Business Informatics area of Project 

Management, related to resource allocation for Project activity scheduling. The 

work proceeds with the assumption that Project Manager will be dependent on an 

ever more efficient PMIS. There are related possibilities of study withln t h s  niche 

with focus on cost optimization, labour optirnization, risk management, etc. 

However those aspects are by themselves research areas involving extensive study, 

and are kept beyond the scope. 

With an ever-expandtng list of optimization amroaches (tools and techniques) 

RCPSP has been studled from various In t h s  work we concentrate 

our attention on one school of approach, whlch allowed in-depth analysis. At thls 

point it is acknowledged with humbleness that a number of novel and robust 

(combinations of) techniques have been propounded since we began our study. 

But as our work had already proceeded in the chosen path, we considered it 

prudent not to dlvert. 
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The extent of work is kept w i h n  theoretical boundary. The algorithm as designed 

in thls work is tested using internationally recognized test data-set, and weighed 

against benchmark result thereof. Field-testing and/or empirical validation of the 

algorithm using real data-set is not carried out. Neither have we attempted 

mathematical validation of the few relationshps developed for use in the 

algorithm, leaving that to our competent brethren. 

Moreover, the extent of the present work remains withn study on 'single project', 

thereby concentrating on the RCPS Problem. Resource scheduling for 'multiple 

projects' is studled under the RCMPS Problem - with a different set of test data- 

set, whlch we shall keep outside our scope. 

1.8 Methodolorn of the work 

Amongst research paradigms, the methodology uthzed for present work is one 

normally used universally for algorithm design, whch follows a general pathway of 

Design - Development - Validation. 

For the Design and Development segment, we loosely follow stages of SAD, 

where the problem is understood first. This is followed by a study and 

presentation of alternatives for solution to the problem. Once an acceptable 

alternative is identified, it is analyzed in details for adaptation to develop the 

solution model. The model is finally subjected to testing and mo&fications for 

Validation of usage. Once validated, the model is ready to be presented as solution 

of the problem. 

As the first stage, the RCPS Problem and approaches made for optimizing it is 

studed in possible details from available literature as a first step. T h s  provided the 

insight to formulate basic framework for the proposed work. 

Chapter 1 # Page 15 
Pormulation of an Optimized Algorithm for llesource Schcduling and Allocation in Projccts : t\ Grnc/icAlQon'~hm.r r\pproach 



Next an analytical study of the selected approach (Genetzc AAlgohms) is carried out 

to understand nuances and intricacies. From thts we gain insight into possible 

opportunity to contribute into the knowledge domain, specifically in applying the 

approach to RCPS problem. A few short but critical knowledge gaps fachtate' 

further work in to attempt contribution. 

Based on knowledge gathered, the algorithm is designed by a combination of two 

types of segments - adaptation of robust portions as put forward by the literature 

and studes, and our self-designed portions. 

Subsequently, the design is developed into a program for computational work. 

The Design of Esperiment (DOE) is made simultaneously by identifying 

parameters to be experimented with. 

For validation of the algorithm, esperimentation is carried out as per Design of 

Experiment. Predetermined alteration(s) of test parameters are carried out, and 

impact is studled on performance outcome. The results thereof are subjected to 

simple statistical analysis for validation of the algorithm from three angles, viz. 

effectiveness, accuracy and efficiency. 

Dependng on analysis of experimental results we fine-tune the algorithm, the 

program implementation, the parameters and their values, to finally comment on 

' acceptance of the proposed algorithm as result of the work. 

Relevant portion of the methodology are explained in details at pertinent Chapters. 
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1.9 Content Outlines of this Thesis 

The main portion of t h s  thesis is presented as eight Chapters, each dealing with a 

specific portion of our objectives. Next we present short appendlces that act as 

supplement and reference material. Finally we include references and bibliography. 

Chapter 1 is just being concluded. Here a dlscussion was made about background 

of the problem - from macro angle of field and area of our study to micro angle of 

niche identification for the present work. T h s  Chapter has also spelt out 

boundaries and methodology of the work. 

Chapter 2 provides introduction and dlscussion about the RCPS Problem, whch is 

the specific problem taken up for study. The furst two Chapters provide a 

background to the area of work, on whch we have built our objectives. 

Chapter 3 is a literature survey of dfferent approaches made for addressing the 

RCPS Problem, and other related problems. T h s  Chapter endeavor to focus on 

the furst of the three subsidlary objectives. 

Chapter 4 is a description of the 'approach' taken up for usage in the current 

study, and whch would be taken up as basis of proposed algorithm. T h s  Chapter 

deals with functional description of Genetic Algorithms. 

Chapter 5 describes formulation of the proposed algorithm. The attempt at 

contribution of t h s  present work to the knowledge domain is candidly outl.tned 

here in stages. Chapter 4 and Chapter 5 (in whole or partially) is an effort to 

address the second of the three subsidlary objectives. 

Chapter 6 describes the implementation of the algorithm for computational and 

experimental works. The development of the conceptual algorithm into 

programmable simplification is described in t h s  Chapter. The Design of 

Experiment is made in the later half of the Chapter. 
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Chapter 7 discusses experimental outcomes for tuning and acceptance of the 

algorithm. Chapter 6 and Chapter 7 attempts to fulfill the thud subsidiary 

objective. 

Chapter 8 is the concluding Chapter of this thesis, and is a condensed appraisal of 

the work. Few strengths and shortcomings of the proposed.algorithm is dscussed 

here. Finally, t h s  Chapter transfers focus from the present work towards possible 

extensions and related future works. 

The References and Bibliography enumerates dlgital library and Internet sources 

separately prior to literature listing. The literature listing contains references 

mentioned and/or quoted in t h s  test as well as bibliographlcal entries that were 

referred to and consulted during research but not duectly mentioned and/or 

quoted here. 
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Chapter Two 

The Problem 

In this Chapter we discuss the Problem taken up for stu4. The nature, 

intricaczes, complexities, assumptions, etc are dealt to the extent feasible. Being 

a well-estabhhed problem, we leave ozit the (technical) detaih and mention 

general apects of the problem. The first poltion deals with descnpfon and 

formulation of the RCPSP. Thir we follow @ short defEntion of t e r n  used for 

the discniptions. 



2.1 Introduction 

The Resource-Constrained Scheduling Problem (RCSP) is not new. It was since 

1950s that systematic solution approaches to planning and scheduling methods 

were taken up. RCSP has been stuhed from a number of angles, for varied 

applications. Each application field modfied and adapted basic RCSP to sausfy 

requirement(s) its own peculiarities. But basic framework and objectives more or 

less remains the same. In a number of applications, resource allocation aspect is 

prime motivation. For many, the control and optimization of activity tarchness 

assumes higher importance. In saying th s  we declare that 'time' as a resource is 

considered separately than the other (physical) resources. 

Study of RCS initially started with job sequencing in Shop-Floor, and allocating 

finite number of machines, operators, etc. Scheduling problems tend to be 

dfficult, not just in theory, but in practice as well. Applegate and Cook(1991) 

remarked that the job shop problem is not only NP-hard, it also has the well- 

earned reputation of being one of the most computationally stubborn 

combinatorial problems to date. In their book, Muth and Thompson(l963) 

introduced a ten machlne, ten job problem that took the Operations Research 

community more than two decades to arrive at a plausible solution set. 

Project Management is a field where the RCSP has been uthzed extensively. The 

focus of the present study is application of RCSP as adapted for the area of 

Project Management. For application into the area of Project Management, the 

Operations Research community has rechristened Resource Constrained 

Scheduling Problem (RCSP) as Resource-Constrained Project Scheduling Problem 

(RCPSP). 
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2.2 The Resource-Constrained Project Schedulinc Problem 

The Resource-Constrained Project Scheduling Problem (RCPSP) consists of a set 

of tasks, and a set of finite capacity resources. Each task puts some demand on the 

resources. A partial ordering of these tasks is given specifying that some tasks must 

precede others. 

Generally the goal is twofold - 

a) to minimize makespan without violating the precedence constraints, and/or 

b) avoid over-utilizing the resources. 

The focal point of thls problem is formulation of sequence of tasks (events or 

activities) for optimal utilization of the resources (usu. reusable) keeping into 

account the temporal restrictions. Thus there are resource constraints as well as 

sequence rules. 

Amongst researchers in the area of Project Scheduling, the quest has been to find 

out the best way of assigning the resources to the activities withln spatio-temporal 

h t a t i o n s  so as to acheve the best objective(s) possibly withln the prime 

constraint. Formulating total job sequence right from start of the project till its end 

(completion, or abandonment), with possible parallel paths, and simultaneously 

allocating resources has been attempted with the help of many methods and 

algorithms, classically with Network Analysis. 

With time, contemporary techniques - most of them evolving in the area of 

Operations Research, are being employed to take the RCPSP towards its optimal 

solution. A study of literature in thls area reveals that application of heuristic 

techniques and design of metaheuristics is an area of intensive research. Because of 

its nature that defies finalization of algorithm, ever-new methodologies are 

constantly and consistently evolving to take the RCPSP towards optimal. In the 

next section, we give the general formulation of RCPSP in short. 
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2.3 General Formulation of the Problem 

The RCPSP may be described as follows 

#1 Given 

a) a set of activities that must be executed, 

b) a set of resources and their capacity lmtations to be utilized, 

c) a set of quality objectives by which one may judge performances 

#2 All w i h n  the non-negotiable boundary of a (set of) constraints 

#3 What would be the best way of assigning the resources to the activities 

withn the constrain h t a t i o n s  so as to acheve the best objective(s) 

of completion of the Project. 

As adapted from Crawford (1996) the RCPSP can be depicted: 

Given : a set of tasks, T, 

a set of resources, R, 

a capacity function, C : R +N, 

a duration function, D : T +N, 

a utilization function, U : T x R + N, 

a partial order, P on T, and 

a deadline, d. 

Objective : 

To acheve W n  2 D, by assignment of start times S : T +N 

Subject to the constraints : 

a) Precedence constraints : If tl precedes t2 in the partial order 

P, then S(t1) + D(t1) 5 S(t2) 

b) Resource constraints : For any time x, let running(x) = 

{t 1 S(t) I x < S(t) + D(t)). Then for 
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all times s ,  and all r E R, 

XI punnznsfx)U (t,r) 5 C(r). 

c) Temporal Constraints : For all tasks t : S(t) 2 0, and 

S(t) + D(t) < d. 

For arriving at the optimal solution, the problem may be tackled from a number of 

angles, such as 

a) Formation of task sequence, 

b) Allocation of scarce resource to the tasks, 

c) Delimitation of time-windows of the tasks, 

d) Defining and designing of alternative mode of esecution, etc 

Whle the problem may be viewed from different angles, but all of them share 

certain common definitions for characteristics of the Project. At the end of th~s  

Chapter we define some of these for ready reference as well as adapted for our 

study. 
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2.4 Definition of Terminoloe 

For our definitions, let us use a Bridge under construction as a continuous 

example. 

i) Project An organized endeavor aimed at accomplishng a specific non- 

routine objective. T h s  objective may be systematically broken 

down to a number of activities or tasks. 

For example, construction of a bridge is a project. 

ii) Activities or 

Tasks 

A (module of) work or the units of Work Breakdown Structures 

(VVBS). In other words, the exact set of work that needs to be 

carried out, whch in totality is the 'Project'. These activities have 

to be completed for the Project to qualify as completed. 

For example, the bridge construction consists of survey, purchase 

of construction materials, k i n g  of engineers and workers, soil 

testing, approach road, span, etc. 

iii) Resources These are the input(s) that would go into the activities. The 

Project may have a number of dfferent resources. An activity may 

require more than one resource. Also, a resource may be used be 

more than one activity. Resources may be either reusable or 

consumable. They are usually constrained in their avdabhty - 

both from time as well as quantity perspectives. 

I For example, bridge construction mould require trucks, cement 

mixing units, cement, bitumen, paint, steel, workers, water, etc. 

iv) Capacity 

I For example, the Project Manager may have 200 workers, but at 

The maximum amount of availability of a specific resource. Or the 

Limitations 
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any point of time not more than fifty may be allotted for approach 

road works. 

The degree to whch a certain specific resource is used - either at a 

certain point of time during execution of the project, or at 

completion of the project. 

For example, the bridge used up five hundred eighty tonnes of 

steel, out of six hundred tonnes ordered. 

vi) Partial 

- Order 

The order in whch the Tasks are set out to be executed. These are 

generally dependent of some precedence / succession 

requirements. 

For example, soil testing has to be carried out before span 

erection. Order for cement may be placed simultaneously with that 

for steel, irrespective of sequence. 

vii) Duration The time required to carryout a certain activity. In most of the 

Projects this is done by estimations based on previous experiences 

of similar activities. There are two dstinct durations - Activity 

Duration, in whch the specific activity is to be completed; and 

Project Duration, in whch all activities of the project has to be 

completed. 

For esample, the bridge has to be ready for traffic two years from 

now, when the Commonwealth Games would take place nearby. 

The Project Manager estimates that soil testing would take a 

minimum of eight days, but in worst case, shouldn't take longer 

than fifteen days. 

viii) Deadline The time or date set specifically for completion of a certain 

activity. On the macro front, Project deadline is the specified time 
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by whch the Project has to be completed, ready for delivery. 

For example, the sixth prestressed span unit has to be placed on 

15th of September. 

For example, the maximum allowable offset between spans can be 

three mdheters .  

ix) Quality 

Objectives 

A (set of) benchmark(s) by whlch the quality of execution of a 

specified (set 09 activity(ies) is measured. 

completed. As is expected, the various factors of task execution 

are not f ree- to-d,  and they have to be reined in by certain rules. 

x) Constraints 

For example, the Project Manager has resource h t a t i o n s ,  

These are the h t a t i o n s  under whlch the Project has to be 

Figure 2.1 : A Project Network, 

(Activity on Node) 

xi) Precedence Constraints 

to be taken up is defined as Precedence 

Constraint. There may be more than one 

'pmeding' task whch requires completion 

before a specific task is commenced. On 

the other hand, completion of a certain 

task can pave way for more than one 

'succeeding' tasks. The thud option is 

'parallel' task, whch may. be carried out 

irrespective of (some other) task(s). 

The specific sequence by whch tasks has 

In the Project depicted in Figure 2.1, task 

6 can start only when task 3 and 4 are 

completed. Again, completion of task 1 allows the Manager to take 
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xii) Resource 

Constraints 

xiii) Temporal 

Constraints 

xiv) Assigning 

the 

Resources 

xv) Completion 

of the 

Project 

up any of task 3 and 4, but not 5 unless t?sk 2 is also complete. 

The constraint of availabhty of project inputs is termed as 

Resource Constraints. It is worth mentioning here that 'time' is 

usually not included in the 'resource' list, even though apparently it 

is one such. Due to its critical nature, time is treated as a separate 

dmension on whch other constraints are scaled. 

The constraint imposed on and by time in completion of activities 

of a Project is termed as its Temporal Constraint. 

The (set ot) rule(s) by whch resource(s) are scheduled and 

allocated to the tasks of the Project. 

The state of the Project in whlch all tasks are completed (or 

terminated in case of Project abandonment). 

Apart from these common ones, we provide a Glossary of a few specifically 

coined definitions for our algorithm at Appendlx I. 
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Chapter lliree 

Related Work 

In t h i ~  Chapter we present a literature sumy $related work in the direction o f  

evolving ojbtimixation techniques and their uage j r  RCPSP, and a 

comparative anabsis o f  candidate approaches. 

Infomation has been gathered by refer'ng to pubhshed literature, both under 

cqyright as well as public. I t  is understood that considering vastness oj the 

work done) this Chapter is a sample representation. But we apire to provide as 

fair a representation as possible on the dzfJeent fronts. 

We conclude the Chapter with a comparative discussion $ three approaches to 

bring w into a convergence $the problem at hand and the chosen approach 

from amongst the candidates. 



3.1 Introduction 

The RCPSP is a well-known NP-hard problem, whch means that there is no 

known optimal solution method in polynomial time. As with any other NP-hard 

problem it is obvious that solution approaches for dus problem would evolve with. 

time, and diversity of the approaches would be hgh. 

I<olisch and Hartmann (2006) (quoting Mobring, e t  aL(2003)) very nicely puts ths  in 

perspective, "Due to the fact that the RCPSP 'is one of the most intractable 

problems in Operations Research' it has 'become a popular playground for the 

latest optimization techniques, includng virtually all local search paradgrns" 

Before the use of computers for project scheduling, Project Manager carried out 

scheduling manually. T h s  was both time consuming as well as erroneous. But 

more importantly, there was no guarantee of optimal solutions. T h s  was truer if 

the number of activities and their precedence constraints were more. 

Variation of the Resource Constrained Scheduling Problem has been suggested 

and their solution worked out for implementation and evaluation. There are two 

basic approaches for approaching th s  problem - exact and heuristic, as deliberated 

at length by Wall (1996). 

3.2 Solution Avvroaches 

3.2.1 Exact methods 

T h s  approach attempts to identify the exact optimal solution. Classical approaches 

that tend to pinpoint exact solutions falls under dus category. In the earlier days . , 
when the number of activities and / or constraints was small, the exact methods 

provided crisp solutions. But with the rise in complexity of the problem these 

methods were impractical. 
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One of the pioneering work done in the field of scheduling was by Balas(1971) 

who laid down a structural approach that involves a generalization of both the 

dsjunctive graph method in job shop scheduling and the order theoretic methods 

for precedence constrained scheduling. 

Lawler et a1 (1982) provided a conceptual summary of works and developments 

done in the area of deterministic scheduling and scheduling. 

Bartush (1988) and co-workers carried a number of pioneering and referential 

works in the area of algorithm generation for scheduling problems in construction 

industry. They have contributed literature for integrating computers with project 

scheduling. 

A treatment for solving complexities of scheduling project networks with 

precedence constraints was carried out by Lenstra et a1 (1978). 

3.2.1.1 Network Based Approaches 

Programme Evaluation and Review Technique (PERT), its predecessor GERT 

and Critical Path Method (CPM) are the prominent methods of getting to possible 

solutions, and are based on Networks (or more precisely, activity networks). 

First introduced in the 1950s during the development of the Polaris missile system, 

PERT is a forerunner of formal project scheduling. Thls method introduced the 

characterization and representation criteria set for precedence requirements and 

time estimation. However in its truest sense, PERT is not a scheduling methodper 

se, but rather a method for organizing information and defining constraints. But 

the importance of activity representation as chalked out by PERT technique (or 

some derivative thereof) is a prerequisite for many solution methods. The 

prominent characteristic of PERT is its abhty to absorb probabilistic estimates of 

task duration. 

U 
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CPM provides the resource-unconstrained schedule for a set of precedence- 

constrained activities with deterministic durations. However it assumes availability 

of infinite quantum on resources, and provides the shortest possible makespan. 

Although CPM is useful for obtaining a rough idea of the dfficulty of executing a 

plan, it does not consider temporal or resource constraints. 

During the mid '80s, algorithmic work on project networks scheduling and 

resource allocation were carried out by Mohring R.H. as well as Radermacher FJ., 

both jointly as well as independently. 

Blazewicz (1983) made an attempt of introducing dynamic variations into the CPM 

approach. To bring the Critical Path Method closer to reality, stochastic variations 

were constructed by Slowinsh and Weglarz(1989), Neuman(l990), and others. 

Both attempts tried to incorporate the probabhstic estimates of task duration, 

thereby creating a hybrid approach by bridging PERT and CPM. 

3.2.1.2 Operations Research Approaches 

Linear Programming (LP) and Integer Programming (IP) are two classical methods 

for formulating many scheduling problems. But to attempt a solution, these 

methods require a significant level of simplification, whlch gets gradually 

impractical with the increase in number of tasks and constraints. Patterson(l984) 

compared a number of optimal solution methods for project scheduling using 

exact approaches. 

Exact methods depend on characteristics of the objective function and specific 

constraint formulations. Many of the constraints commonly found in real 

scheduling problems do not auger well to tradtional Operations Research or 

Mathematical Programming techniques (Davis (1985)). This restricts theit usage in 

real life situations. In addtion, the linear programming formulations typically do 

not scale well, so they can be used only for specific instances or small problems. 
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Whde Mathematical Programming techniques represents a well-understood and 

established problem-solving method, many of the formulations and algorithms for 

solving such programs optimally can be extremely opaque, and the formulations 

themselves can be dfficult to specify, mod$, and understand. In addtion, the 

amount of computational effort required to solve an RCSP can fluctuate widely 

across a set of su-dar RCSPs, meaning that the same approach may incur 

reasonable computational effort for one problem and exponential effort for 

another. Finally, the introduction of real-world dynamic complications into large- 

scale RCSPs greatly increases the difficulty involved in their solution. 

A slightly modfied approach would be to develop an optimal schedule 

incrementally by first constructing for small number of tasks, and then extendng 

that schedule by addlng tasks until all tasks are scheduled. T h s  is the method of 

Dynamic Programming. Hindelang and Muth (1979) offered a complete dynamic 

programming formulation for the problem in Decision CPM context. Later on, De 

Reyck et a1 (1998) however have shown that the Hindelang-Muth procedure is 

flawed, and they attempted to provide the necessary corrections. (Adapted from 

Demeulemeester, (2002)) 

IU1amooshl(l999) attempted cross-breedng Dynamic Programming with the 

Dynamic Priority Scheduling Method (DPSM). DPSM dlvides a project into 

phases (cycles), the length of whch depends on the duration of the project and the 

period of clock cycle selected. The scheduling process starts by allocating 

resources to the first phase/cycle using a variety of policies, then the best schedule 

is selected based on an objective function. The process continues id all the 

activities are scheduled. In DPSM the interaction bettveen phases is ignored whle 

the decisions of each phase or cycle d affect all the remaining phases. He opined 

that it might be possible to improve the quality of a schedule and reduce the 

duration of a project by optimizing the overall project schedule. 
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WMe such Dynamic Programming approaches can significantly reduce 

computational effort, the chef concern is with the large amount of space required 

to store the intermehate results calculated by these algorithms. 

3.2.1.3 Enumerative Approaches 

In another approach for finhng solution to the Project Scheduling problem, a 

decision tree mechanism based on the precedence relation in the project plan is 

used. Ths branch-and-bound methodology was extensively researched by 

Sprecher and Dres1(1995), who noted that the enumerative methods can solve the 

problem with many different objectives. Enumerative methods are pseudo- 

heuristic in the sense that the sizes of the trees are typically bounded using 

heuristics. If allowed to propagate to its full size, the trees would branch into 

numerous, mostly dlogical branches. Generally, a pruning algorithm is uahzed for 

trimming new branches. 

Variations of branch and bound solution methods were proposed much earlier for 

lfferent applications. Stinson et a1 (1978) in their pioneering branch and bound 

approach, generated a tree by scheduling activities starting with the first task then 

ad lng  a node to the tree for each task that could be scheduled based upon 

precedence and resource constraints Bounds based on partial schedules were used 

to prune the search tree. 

Enumerative methods cannot solve large problems; the tree gets simply too big 

(Wall, 1996). Being quite effective in provihng viable solution set, Patterson et a1 

(1978), IColisch et a1 (1992), Demeulemeester and Herroelen (1992), Sprecher et a1 

(1995) amongst others, have refined the pruning algorithms for t h s  method. 

Although significant progress has been made in the pruning techniques, branch 

and bound methods are still require special heuristics to accommodate variations 

in resource constraint formulations. 
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More often than not, a 'good' solution is good enough for the Project rather than 

seehng that elusive 'exact' solution. To overcome the basic constraint of size and 

complexity, researchers tried to seek out alternative methodologies and techniques. 

The practical uthty of scheduling is succinctly put by Zwikael, et a1 (2006). It often 

happens that a Project Manager who negotiated for resources in hls project cannot 

afford to use a delay concept in scheduling. With tlvs in mind, a new branch and 

bound based non-delay scheduling algorithm for a set of RCPSP was tested in 

their work that demonstrated its abhty to find (near) optimal solutions very fast. 

Deblaere, et a1 (2007) developed a procedures for allocating resources to the 

activities of a given baseline schedule in order to maximize its stability in the 

presence of activity duration variability. They proposed three integer 

programming-based heuristics and one constructive procedure for resource 

allocation. 

3.2.2 Near-Optimal Heuristic Approaches 

The degree of elusiveness of optimal solution for a RCPSP increases .exponentially 

with the increase in the number of nodes. It gets worse with increase in number of 

constraints. And finally, when one realizes that in real world, stabhty of a project 

is a fool's expectation (we r$r to the I'rologtle), the situation goes totally haywire if 

work could be allowed to proceed only after findng the 'exact' solution. Thus 

evolved the concept of seehng for a 'good' solution, by possible juxtaposition of 

tradtional approach with heuristic approaches. 

The potential of research and application of heuristics for PMIS was aptly 

demonstrated when five commercial Project Management packages was evaluated 

for performance by Mellentien and Trautmann(2001) using accepted benchmark 

test data-set and procedures. The quality of resultant schedules decreased 

sipficantly when the packages dealt with Projects of realistic scenario - 

comprising a large number of activities and scarce resources. The results indlcate 

Chapter 3 # Page 34 
Pormulatlon of an Opbrnizcd Algorithm for Rcsource Schcduhng and Allocation in Projects : A Gcnc~irA$ori~hms Approach 



that none of the methods utilized in the packages could offer competition with (at 

that time contemporary) heuristic algorithms from the literature, even though all 

the packages utdtzed fast heuristics. On the other hand, the makespan deviation 

from solutions that can be achleved with modern RCPS methods would justify 

implementation of addtional algorithms (into the packages). 

As a prelude to the area, we gve a generic description of heuristics - 

A heuristic is a method to help to solve apmblem, c.ommon4 informal. I t  ispartilwlarb usedfor 

a method that often rapid4 leads to a solution that is usual4 reasonabb close to the bestpossible 

answer. Heuristics are "mles of thumb': educated guesses, intuitive judgments or simp4 common 

sense. 

In more precise terms, heuristics stand for strategies using readib accessible, though loose4 

applicable, ilzformation to controlproblem-solving in human beings and machines. 

In computer sciem.e, a heunytic is a technique designed to solve a problem that ignores whether the 

solution can be proven to be correct, but which usual'produces agood solution or solves a simpler 

problem that contains or intersects with the solution ofthe more complex problem. 

Heurtsti~'~ are intended to gain computational pe forman~z or conceptual simplici~, potential4 at 

the cost ofaccuray orprecision. 

Extracted from htt,b:l/ en. wikibedia. o w l  wiki l  Hetrrirlic, accessed on 8'h June, 2008 

Here the last sentence bears hgh  significance, which hnts  at the popularity and 

usefulness of heuristics. People in the industry need to solve large-scale project 

scheduling problems quickly. In most applications, a near-optimal solution is 

preferable if hunting for the optimal solution consumes a high amount of time and 

computational resources. Heuristic methods typically require less time and/or 

space than exact methods. The exact solution to a project-scheduling problem 

requires extensive computational time wh~ch does not meet the Project Manager's 

Chapter 3 # Page 35 
I'ormulation of an Ophmizcd Algorithm for llcsource Scheduling and Allocation In Projccts : A Genc!ic AlQori~1mr.r Approach 



need for interactive use of software. Thls justifies use of heuristics, and the 

bouquet of research for its application to solve the RCPSP 

Heuristics may be deterministic - they end up with the same result every time; or 

stochastic - each run provides a dfferent result. Heuristic in scheduling are 

rechristened as scheduling mles. The definitions of these rules are often quite 

complex, and most are tailored for a specific type of problem with a very specific 

set of constraints and assumptions. In most of recent applications (withln the last 

ten years or so), hybrid algorithm that employs multiple heuristics is being 

experimented with, and is throwing up 'good' results. Recognition of the problems 

of trying to achieve optimal solutions led to a shift in focus towards other methods 

for h & n g  near-optimal, or approximate solutions to RCPSPs at less computational 

expense, in terms of both time and space. 

Traltionally, for RCPSP, heuristic methods typically follow three steps i) 

Planning, ii) Sequencing, and iii) Scheduling. Some methods use heuristics to 

search the combinatorial space of permutations in task sequences, others use 

heuristics to determine feasible time/task/resource assignments during the 

schedule generation. Still others use heuristics to combine sequencing and 

scheduling. Precedence constraints typically dominate the search in the sequencer, 

whereas resource constraints dominate in the scheduler. 

Bhaskar et a1 (2004) lscuss  uncertainty at lfferent phases in project scheduling 

and then provides a method for handling uncertainty at the planning phase. The 

work proposes a priority rule for a new schedule generation scheme of RCPSP, 

whch takes care of the criticality of the activities and the randomness involved in 

the current and future activities. 

Xu et a1 (2007) augments priority rule heuristics by creating rollout procedures and 

proves their effectiveness using sampling to generate a set of schedules through 

probabilistic techniques and select the best schedule from this sample. 
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In the PhD thesis, Hildum (1994) noticed that w i h n  the context of the RCPSP a 

heuristic schedules those tasks having the earliest possible starting times, or the 

least available amount of slack time. An heuristic approach to solving an RCPSP 

operates by applying a heuristic (or collection of heuristics) to the set of unsolved 

subproblems comprising the RCPSP to determine the relative priority of each 

indvidual subproblem. In t h s  sense, the heuristic serves as a rating function for 

determining the order in whlch activities are to be scheduled. The standard 

heuristic approach first orders the set of activities and then proceeds by assigning 

resources to each activity in sequence. In some cases, near optimal results can be 

acheved, and the approach incurs less computational expense. It is therefore more 

applicable to practical real-world problems having extremely large search spaces. A 

single-attn'btlte heuristic is dstingwshable from a multzple-attnaute heuristic in terms of 

the degree of analysis undertaken. Examples of single-attribute scheduling 

heuristics are the MINEST and MINLFT rules, whch assign priority to those 

activities having the earliest starting tirnes(EST), and latest finishing times&FT), 

respectively. 

As aptly observed in the same work, main drawback of single heuristics is the lack 

of analysis performed. A narrow evaluation of the state of problem solving can 

allow important developments to go unnoticed and permit serious problems to 

develop in the future. In such situations, multiple-attribute heuristic performs a 

more extensive analysis of the current state of problem solving, and can therefore 

act to prevent such problems from developing. A survey of scheduhng rules, 

ranging from simple priority rules to more complex heuristics, has been presented 

by Panwalkar and Iskander(l977). Upper bounds (assuming a minimizing 

objective) on the quality of a number of approximate heuristic solutions to 

RCPSPs are presented in Garey et a1 (1978). 

A great deal of work has been hec t ed  towards the development of heuristics that 

produce near-optimal solutions, and the determination of the best heuristics to use 
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in certain circumstances. For the most part, however, with the exception of a few 

specific cases, it has not proven possible to establish a definitive classification for 

matching a particular class of RCSP with a particular scheduling heuristic. 

3.2.2.1 Single Heuristic Approaches 

A comparison of standard heuristics for solving RCSPs was undertaken by Davis 

and Patterson (197'5) where eight single heuristics were applied to a set of single- 

project, multiple-resource problems. The results, compared to an early work by 

Davis and Heidorn (1971), inhcated that minimum time and minimum slack based 

heuristics performed the best in terms of achieving the optimal schedule, or 

coming the closest in percentage to the optimal. The results also showed, however, 

that the performance of all heuristics suffered when resource were tightly 

constrained. Whde t l s  study was applied to small problems, it suggests that 

heuristics that consider various hnds of time, and the degree of resource usage, 

generally produce better (near-optimal) results. 

An attempt to classitjr scheduling problems for the purpose of identitjring 

appropriate scheduling heuristics for their solution is described by I(urtulus and 

Davis (1 982). Two metrics were defined for characterizing scheduling problems 

accordng to average resource load and average resource utdzation. A collection of 

heuristics was tested on a set of sample problems, and the results suggested that 

two of the tested heuristics were generally the best performers. The first,heuristic 

favored the shortest activity in the shortest project (job), whlle the second favored 

the activity with the hlghest combined required resource load (obtained by 

multiplying the activity resource requirement by the activity processing duration) 

and cumulative project resource load (obtained by summing the required resource 

loads for all activities already scheduled w i h n  the same project). 

Lawrence and Morton (1993) describe a single-heuristic approach that attempts to 

minimize weighted tardiness through the use of a combination of project-related, 
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activity-related, and resource-related metrics. They defined a general priority 

heuristic that weighs the tradeoff between the cost of delaying an acuvity on a 

resource, and the benefit obtained by using that period of delay to assign the 

resource to some other activity. The results of t h s  approach were compared 

against the results from twenty standard scheduling heuristics on a set of some 

14,400 indvidual RCPSPs that ranged in size from 125 to 250 activities dstributed 

among five projects, and varied in tardness penalty, activity duration, and resource 

requirements. 

3.2.2.2 Multiple Heuristic Approaches 

Multiple heuristics for solving scheduling problems represents an extension to the 

application of standard single heuristic approach. The goal is to exploit the 

strengths of a number of dfferent scheduling heuristics in an attempt to increase 

the chances of producing near-optimal (and occasionally optimal) schedules 

according to the particular scheduling objective. 

A multiple heuristic approach can be seen as a formal application of the idea of 

consulting multiple scheduling perspectives. One heuristic might evaluate urgency 

based on a simple analysis of the time bound constraints on an. Another might 

consider the expected activity duration whlle a thud might consider some 

combination of the two. A scheduler equipped with a variety of such heuristics is 

better able to react to variation in characteristics of search space. 

Boctor (1990) inlcates that inclusion of specific heuristics can result in frequent 

development of near-optimal, and occasionally optimal, schedules. Heuristics 

based on minimum slack (MINSLIC) proved to be the most important of the 

single heuristics included in any combination. MINLFT heuristic, characterissing 

finish time of an activity, proved to be a valuable companion to MINSLIC. Hildum 

(1994) notes that larger combinations of heuristics demonstrated increased abhty 

to produce hlgher quality schedules, suggesting that there is a clear benefit to 
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applying a wide range of scheduling perspectives in the process of determining the 

urgency of each incbvidual activity. 

3.2.3 Artificial Intelligence Approach 

Hildum(1994) grouped artificial intelltgence (AI) approach to scheduling as either 

expert systems or knowledge-based. He emphasized that h s  own method, DSS 

(Dynamic Scheduling System), is basically a multiple attribute, dynamic heuristic 

approach that focuses on the most urgent unsolved problem at any given time. 

Rabelo et a1 (1995) attempted a hybrid approach for real time sequencing and 

scheduling problems. They explored hybridzition of Neural Networks, Genetic 

Algorithm, Simulation and Machne Learning for their study. 

Hartmann and IColisch during early part of the century have made explorative 

stucbes of techniques to incorporate intelltgent techniques for solving the RCPSP. 

3.2.4 Simulated Annealing 

Simulated annealing (SA) replicates the annealing process of metallurgy, in whch a 

metal is strengthened by a process of heating and cooling. Starting with a (set of) 

initial solution, the 'neighborhood' solution (set) is generated by 'energizing' the 

current solution (set). In case the new solution is better, search proceeds towards 

that hec t ion  after accepting it. 

SA may be considered as an extension of a simple greedy procedure, First Fit 

Strategy, whch imme&ately accepts a better neighbor solution, but rejects any 

deterioration (Zbigniew and David 2000). 

Simulated Annealing is a variation of hll-climbing where neighbors with less good 

objective values are sometimes selected to keep the search from getting stuck in 

local optima, observed Smith (2004). 
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Initial experimentation of using SA for scheduling problems was carried out by 

Boctor (1990). T h s  work maintained precedence feasiblltty by restricting the 

neighborhood operator to only precedence feasible task swaps. 

3.2.5 Tabu Search 

Tabu Search (TS) developed by Glover and Greenberg (1989), is essentially a 

steepest descent / mildest ascent method. In other words, it evaluates all solu~ons 

of the neighborhood, and chooses the best - from whch it proceeds further. 

Logical question arises then that what if this search results in a recursive spiral 

between two neighbors. T h s  is avoided by setting up a tabu list (taboo:forbidden, 

'tabu' being a dzferent spelling ofthe same word) of forbidden results in the frrst stage of 

TS. T h s  stage is the preliminary search stage, and proceeds for a specified number of 

search iterations. In the second (intenszjiation) stage of the search, it (a) starts with 

the best solution found so far (~vhch  is always stored throughout the entire 

algorithm), @) clear the tabu list, and (c) proceed as in the first phase for a 

specified number of moves. Finally in the diverszjcatiolz phase, the tabu list is cleared 

again and-set the most frequent moves of the run so far to be the tabu. Then a 

random location is targeted, and again process repeats from the fust phase for a 

specified number of iterations. 

Thus by searchng from a dfferent du-ection, a confirmation is made of the 

specific location where the solution esists. Thls phase holds a magntfying glass to 

promising regions dscovered ttll the spot(s) are all identified, explains Glover and 

Laguna (1997). 

Tabu search has been used extensively by researchers for scheduling algorithms 

and have achieved high quality results, as reported by Pinson, et a1 (1994). 

The potential of TS is yet to be exploited fully. In the words of its progenitor, 

Glover (2007), not only does a great deal remain to be learned about Tabu Search, 
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but it is equally true that very little is yet known about how we ourselves use 

memory in our problem solving. It is worth stressing again that dtscoveries about 

effective uses of memory withn our search methods may provide clues about 

strategies that humans are adept at employing---or may advantageously be taught 

to employ. The potential hnks between the areas of heuristic search and 

psychology are an intriguing concomitant to research now underway and have 

scarcely been examined. Progress in the design of tabu search methods, and the 

successful applications of TS that have occurred so far, provide encouragement 

that such issues are profitable to probe more fully. 

3.2.6 Ant Colony Optimization 

Ant Colony Optimization (ACO) studles artificial systems that take inspiration 

from the behavior of ants when they find and report food back to their mates in 

the ant-colony. They uthze natural chemicals of their body to mark and note 

locations, as well as pass on duection message to other ants. Thus one set of ant 

does the scouting, and others follow h s  path - dependtng on the marks left. In 

case a path is not used for a period of time, the mark evaporates, indtcating 

fruitlessness of search in that duection. 

T h s  adaptation of the Natural World is being used to solve dtscrete optimization 

problems, and IS a fairly new technique. Merkle and Schmeck (2002) report that 

they have acheved good results in project scheduling using h s  algorithm. Their 

proposed algorithm combines the duect (local) and summation (global) 

pheromone evaluation methods, to finally get rid of local minima. Further they 

dtscuss the changng strength of heuristic influence, the changing rate of 

pheromone evaporation over the ant generations. 
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3.2.7 Fuzzy System 

Pan and Yeh (2003) present a Fuzzy Genetic Algorithm (FGA) metaheuristic 

approach that incorporates fuzzy set theory to model the uncertain activity 

duration times for optimizing the RCPSP. Thls study provides the framework of a 

metaheuristic approach for solving RCPSP involving uncertain activity duration 

times modeled by fuzzy numbers. 

3.2.8 Genetic Algorithm 

Genetic Algorithm (GA) is inspired by the process of biological evolution. Most of 

the search methods described above does local search. But GA considers a 

'population' of solutions instead of one. 

A set of Initial Population is generated, and new solutions are produced from 

them by mating two (or more) 'parents' and/or by altering the characteristics of a 

single one. The former procedure is termed as 'crossover', and the later is termed 

as 'mutation'. After producing new solutions, the fittest solutions survive and 

become the next generation, wlde others are deleted. The fitness value measures 

the quality of a solution, usually based on the objective function value of the 

optimization problem (Zbigniew and David (2000) 

Holland (1975) provided the pioneering work in adapting Natural Systems' 

processes for Artificial Systems. He laid the foundations by introducing Genetic 

Algorithms, based on the transfer of genetic information in the natural world from 

the parents to progeny. A slightly detaded dscussion of Genetic Algorithm is 

presented as a full Chapter later in thls work. 
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3.3 Additional Works 

Crawford(l996) approached the RCPSP by a combination of h t e d  discrepancy 

search to arrive at a near final form heuristics for problems of realistic size and 

character. T h s  work was run on a series of problems made avadable by Barry Fox 

of McDonnel Douglas and Mark Ringer of Honeywell, serving as Benchmarx 

Secretary in the AAAI Special Interests Group in Manufacturing and in the AIAA 

Artificial Intelligence Technical Committee respectively. 

To understand the mechanisms of a dynamic system, the use of System Dynamics 

is a good tool. Love et a1 (2001) used System Dynamics to understand change and 

reworks in the construction projects. T h ~ s  powerful tool can be adapted to 

generate scenarios, and synthesize instance sets. 

Project Management was provided with a radcally new methodology - SYDPIM, 

by Rodrigues(l997) whch integrates the use of System Dynamics simulation 

models with the tradtional PERT/CPM network models. 

A related but not exactly the same field of study is process resequencing. Here the 

whole work sequence is altered, without violating rules and precedence, and 

alternative sequences are developed. Then these new sequences are subjected to 

study for identifying a (set of) better possible alternative to the original sequence. 

Attempts to apply Genetic Algorithms to t h s  were initiated out by Altus et a1 

(1996) and Rogers (1996). 

Alvarez-Valdes et a1 (1989) described a heuristic algorithm based on empirical 

analysis for the RCPSP in the late '80s. Neumann and Franck provided structural 

questions and priority-rule methods for the RCPSP with time windows. In a few 

other works, Zirnmermann J combined with Neumann to produce additional 

literature. 

Chapter 3 # Page 44 
I:ormulation of an Optimized Algorithm for Resourcc Scheduling and Allocation in Projccts : A Gent/icAlgorilhm.r Approach 



3.4 Three Candidate Approaches 

I<olisch and Hartmann(2006), in the updated report have given short comparative 

description of application of heuristics and metaheuristics by dfferent researchers 

for the RCPSP. On  their list, most of the work that produced 'good' results are 

metaheuristics. Simdar was the trend in two earlier compilations by I<olisch and 

Padman(1997) and Hartmann and I<olisch(2000). 

The Committee on the Next Decade of Operations Research, CONDOR Report 

(1988), singled out Tabu Search, Simulated Annealing, and Genetic Algorithms as 

'extremely promising' optimization methods for the years to come. The 

foresightedness of h s  report is vindcated by the fact that these three approaches 

are sull being widely used for optimization - albeit with extensive adaptations and 

modfications. The application of the three methods for the RCPSP, along with 

pros and cons for doing so, are given below, as collated from literature of lfferent 

authors. 

3.4.1 Tabu Search 

Dell'Amico and Trobian (1993) and Nowiclu and Smutnicki (1996) have reported 

hgh quality project scheduling results using Tabu Search. 

Thomas and Salh (1998) introduced a Tabu Search method that operates dlrectly 

on schedules. Since the resulting neighbor schedules may be infeasible, they 

employ a repair procedure to turn an infeasible schedule into a feasible one. 

IUein (2000) develops a so-called Reactive Tabu Search method for the RCPSP 

with time-varying resource constraints. It is based on activity list representation 

and serial SGS. The neighborhood is given by swap moves, whch include the 

shfting of predecessors or successors of the swapped activities if the resulting list 

would otherwise not be precedence feasible. 
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Nonobe and Ibarakt (2002) suggest a Tabu Search approach for a generalized 

variant of the RCPSP. Considering only the features that are relevant for the 

standard RCPSP, the heuristic employs the activity list representation, the serial 

SGS, shft  moves, and a specific neighborhood reduction mechanism. 

Artigues et a1 (2003) devised a Tabu Search procedure that essentially, selects 

iteratively an activity whch is first deleted from the schedule and afterwards re- 

inserted with a network flow-based insertion algorithm. 

3.4.1.1 Advantages of Tabu Search 

i) Since it 'knows' where it had been, a Tabu Search can provide faster search 

earlier by avoidlng taboo zones. 

ii) Tabu Search would be very successful in situations where rules for 

acceptance are loose as compared to rules for rejection. Usage for Medical 

dagnos tics falls in thls category. 

3.4.1.2 Disadvantages of Tabu Search 

i) The Tabu list might become extremely large, malilng search withn the list a 

tedous affair 

ii) Because of a growing Tabu list, computational resource might tend to . 
become scarce or even dry up. 

iii) In case of defective control mechanism, there exists a possibility of cyclical 

recursion. 

iv) Tabu Search operates with mutation as its mechanism by producing 

multiple mutants simultaneously. T h s  makes it extremely vulnerable to 

'localization', a factor to be avoided for scheduling problems. 
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3.4.2 Simulated annealing 

As noted by IGrkpatrick et  a1 (1983), Simulated Annealing approaches require a 

schedule representation as well as a neighborhood operator for moving from the 

current solution to a canddate solution. Annealing methods allow jumps to worse 

solutions and thus often avoid local sub-optimal solutions. 

Aarts et a1 (1988) described one of the fust Simulated Annealing approaches to 

scheduling problems. Boctor (1993) reported fairly good performance by a 

simulated annealing approach on the Patterson problems. In thls work, Simulated 

Annealing was used to search the combinatorial space of sequence permutations. 

Given a sequence of tasks generated by the annealer, heuristics were then used to 

create a schedule. Thls method is duectly analogous to the exact branch and 

bound solution, but whereas branch and bound is practically h t e d  by the size of 

the decision tree, kmulated Annealing can be applied to much larger problems. 

Valls et a1 (2004) tested a Simulated Annealing method that focuses on fonvard- 

backward improvement, where a neighbor is constructed by selecting the next 

activity either in the order of the original solution or by biased random sampling. 

3.4.2.1 Advantages of Simulated Annealing 

i) Simulated annealing is a related global optimization technique that waverses 

the search space by testing random mutations on an indvidual solution. A 

mutation that increases fitness is always accepted. T h s  implies that as soon 

as a possible optimal zone is reached, Simulated Annealing can approach 

the peak extremely fast. 

ii) Simulated annealing can be used with a standard Genetic Algorithm by 

starting with a relatively hgh  rate of mutation and decreasing it over time 

along a given schedule. Thls hybridnation has produced good results for 

RCPSP. 
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3.4.2.2 Disadvantages of Simulated Annealing 

i) Simulated Annealing plays the 'blind-man-buff game, to arrive at the 

foothllls. 

ii) Just as Tabu Search, Simulated Annealing also operates by mutation - but 

produces only one mutant. 

iii) Simulated Annealing arrives at a solution by 'strengthening' identified 

results. It is possible that due to dstractions, annealing takes place at a 

wrong, or sub-optimal locality. 

3.4.3 Genetic Algorithms 

Alcaraz and Maroto (2001) developed a Genetic Algorithm based on activity list 

representation and serial SGS. Alcaraz et a1 (2004) extended the same by admng 

two features from the literature. First, they take the additional gene that determines 

the SGS to be used from Hartmann (2002). Second, they employ the forward 

backward improvement of Tormos and Lova (2001). 

Hartmann (2002) proposes a so-called self-adapting Genetic Algorithm that 

extends the activity list representation by addng a gene, whch  determines whether 

the serial or the parallel SGS is to be used for transforming an activity list into a 

schedule. As a prerequisite for the procedure, it is defined how the parallel SGS 

can be used as decodng procedure for activity lists. The choice of the more 

successful SGS is left to the inheritance and survival-of-the fittest mechanisms. 

A Genetic Algorithm based on the activity list representation, the serial SGS, and 

the related order-preserving crossover strategy where the initial population is 

produced by a pure random mechanism was suggested by Hind  et a1 (2002) 

Coelho and Tavares (2003) present a Genetic Algorithm that makes use of the 

activity list representation and the serial SGS. They suggest a new crossover 
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operator for activity lists called late join function crossover that constructs a new 

indtvidual by "adopting the father solution and swapping each adjacent pair that is 

in reverse order in the mother." 

Goncalves and Mendes (2005) use a random key representation and a modtfied 

parallel SGS. The modified parallel SGS determines all activities to be eligible 

whch can be started up to the schedule time plus a delay time. 

Valls et a1 (2003) extend a previous work on the activity list-based Genetic 

Algorithm with forward-backward improvement to what they call a Hybrid 

Genetic Algorithm. They develop a peak crossover operator that uses properties 

of the schedule when recombining activity lists. 

Can et a1 (2004) implement Geneti Algorithm for RCPSP by introducing an 

addtional component in the encodng of Alcaraz and Moroto (2001) to indcate 

the scheduling mode (forward or backward) used to generate the correspondtng 

schedule. 

Godley et a1 (2007) demonstrates two novel crossover approaches for Genetic 

Algorithm when applied to the optimization of time-series problems, with 

particular application to bio-control schedules. It is possible that adaptation of 

such novel improvisation hopefully breed fitter chdd-solution from fit parents. 

Yassine et a1 (2007) proposes a Genetic Algorithm hybridzed with a local search 

strategy, to minimize the overall duration or makespan without violating resource 

constraints or precedence constraints. 

Mohsenin and Ali (2008) designed Genetic Algorithms operators for a new 

solution model of Resource Constrained Project Scheduling Problem with 

heterogeneous resources (operators). The model better resembles real-world 

projects and has more flesibhty than previous models for manpower scheduling. 
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3.4.3.1 Advantages of Genetic Algorithm: 

i) A Genetic Algorithms can quickly scan a vast solution apace. 

ii) Bad solutions found during processing do not affect the end solution 

negatively as they are simply dscarded. 

iii) Since it works away from problem-related characteristics, the Genetic 

Algorithm doesn't have to know any rules of the problem - it works by its 

own internal rules. T h s  nature is very useful for comples or loosely defined 

problems. 

3.4.3.2 Disadvantages of Genetic Algorithm: 

i) Whle the greatest advantage of Genetic Algorithm is the fact that they find 

a solution through evolution, t h s  is also the biggest &sadvantage. 

Evolution is inductive; in nature life does not evolve towards a good 

solution - it evolves away from bad circumstances. Thls can cause a species 

to evolve into an evolutionary dead end. 

ii) Genetic Algorithm is 'arrogant', in the sense that it operates on its own 

without tahng cognizance of problem complexities. T h s  calls for tighter 

reining in of the metaheuristic. 

iii) Unless properly formulated, Genetic Algorithm risk findng a sub-optimal 

solution, and the 'evaluator' may not know of it unless there is a (set of) 

comparative result. 

iv) There is a fair possibhty that solution evolved at a later generation might 

have been discarded in an earlier generation, thereby laying waste 

processing effort. 
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3.5 Choice of Ap~roach 

Amongst these three methods, we select the Genetic Algorithm approach as an 

application to optimize the RCPS Problem. We propose to exploit advantages of 

Genetic Algorithm, as its features are more inclined for application in optimizing 

the RCPSP. 

But the same would not be implemented in its classical format. For implementing 

Genetic Algorithm to optimize RCPSP, Icolisch and Hartrnann(2006) observed 

that pure Genetic Algorithm are hardly developed any more. Instead, the basic 

Genetic Algorithm scheme is modfied or extended by integrating addtional 

features, such as path relinlung, forward-backward improvement, self-adapting 

mechanisms, non-standard crossover, or even other metaheuristics. 

3.6 Test Data Set and Benchmark Results 

Icolisch and Sprecher (1996) provided a set of test instances for the evaluation of 

solution procedures for the RCPSP, whch are now internationally recognized and 

accepted test data-set. T h s  is stored and avdable at the PSPLIB 'library', and is 

accessible to researchers for downloadng and evaluating newer algorithms. 

PSPLIB is constantly updated and augmented by the RCPSP researcher fraternity. 

The present work would use information from / of ths,source for test and 

evaluation of the proposed algorithm, and possibly contribute to it. 

The same library also 'archives' optimal and current-best results. Compilations of 

results produced by thls library are used for reporting performance of algorithms. 

Majority of RCPSP literature refer to thls library for the test instances, and then 

updated results for comparison. 
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chapter Four 

The Approach: Genetic Algorithm 

In this Chapter we anabxe m$or components o f  Genetic Algorithm for their 

functional intricacier. The inzmation provided is a collation from various 

accepted and public literature. Certain portion o f  inzmation 2s r$erred to the 

authors / researchers who had eitherproposed orpropounded them. 

(Genenc definrtzons and explanatzons are adopted from avarlable (Iteralure and webntes) 



4.1 Introduction 

Genetic Algorithms are general-purpose search algorithms based upon the 

principles of evolution observed in nature. These algorithms combine selection, 

crossover, and mutation operators with the goal of findng the best solution to a 

problem by searchng for 'the optimal solution (set)' until a specified termination 

criterion is met. 

The solution to a problem is called a chromosome. A chromosome is made up of 

a collection of genes whch are simply the parameters to be optimized. A Genetic 

Algorithm creates an initial population (a collection of chromosomes), evaluates 

thls population, then evolves the population through multiple generations (using 

the genetic operators discussed above) in the search for a good solution for the 

problem at hand. 

4.1.1 History and Evolution 

Genetic Algorithms was developed by J H Holland (with h s  colleagues and 

students) at the University of Michgan. The primary theme of research on Genetic 

Algorithms has been robustness - the balance between efficiency and efficacy 

necessary for survival in many dfferent environments. Features of the biological 

world that aids efficient balance like self-repair, self-pdance, and reproduction 

are being (attempted to be) replicated in artificial systems. A careful study of the 

intricacies and secrets of the biologcal world, and possible usage of these into 

artificial systems, led to the primary monograph on the topic, 'Adaptation in Natural 

and ArtIf;czal Qstems' by Holland(1975). Subsequent users of Genetic Algorithms 

have time and again established that the beauty of Genetic Algorithms lies not 

only in simply replicating Nature, but its abhty to provide robust search in 

complex search spaces. 
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4.1.2 Application Area 

Having established itself as a valid approach to problems requiring efficient and 

effective search, Genetic Algorithms are findmg widespread application in 

bioinformatics, computer science, engneering, economics, chemistry, 

manufacturing, mathematics, physics and other fields. 

Two very convincing reasons are behnd the widespread applications of Genetic 

Algorithms. These are computationally (relatively) simple, yet powerful in their 

search for improvement. A more powerful reason is that Genetic Algorithms are 

not fundamentally h t e d  by restricuve assumptions about the search space. 

Genetic Algorithms are hghly effective in any situation where many inputs 

(variables) interact to produce a large number of possible outputs (solutions). 

Some example situations are: 

Optimization such as data fitting, clustering, trend spotting, path 

findlng, ordering. 

Management: Distribution, scheduling, project management, courier 

routing, container paclung, task assignment, University time-tables. 

Financial: Portfolio balancing, budgeting, forecasting, investment 

analysis and payment scheduling. 

Engineering: Structural design (eg beam sizes), electrical design (eg 

circuit boards), mechanical design (eg optimize weight, size & cost), 

process control, network design (eg computer networks). 

R & D : Curve and surface fitting, neural nehvork connection matrices, 

function optirnisation, fuzzy logic, population modeling, molecular 

modeling and drug design. 
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4.1.3 Mechanism 

Goldberg(l989) described Genetic Algorithms as search algorithms based on the 

mechanics of natural selection and natural genetics. These are based on 

evolutionary process as observed in Nature. They follow the dctum of 'Survivalof 

the Fittest' among string structures with a structured yet randomized information 

exchange to form a search algorithm with some of the innovative flair of human 

search. In every (next) generation, a new set of artificial strings is created using bits 

and pieces of the fittest of the old (parent) generation. An occasional new part is 

tried for good measures - for introducing &versification. 

When applied to problems whose search space is very large and where the ratio of 

the number of feasible solutions to the number of infeasible solutions is low, care 

must be taken to properly define the representation, operators, and objective 

function, otherwise the Genetic Algorithms wdl perform no better than a random 

* search. 

Pupong et a1 (2008) proposed a Genetic Algorithm based optimization tool that 

minimizes total costs associated w i h n  supply chain logistics. Their proposed 

model had with chromosome initialization procedure, crossover and mutation 

operations defined in a way that always guarantee feasible solutions to be 

embedded. A half fractional factorial design was carried out to investigate the 

influence of alternative crossover and mutation operators by varying GA 

parameters. The analysis of experimental results suggested that the quality of 

solutions obtained is sensitive to the ways in whtch the genetic parameters and 

operators are set. 

Many Genetic Algorithms appear to be more robust than they actually are only 

because they are applied to relatively easy problems. Gruninger(l996) showed that 

the genetic operators must effectively balance exploration and esploitation so that 

the Genetic Algorithms will be able to both avoid local minirna/maxima in global 
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search and find small improvements in local search. In addtion, small changes to 

the algorithm and genetic operators had a significant impact on the algorithms 

performance. 

After a population has evolved, all indviduals typically end up with the same 

genetic composition - the indviduals have converged to the same structure. If the 

optimum has not been found, then the convergence is, by definition, premature. 

In most cases, further improvement is unlikely once the population has converged. 

By maintaining diversity in the population, the algorithms have a better chance of 

exploring the search space and avoid a common problem of Genetic Algorithms - 

'premature convergence'. The flow of Genetic Algorithms process is illustrated in 

Figure 4.1. 

Figure 4.1: Process of Genetic Algorithm 

Initial 
Population 
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4.2 T v ~ e s  of Genetic Al~orithms 

Genetic Algorithms operate independently of the problems to whlch they are 

applied. Thls makes application domain of Genetic Algorithms very dynamic, 

flexible and flesible. The flexibhty of Genetic Algorithms lies in the fact that there 

is no guarantee a Genetic Algorithm wdl converge to an optimal solution, although 

experience suggests that a properly parameterized algorithm performs quite well. 

Parameters involved in a Genetic Algorithms generally include: population size, 

number of generations to simulate, mating selection method, &versification or 

mutation rate, and the reproduction strategy. The genetic operators are heuristics, 

but rather than operating in the space defined by the problem itself (the solution- 

space or phenotype-space), genetic operators typically operate in the space defined 

by the actual representation of a solution (the representation-space or genotype- 

space) (Wall(1996)). 

Because of its adaptive and flexible characteristics, Genetic Algorithms are 

constantly evolving and are being exotically named. But the primary mechanism 

and process remains the same. By generic definitions, Wall(1996) have classified 

Genetic Algorithms into three types 

a) The Simple Genetic Algorithms : One of the more common and 

'primitive' Genetic Algorithm implementations. 

b) The Steady-State Genetic Algorithms : Made popular by the 

GENITOR program, and 

c) The Struggle Genetic Algorithms : A ktnd of speciating Genetic 

Algorithm developed by Gruninger (1996). 
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4.2.1 Simple Genetic Algorithm (Non-Overlapping Populations) 

The Simple Genetic Algorithm uses non-overlapping populations. In each 

generation, the entire population is replaced with new indviduals. Typically the 

best or the 'elite' (set of) incltvidual is carried over from one generation to the next 

so that the algorithm does not inadvertently forget the best that it found. T h s  is 

referred to as 'elitism'. Maintaining the best indvidual also causes the algorithm to 

converge more quickly; in many selection algorithms, the best indvidual is more 

likely to be selected for mating. 

4.2 Steady-State Genetic Algorithm (Overlapping Populations) 

The Steady-State Genetic Algorithm uses overlapping populations. In each 

generation, the newly generated indviduals replace a portion of the population. At 

one extreme, only one or two incltviduals may be replaced each generation (close 

to 100% overlap). At the other extreme, the steady-state algorithm becomes a 

simple Genetic Algorithm when the entire population is replaced (0% overlap). 

Since the algorithm only replaces a portion of the population of each generation, 

the best indviduals are more likely to be selected and the population quickly 

converges to a single indwidual. As a result, the Steady-State Genetic Algorithm 

often converges prematurely to a suboptimal solution. 

4.2.3 Struggle Genetic Algorithm 

In Struggle Genetic Algorithm rather than replacing the worst indvidual, a new 

indvidual replaces the indvidual most simdar to it, but only if the new indvidual 

has a score better than that of the one to whch it is most similar. T h s  requires the 

definition of a measure of slrmlarity (often referred to as a dstance function). The 

sm-darity measure indcates how dfferent two indviduals are, either in terms of 

their actual structure (the genotype) or of their characteristics in the problem-space 

(the phenotype). 
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4.2.4 Specially devised Genetic Algorithms 

Apart from the three classical Genetic Algorithms described above, researchers 

have proposed many variations of the technique. OLGA, IGA, NSGA-11, etc are 

some of these. 

In the fitness of an individual changes over 

time, as it is exposed to more examples. The key idea in creating such a Fitness 

Function is to support newly created indrviduals so that they are not replaced 

before they have seen a reasonable number of examples (and thus have some 

estimate of their true fitness) as described by Davison (1998). 

Interactive Genetic Algorithm (IGA) uses human evaluation where it is hard or 

impossible to design a computational Fitness Function, for example, evolving 

images, music, various artistic designs and forms to fit a user's aesthetic 

preferences. These algorithms belong to a more general category of Interactive 

evolutionary computation. 

NSGA-I1 or Non-dominated Sorting Genetic Algorithm-I1 (and its previous 

version, NSGA) proposed by Deb et a1 (2002) has low computational 

requirements. It is an elitist approach with parameter-less nichng, and has simple 

constraint-handling strategy. 

Other variants exists, viz. Multi-0 bjective Gene tic Algorithm (MOGA), 

Neighborhood Cultivation Genetic Algorithm (NCGA), Vector Evaluated Genetic 

Algorithm (VEGA), etc., and the list is ever growing. Keeping basic framework of 

the technique the same, researchers work on dfferent components and 

parameters. Dependrng on specific modification and/or application, the Genetic 

Algorithm is named appropriately. 

Next we proceed to dscuss the features and characteristics of Genetic Algorithm. 
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4.3 Features of Genetic Al~orithms 

The 'next' generation of the Natural world carries with it characteristics of the 

'parent' generation. T h s  transfer of characteristics is provided via parental efforts. 

Such characteristics are embedded in packets called 'chromosomes'. The parental 

'genes' provide the survival probabdtty to the offspring. Or  in other words, the 

'fitness for survival' of the offspring is inherited from such 'binary interaction' of 

the parents. Depenhng upon the degree of fitness, the offspring either survive or 

gets annihlated. Those that survive now assume the role of 'parents' for producing 

their offspring i.e. generates the 'next' generation. 

But once in a whde, changes occurs in (one or more of) the offspring to 

'genetically mo&fyY the inherited characteristics. Such 'mutation' occurs 

independent of parental efforts. Thls spora&c change introduces a novelty factor 

into the offspring generation, and previously unforeseen impacts might be 

&splayed in subsequent generations. T h s  change in genetic characteristics on 

singular entity all by itself may (paradoxically) be considered a 'unary ~nteraction'. 

Another unary interaction may be possible if an 'alien', who was not generated 

from the imme&ate parents, infiltrates the offspring set. It may either be self- 

generated, or migrate from another parent set, or travel down from a previous 

generation, or a combination of these. Such an 'immigrant' would also provlde a 

change in the expected characteristics of the subsequent generations. 

The unary operators provide Qversification to a population. In Nature, thls takes 

place mostly for facilitating adaptation to changes in the environment. However in 

Genetic Algorithms t h s  technique is u d z e d  for spreading out of the search 

locality withn the search domain. It has been found that such a (forced) 

&versification is an extremely effective tool for avoi&ng local masirna and thereby 

eva&ng premature convergence. Diversity is important in genetic algorithms 

because crossing over a homogeneous population does not yield new solutions. 
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The members of a certain generation who fails to live up to the expectations or 

survival requirements are gradually screened out of the population. Therefore only 

those who are found 'fit' WLU 'survive' and proceed to produce the 'next' 

generation. From the period when life first appeared on h s  planet, h s  has been 

the only procedure that the best have qualifi'd to sustain their presence. Thls 

vinhcates the robustness of the 'Survival Of The Fittest' model as was propounded 

by Darwin. 

Researchers, for developing the Genetic Algorithms, have successfully adapted h s  

methodology of 'survival of the fittest'. The features of adaptation in Natural 

selection have been stuhed in minute details for adoption into Artificial systems, 

and these are termed as Genetic Operators. Even after decades of research, h s  is 

sull an ongoing process with numerous possibhties for advancement of the 

genetic operators. 

4.3.1 Chromosome Re~resentations 

In 1866, Mendel recognized that in Nature the complete (character) information 

for each inhvidual lies in pair-wise 'alleles'. The genetic information that 

determines the properties, appearance and shape of an indvidual is stored in 

'chromosomes' (David 2002). 

A chromosome describes a string of a certain length where all the genetic 

information of an individual is stored. Although nature often uses more than one 

chromosomes (e.g. X- and Y- chromosomes in Human), most Genetic Algorithms 

uses only one chromosome for encohng the genotypic information. Each 

chromosome consists of many alleles. An allele is the smallest information unit in 

a chromosome. A gene is a region of a chromosome that must be interpreted 

together, and whch is responsible for a phenotypic property (David 2002). Figure 

4.2 describes representation of a chromosome, as generically used for Genetic 

Algorithms. 
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It is essential that a stindard mechanism be agreed upon at the very outset for 

chromosome representation. A typical representation of the chromosome is as an 

array of bits. Arrays of other types and structures can be used in essentially the 

same way. Experimentation of representation by real values are also very much in 

vogue. Structures may be single-drmensional or multi-dunensional array. Tree- 

structures have also been experimented with. 

Figure 4.2 : Representation of a Chromosome 

The alleles may be binary-coded or value-coded, dependng on the nature of 

application of the proposed Genetic Algorithms. In case of value-coded 

representations, we may encode the chromosome duectly with integers or real 

number values, or even some permutations. Multi-dunensional matrix as well as 

tree-structure representations is also worked with. Experiments with either pure 

representation or hybrids throws up further vistas of research. In a recent work, 

Pupong, et a1 (2008) experimented with multi-matrix real-coded Generic 

Algorithm (MRGA). 

The main property that makes these genetic representations convenient is that 

their parts are easily aligned due to their fixed size, whch facdttates simple 

crossover operation. Variable length representations may also be used, but 

crossover implementation would be more complex. 
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4.3.2 Initial Po~ulation 

The initial population for a Genetic Algorithm is a set of solutions to the 

optimization problem. Just as an initial starting point dctates the quality of a 

gradent-based non-linear optimization algorithm, the initial population can affect 

Genetic Algorithms solution convergence. Some characteristics of any population 

are objective function value, feasibility of the solution, and level of infeasibhty for 

any infeasible solutions. There are a variety of approaches to generating initial 

populations. 

A common (often default) method of population generation is random generation. 

Occasionally, the initial solutions may be "seeded" in areas where optimal 

solutions are likely to be found. Hdl(1999) proposed that initial populations for 

Genetic Algorithm applications be randomly generated based on problem 

knowledge. He devised a Monte Carlo based simple heuristic for randomly 

generating good initial populations for genetic algorithm applications to two- 

dmensional knapsack problems. 

4.3.3 Selection Operator 

Selection (a 'tnger' vide our categokxation) chooses a chromosome from the current 

generation's population for inclusion in the (process of creating the) next 

generation's population. Before malung it into the next generation's population, 

selected chromosomes may undergo crossover and / or mutation (dependng 

upon the probabhty of crossover and mutation) in whlch case the offspring 

chromosome(s) are actually the ones that make it into the next generation's 

population. During each successive generation, (a proportion of) parents in current 

population are 'selected' to breed a new generation. Indvidual solutions are 

selected through a fitness-based process, where fitter solutions (as measured by a 

Fitness Function) are typically more likely to be selected. Certain selection 

methods rate the fitness of each solution and preferentially select the best 
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solutions. Other methods rate only a random sample of the population, as h s  

process may be very time-consuming. 

Most 'selection functions' are stochastic and designed so that frequent selection of 

'stronger' strings are favoured and only a small proportion of less fit, or 'weak' 

strings are selected. T h s  helps keep the diversity of the population large, 

preventing premature convergence on poor solutions. We describe a few generic 

Selection methodologies here. 

4.3.3.1 Fitness Pro~ortionate Selection 

Fitness Proportionate Selection, also known as Roulette-Wheel selection, is a 

selection operator in whch the chance of a chromosome getting selected is 

proportional to its fitness (or rank). This is where the actual uthzation of the 

concept of survival of the fittest comes into play. In fitness proportionate selection 

the Fitness Function is used to associate a probabhty of selection with each 

indvidual chromosome, as a function of the population size. If f(i) is the fitness of 

indvidual i in the population, its probabhty of being selected p(i) is 

p(i) = f(i)/Surnmationf(j), for j from 1 to N , 

where N is the population size. 

The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in 

whch each c a d d a t e  solution represents a pocket on the wheel; the size of the 

pockets are proportionate to the probabhty of selection of the solution. Selecting 

N chromosomes from the population is equivalent to playing N games on the 

roulette wheel, as each canddate is drawn independently. 

Whlle canddate solutions with a higher fitness w d  be less likely to be e h n a t e d ,  

there is still a chance that they may be. With fitness proportionate selection there is 

a chance some weaker solutions may survive the selection process; h s  is an 
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advantage, as though a solution may be weak, it may include some component that 

could prove useful following the recombination process. 

A mohfied variation of h s  method is the Russian Roulette Selection, where the 

parent population keeps dmnishlng with each selection. 

4.3.3.2 Tournament selection 

In Tournament Selection, a "tournament" is run among a few strings (or 

individuals) chosen at random from the population, and selects the winner (the 

one with the best fitness) for crossover. Selection pressure can be easily adjusted 

by changing the tournament size. Tournament selection operator uses roulette 

selection N times to produce a tournament subset of chromosomes. The best 

string in t h~s  subset is then chosen as the selected chromosome. T h s  method of 

selection applies addition selective pressure over plain roulette selection. 

The chosen indvidual can be removed from the population that the selection 1s 

made from if desired, otherwise individuals can be selected more than once for the 

next generation. In the later option, we would have strings (or individuals) that 

have multiple copies or 'clones' withln the population. Tournament selection is 

efficient to code, works on parallel archtectures and allows the selection pressure 

to be easily adjusted. 

4.3.3.3 Other selection methods 

In addtion to the ones mentioned above, researchers are trying out variations as 

well as novel selection methods for specific purposes, and have come up with 

different end results. A few of such methods are mentioned hereunder : 
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Top Percent Selection : A selection operator whch randomly selects a 

chromosome from the top N percent of the population as specified by the user. 

Best Selection : A selection operator whch selects the best 

chromosome (as determined by fitness). If there are two or more chromosomes 

with the same best fitness, one of them is chosen randomly. 

Random Selection : A selection operator that randomly selects a 

chromosome from the population. 

Stochastic universal sampling: These have less stochastic noise, or are fast, easy 

to implement and have a constant selection pressure as explored by Blickle (1996). 

T h s  is only a partial list, as user specific Selection operators are being devised 

constantly fy  the Genetic Algorithm research fraternity. 

4.3.4 Offspring Generation Operator 

In Genetic Algorithms these are the most significant operators. The 'parent(s)' in 

one way or the other are operated upon and are modfied to produce new 

solution(s), or 'offspring'. Such operation may involve two parents for binary '(or 

'sexual') reproduction, or just one parent for unary (or 'asexual') reproduction. 

\ 

4.3.4.1 Binary Reproduction Operator : Crossover 

In Genetic Algorithms, 'crossover' is a genetic operator used to vary the 

programming of a chromosome or chromosomes from one generation to the nest. 

It is analogous to reproduction and biological crossover, upon whch Genetic 

Algorithms are based, and is inspired by the role of reproduction in the evolution 

of living thngs. Genetic Algorithms attempts to combine elements of esisting 

solutions in order to create a new solution, with some of the features of each 

parent. The elements of existing solutions are combined in a crossover operation - 

adapted from the crossover of DNA strands that occurs in reproduction of 
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biological organisms. Arguably, crossover (or X-over, as is sometimes denoted as) 

is the most important of genetic operators. 

Many crossover techniques exist for organisms whch use chfferent data structures 

to store themselves. The simplest way to do that is to (randomly) select a crossover 

point, copy everydung before dus point from the first parent, and then copy 

everythng after the crossover point from the other parent. The string thus 

generated is the 'chdd' or the 'offspring', and is now a c a d d a t e  for populating the 

'next generation'. There are other ways to make crossovers, and can be quite 

complicated. It depends mainly on the encochng of the chromosomes, and nature 

of application of the Genetic Algorithms. Specific crossover model made for a 

specific problem can improve performance of the Genetic Algorithms. For use in 

their problem of maximising the efficiency of bio-control application uthsing 

genetic algorithms, Godley et al(2007) described two specific crossover approaches 

- CalEB (Calculated Expanding Bin) and TinSSel (Targeted Intervention with 

Stochastic Selection). CalEB and TInSSel both use the number of interventions 

present in the parents to calculate the number required in the chddren, with CalEB 

uuttsing a "binning" approach to select the genetic material from the parents, 

whereas TInSSel contains an element of stochastic selection. 

A poorly designed combination becomes a sort of mutation. Falkenauer(l998) 

noted that crossover means not only to use recombination, but that the 

recombination is indeed beneficial. There are several ways of testing whether a 

crossover technique performs correctly. One of them was proposed by 

Jones(1995), and is based on a idea : instead of mating two parents selected among 

the best in the population, generate one of the parents in random. If the crossover 

is really useful, this way of mating should lead to a significantly worse performance 

than the usual way. This would be because mating with a random parent amounts 

to performing a mutation instead of a crossover. We describe a few generic forms 

of crossover techniques here. 
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4.3.4.1.1 One Point Crossover 

A crossover operator that randomly selects a crossover point w i h n  a 

chromosome then interchanges the two parent chromosomes at this point to 

produce two new offspring. 

Consider Figure 4.3(a), where parents have been selected for crossover, and the 

arrow indcates the randomly chosen crossover point. 
I 

Figure 4.3 (a) : Parents ready for One Point Crossover 

After interchanging the parent chromosomes at the crossover point, the offspring 

produced are depicted in Figure 4.3(b). 

Figure 4.3 (b) : Offspring of One Point Crossover 

4.3.4.1.2 Two Point Crossover 

A crossover operator that randomly selects two crossover points w i h n  a 

chromosome then interchanges the two parent chromosomes between these 

points to produce two new offspring. 
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Consider the parents in Figure 4.4(a), which have been selected for crossover. The 

arrow inhcate the randomly chosen crossover points. 

'r 'r Figure 4.4 (a) : Parents ready for Two Point Crossover 

After interchanging the parent chromosomes between the crossover points, the 

offspring are produced as given in Figure 4.4@) 

Figure 4.4 (b) : Offspring of Two Point Crossover 

4.3.4.1.3 Uniform Crossover 

A crossover operator that decides (with some probability) whch parent will 

contribute each of the gene values in the offspring chromosomes. Thls allows the 

parent chromosomes to be mixed at the gene level rather than the segment level 

(as with one and two point crossover). Figure 4.5(a) the &splays parents that have 

been selected for crossover: 

Parent 1 
Parent 2 

Figure 4.5 (a) : Parents ready for Uniform Crossover 

If the probability is 0.5, approsimately half of the genes in the offspring will come 

from parent 1 and the other half will come from parent 2. The probability of 

whch unit to be exchanged may be determined using some function, or in 

random. Below is a possible set of offspring after uniform crossover: 
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Offspring 1 11 
offspring 2 @ 1 0 ?@ 1 @J& I##' 0 

Figure 4.5 (b) : Offspring of Uniform Crossover 

4.3.4.1.4 Arithmetic Crossover 

T h s  is a crossover technique where the contents of the parents are not exchanged. 

Gene (or allele) values of the offspring are created by mating characteristics of the 

second parent to that of the first parent, using predetermined mating function. A 

simple mating function that linearly combines two parent chromosome vectors to 

produce two new offspring may be accordng to the following equations (or its 

modfied form): 

Offspring1 = a * Parentl + (1- a) * Parent2 

Offspring2 = (1 - a) * Parentl + a * Parent2 

where a is a (random) weighting factor, chosen before each crossover operation. 

Figure 4.6 depicts the selected parents (each consisting of 4 float genes) 

Parentl 1 0.3 1 1.4 1 0.2 1 7.4 1 
Parent21 0.5 1 4.5 1 0.1 1 5.6 1 

Figure 4.6 (a) : Parents ready for Arithmetic Crossover 

By using the above function with a = 0.7, arithmetic crossover would produce 

offspring as given in Figure 4.6(b): 

Offspring 1 [ 0.36 1 2.33 1 0.17 1 6.86 ] 

Offspring 2 ( 0.402 1 2.981 ( 0.149 1 6.8421 

Figure 4.6 (b) : Offspring of Arithmetic Crossover 
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T h s  crossover allows a parent to retain positional integrity of the segments (genes 

or alleles) but at the same time be affected by correspondng units of the other 

selected parent. Thus the offspring are heavily biased towards the characteristics of 

their 'immedate' parent. 

4.3.4.1.5 Heuristic Crossover 

A crossover operator that uses the fitness values of the two parent chromosomes 

to determine the drrection of the search. The offspring may be created accordng 

to the following relationshp (or its modfied form): 

Offspringl = BestParent + r * (BestParent - WorstParent) 

Offspring2 = BestParent 

where r is a random number between 0 and 1. 

It is possible that Offspringl will not be feasible. T h s  can happen if 'r' is chosen 

such that one or more of its genes fall outside of the allowable upper or lower 

bounds. For h s  reason, heuristic crossover has a user settable parameter 'n' for 

the number of times to try and find an 'r' that results in a feasible chromosome. If 

a feasible chromosome is not produced after 'n' tries, the WorstParent is returned 

as Offspringl . 

4.3.4.1.6 Cut and Splice Crossover 

The Cut and Splice crossover results in a change in length of the offspring strings. 

The reason for h s  dfference is that each parent string has a separate choice of 

crossover point. Consider the following parents, each with a dfferent crossover 

point determined by predefined function. 
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Figure 4.7 (a) : Parents ready for Cut and Splice Crossover 

After crossove~, the two offspring d be of Afferent lengths, as depicted below 

Offspring 1 1 + 1 + ( + 1 + 1 + 1 x 1 x 1 

Figure 4.7 (b) : Offspring of Cut and Splice Crossover 

4.3.4.1.7 Half Uniform Crossover 

In the Half Uniform crossover scheme (HUX), exactly half of the nonrnatchlng 

bits are swapped. Thus f ~ s t  the ~ a m & n ~  &stance (the number of mffering bits) 

is calculated. Thls number is &vided by two. The resulting number is how many of 

the bits that do not match between the two parents wdl be swapped. 

4.3.4.1.8 Crossover for Ordered Chromosomes 

Dependmg on how the chromosome represents the solution, a l r e c t  swap may 

not be possible. One such case is when the chromosome is an ordered list, such as 

an ordered list the cities to be travelled for the traveling salesman problem. A 

crossover point is selected on the parents. Since the chromosome is an ordered 

list, a l r e c t  swap would introduce duplicates and remove necessary canhdates 

from the list. Instead, the chromosome up to the crossover point is retained for 

each parent. The information after the crossover point is ordered as it is ordered in 
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the other parent. For example, if two parents are ABCDEFGHI and 

IGAHFDBEC and our crossover point is after the fourth character, then the 

resulting chldren would be ABCDIGHFE and IGAHBCDEF. 

Other crossover techniques include the Precedence-Set crossover (PSX?, Edge 

Recombination crossover (Em, Partially Mapped crossover (PMX). In the 

Precedence-Set crossover (PSX) technique, the precedence integrity of one parent 

is maintained with respect to the positional preference of alleles in the other 

parent. Detded description of PSX is carried out in a subsequent chapter. 

4.3.4.2 Unarv Reproduction Operators 

Apart from binary (sexual) reproduction, where two parents contribute directly, 

offspring are produced by unary (or asexual) reproduction mechanism. More often 

than not, these operators are used for introducing dversity into a (possibly 

homogenous) population or generation. 

4.3.4.2.1 Mutation 

Mutation is a genetic operator that alters one ore more gene values in a 

chromosome from its initial state. Thls can result in entirely new solution in the 

generation. With these new gene values, the Genetic Algorithm may be able to 

arrive at better solution than was previously possible. The purpose of mutation in 

Genetic Algorithms is to allow the algorithm to avoid local optima by preventing 

the population of chromosomes from becoming too similar to each other, thus 

slowing or even stopping evolution. T h s  reasoning also explains the fact that most 

GA systems avoid taking only the fittest of the population in generating the next 

but rather a random (or semi-random) selection with a bias toward those that are 

fitter. 
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Mutation occurs during evolution accordng to a user-definable mutation 

probability. The classic example of a mutation operator involves a probabhty that 

an arbitrary bit in a binary genetic sequence will be changed from its original state. 

T h s  probability is set fairly low (0.01 is a good first choice). If it is set too hlgh, 

the search will turn into a primitive random search. The nest few paragraphs 

describe a few common mutation techniques in Genetic Algorithms. 

Flip Bit : A mutation operator that simply inverts the value of the chosen 

gene (0 goes to 1 and 1 goes to 0). In essence, 'kp'  for binary representation is 

ABS(represented value - I) .  

Technically, it is also possible to use t h s  method with other number methods, if 

the allele has upper and lower bounds. 

For example, in case of positive single dlgit integer representation, fhp can be a 

mutation with the transformation (9 - represented value) or in more generic form, 

ABS(represented value - 9). 

Boundary : A mutation operator that replaces the value of the chosen gene 

with either the upper or lower bound for that gene (chosen randomly). 

Non-Uniform : A mutation operator that increases the probability that the 

amount of the mutation d be close to 0 as the generation number increases. T h s  

mutation operator keeps the population from stagnating in the early stages of the 

evolution then allows the Genetic Algorithm to fine tune the solution in the later 

stages of evolution. 

Uniform : A mutation operator that replaces the value of the chosen gene 

with a uniform random value selected between the user-specified upper and lower 

bounds for that gene. 
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Gaussian : A mutation operator that adds a unit Gaussian dstributed random 

value to the chosen gene. The new gene value is clipped if it falls outside of the 

user-specified lower or upper bounds for that gene. 

Except for the flip method, other mutation operators can only be used for integer 

and float representation. 

Selection is clearly an important genetic operator, but -opinion is dvided over the 

importance of crossover versus mutation. Some argue that crossover is the most 

important, whde mutation is only necessary to ensure that potential solutions are 

not lost. Others argue that crossover in a largely uniform population only serves to 

propagate innovations orignally found by mutation, and in a non-uniform 

population crossover is nearly always equivalent to a very large mutation (whch is 

likely to be catastrophic). There are many references in Fogel (2006) that support 

the importance of mutation-based search, but across all problems the No Free 

Lunch theorem, propounded by Wolpert and Macready(1997), holds. 

Sastry and Goldberg (2007) compared mutation with crossover head to head on 

exponentially scaled problems. They summarized that for deterministic , 

exponentially scaled additively separable problems, mutation is more efficient than . 

crossover. On  the other hand, when noise (randomness induced multiple sub- 

optimal solution) dominates, crossover is more efficient than mutation. Thls is the 

premise on whlch our work have relied more on crossover.leaving aside the 

mutation operator. Nevertheless, for dversity we test other unary operators. 

Leaving thls debate to further research, another unary operator with its variants is 

dscussed here. 
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Garey et a1 (1979) proposed an immigration operator, whch for certain type of 

functions, allows increased exploration whde maintaining nearly the same level of 

exploitation for the given population size. Immigration, in one form or the other, 

is another unary technique of introducing chversity into the population. 

Immigrants can be introduced in more than one ways. 

Alien Immigrant : As the name suggests, these are solutions for which the 

(irnmechate) parent generation is not responsible. 'Aliens' may infiltrate the present 

generation depending on overcoming a hgh  barrier, i.e. the probabhty of 

immigration should be very low. 

Dormant-Forefather Immigrant : During the process of Genetic Algorithm, a 

number of solutions are dscarded along the way when the population moves into 

subsequent generations. If the search space is very large, there is high probabhty 

that these solutions are lost forever. The relatively hgher fitness value of 'false' 

solutions would brush aside a 'true' solution with a lower fitness value. 

The present work proposes to implement these two immigrants for introducing 

dversity in the population. 

Frantz's Immigrant 

Goldberg (1989) mentioned about a partial complement operator, as proposed by 

Frantz. The partial complement operator (which Frantz called migration operator) 

complemented roughly a thlrd of the bits of selected inchviduals in the population. 

These inchviduals were called immigrants (we have added Frantx's name to it, as above) 

and were permitted to enter into the subsequent generation. T h s  operator was 

intended to maintain Iversity, but Frantz found out that the dversity was 

purchased at too high a cost - decreased performance. 
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4.3.5 Fitness Function: 

The 'Fitness Function' measures the quality of the represented solution, and is 

defined over the genetic representation. It is always problem dependent. T h s  is a 

specific objective function that quantifies the optirnality of a solution in a Genetic 

Algorithms so that that particular solution may be ranked against all the other 

solutions. Optimal solution, or at least solutions whch are more optimal, are 

allowed to breed and mix their datasets by any of several techniques, producing a 

new generation that will (hopefully) be even better. 

An ideal Fitness Function correlates closely with the algorithm's goal, and yet has 

to be computed quickly. Speed of execution is very important, as a typical Genetic 

Algorithm must be multiple iterated in order to produce a usable result for a non- 

trivial problem. Definition of the Fitness Function is not straightforward in many 

cases and often is performed iteratively if the fittest solutions produced by GA are 

not what is desired. In some cases, it is very hard or impossible to come up even 

with a guess of what Fitness Function definition might be. In some problems, it is 

hard or even impossible to define the fitness expression; in these cases, Interactive 

Genetic Algorithms are suggested. Interactive Genetic Algorithms address t h s  

dfficulty by outsourcing evaluation to external agents (normally humans). 

In a Genetic Algorithm, the probability of reproduction du-ectly depends on the 

fitness of each subject. That way the adaptive pressure of the environment is 

simulated. The implementation and evaluation of the Fitness Function is an 

important factor in the speed and efficiency of the algorithm. 

But due to incorrect adaptauon of the Fitness Function, there arises the possibhty 

of 'polarization' when the population tends to converge towards the genome of a 

very strong solution, but which might be rnisleadng. Another problem gets worse 

with the progress of the Genetic Algorithm. With time (or iterations), the 
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dfferences between fitness are reduced. The best ones then get quite the same 

selection probabhty as the others and the Genetic Algorithm stops progressing. 

In order to palhate these problems, we discuss four scaling methods 

i) Windowing : For each subject, reduce its fitness by the fitness of the 

worse subject. T h s  permits to strengthen the strongest subject and to 

obtain a zero based dstribution. 

ii) Exponential : Thls method, proposed by Ladd(1996), consists in taking 

the square roots of the fitness plus one. T h s  permits to reduce the 

influence of the strongest subjects. 

iii)Linear Transformation : For h s ,  a linear transformation is applied to 

each fitness, i.e. f ' = a*f + b, after ascertaining appropriate values of a and 

b. The strongest subjects are once again reduced. 

iv)Linear Normalization : Fitness are linearized. For example over a 

population of 10 subjects, the first will get 100, the second 90, 80 ... The 

last wdl get 10. Even if the dfferences between the subjects are very strong, 

or weak, the dfference between probabilities of reproduction only depends 

on the ranlung of the subjects. 

To dustrate these methods, let us consider a population of four subjects to check 

the effect of scaling. For each subject, we give the fitness and the correspondng 

selection probabhty, as enumerated on Table 4.1 

Careful observation of the result shows that Windowing e h n a t e s  the weakest 

subject - the probability comes to zero - and stimulates the strongest ones (the best 

one jumps from 50 % to 67 'Yo). Exponential flattens the dstribution. It is very 

useful when a super-subject induces an excessively fast convergence. Linear 

Transformation plays almost the same role than exponential. Linear Normalization 
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is neutral towards the distribution of the fitness and only depends on the ranklng. 

It avoids as well super-subjects as a too homogeneous &stxibution. Apart from 

these, we may attempt to use Logarithmic and/or other composite 

transformations. 

Table 4.1 : Comparison of Scaling Methods 

Subjects 

Initial or Calculated Fitness 

4.3.6 Termination Criteria 

Termination is the criterion by whch the Genetic Algorithm decides whether to 

continue searchng or stop the search. The termination criterion is checked after 

each generation to see if it is time to stop. Generally a single termination criterion 

is used, but multiple criteria combination by Genetic Algorithms is also in vogue. 

A few termination techniques are dscussed here. 

1 

4.3.6.1 Generation Number 

Trans forma tion Methods 

Thls is the most favoured termination criterion. It stops the evolution when the 

user-specified masirnum number of evolutions has been run. T h s  termination 

method is generally active. 

Windowing 

Exponential 

Linear transformation 

Linear normalization - 
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Fitness and the correspondmg selection probabhty 

3 

50/50% 

40/66.7% 

7.14/36.5% 

53.3/44.4% 

40/40Yo 

15/25% 

5.1/26.1% 

33.3/27.8% 

30/30°/o 

10/10% 25/25'/0 15/15O/0 

5/8.30/, 

4.0/20.5% 

20/16.7% . 
20/20% 

O/O% 

3.32/16.9% 

13.3/11.1% 

10/ 1 OO/o 



4.3.6.2 Evolution Budget 

A termination method that stops the evolution when the elapsed evolution time or 

cost exceeds the user-specified maximum. By default, the evolution is not stopped 

untll the evolution of the current generation has completed, but thls behavior can 

be changed so that the evolution can be stopped withln a generation. 

4.3.6.3 Fitness Threshold 

A termination method that stops the evolution when the best fitness in the current 

population becomes less than the user-specified fitness threshold and the objective 

is set to minimize the fitness. Thls termination method also stops the evolution 

when the best fitness in the current population becomes greater than the user- 

specified fitness threshold when the objective is to maximize the fitness. 

4.3.6.4 Fitness Convergence 

A termination method that stops the evolution when the fitness is deemed as 

converged. Two filters of different lengths are used to smooth the best fitness 

across the generations. When the smoothed best fitness from the long filter is less 

than a user-specified percentage away from the smoothed best fitness from the 

short filter, the fitness is deemed as converged and the evolution terminates. 

4.3.6.5 Population Convergence 

A termination method that stops the evolution when the population is deemed as 

converged. The population is deemed as converged when the average fitness 

across the current population is less than a user-specified percentage away from 

the best fitness of the current population. 
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4.3.6.6 Gene Convergence 

A termination method that stops the evolution when a user-specified percentage 

of the genes that make up a chromosome are deemed as converged. A gene is 

deemed as converged when the average value of that gene across all of the 

chromosomes in the current population is less than a user-specified percentage 

away from the maximum gene value across the chromosomes. 

4.3.6.7 Manual Inspection 

Instead of program tiiggered termination, in certain Genetic Algorithms the 

evolution or the process is terminated by manual inspection. T h s  is usually done if 

the Fitness Function for the Genetic Algorithm defies definition or is too complex 

to be devised. For example, evolving images, music, taste of coffee, color set of 

the user interface, various artistic designs and forms to fit a user's aesthetic 

preferences, etc. Interactive Genetic Algorithm is one such application that uses 

human evaluation, and these have been generically termed as Aesthetic Selection. 

4.4 Elitism 

Elitism is the technique where the best solution (or a few best solutions) or 'elite(s) 

is copied to the population in the next generation. The rest are chosen in classical 

way. Elitism can very rapidly increase performance of GA, because it prevents 

losing the best-found solution to date. 

A variation is to e h n a t e  an equal number of the worst solutions, i.e. for each 

''best chromosome" carried over a "worst chromosome" is deleted. 
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4.5 Buildinp Blocks H v ~ o t h e s i s  

The Bddlng Block Hypothesis @BH) proposed by Goldberg(l989) is a 

description of an abstract adaptive mechanism that performs adaptation by 

recombining "buildng blocks", i.e. low order, low defining-length schemata with 

above average fitness. That a Genetic Algorithm performs adaptation by implicitly 

and efficiently implementing th s  abstract adaptive mechanism is the premise of 

the Bulldng Block Hypothesis. 

Comparing his explanation of the Bddlng Block Hypothesis with that of a cldd 

buildng a magnificent fortress out of simple wooden blocks, Goldberg claims that 

the hypothesis is supported by Holland's schema theorem. Goldberg describes the 

abstract adaptive mechanism as short, low order, and hghly fit schemata are 

sampled, recombined, and resampled to form strings of potentially hgher fitness. 

In a way, by worlung with these particular schemata, it reduces the complexity of 

the problem; instead of bulldlng hgh-performance strings by trying every 

conceivable combination, we construct better and better strings from the best 

partial solutions of past samplings. 

For crossover operators whch exchange contiguous sections of the chromosomes 

(hke the PSX operator) the ordering of variables may become important. Despite 

advantages of buildlng blocks, in many situations ignoring butldlng blocks for 

generating favourable solutions have proved to be a better option. T h s  is true for 

two specific reasons 

a) bddlng block acts like sub-sets, thereby reducing number of possible 

combinations, and 

b) there is a possibhty of premature convergence due to biased duection of 

search prompted by the b d d n g  blocks. 
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The B d d n g  Block Hypothesis has been criticized on the grounds that it lacks 

theoretical justification and experimental results have been published that draw its 

veracity into question. Watson and Jansen (2007) contended that crossover in 

Genetic Algorithm can assemble short low-order schemata of above average 

fitness (buildng blocks) to create hgher-order hgher-fitness schemata. But they 

accepted that there has been considerable dfficulty in demonstrating h s  

rigorously and intuitively. Skepticism of the B d d n g  Block Hypothesis has 

previously been expressed on account of the weak theoretical foundations of ths  

hypothesis and the anomalies in the empirical record of the simple Genetic 

Algorithm, notes Burjorjee(2008) in a yet to be published research paper. 

On the theoretical side, for example, Wright (2003) state that the various claims 

about Genetic Algorithm that are tradtionally made under the name of the 

Buddng Block Hypothesis have, to date, no basis in theory and, in some cases, are 

simply incoherent. 

On the experimental side uniform crossover was seen to outperform one-point 

and two-point crossover on many of the Fitness Functions studed by Syswerda 

(1991). Summarizing these results, Fogel(2006) remarks that generally, uniform 

crossover yielded better performance than two-point crossover, whch in turn 

yielded better performance than one-point crossover. 

Syswerda's results contradct the Buillng Block Hypothesis because uniform 

crossover is extremely dsruptive of short schemata whereas one and two-point 

crossover are more likely to conserve short schemata and combine their defining 

bits in offspring produced during recombination. 
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4.6 Knowled~e Domain 

As with all current heuristics and metaheuristics application for scheduling 

problems, it is worth tuning the parameters such as mutation probability, 

recombination probability and population size to find reasonable settings for the 

problem being worked on in h s  work. A very small change in acceptance 

probabkty rate may lead to genetic drift. A recombination rate that is too hgh 

may lead to premature convergence of the Genetic Algorithm. An ~rnmigration 

rate that is too hlgh may lead to loss of characteristics of the Genetic Algorithm. 

There are theoretical but not yet practical upper and lower bounds for these 

parameters that can help guide selection. 

Genetic Algorithms has been used extensively for RCPSP. Bulk of the focus has 

been on the operators for recombination and dversity. But relatively (but. 

sigruficantly) less effort has been spared for the 'triggers', specifically for solution 

selection and termination criteria. 

Thls present work attempts to address the RCPSP by adaptation of robust 

versions of the operators. The work proceeds to experiment with a few design 

models of triggers for expansion of the knowledge domain. In doing so, some 

parameters that affect the Genetic Algorithm would be fine-tuned to the extent 

feasible. 
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Chapter Five 

The Proposed Algorithm 

In this Chapter, we present adaptation o f  dzfferent components o f  Genetic 

Algorithmsfor the proposed algom'thm. Both ppes o f  components are desibed 

- those adaptedfrom literature, and the proposed The Chapterproceeds as per 

flow o f  Genetic Algorithm. 



5.1 Introduction 

Genetic Algorithms by itself have been evolving over time and applications. It by 

itself has been proving the dctum on whch it is based - Suruival ofthe Fittest. 

Researchers have suggested a number of modfications and adaptations. The 

different versions of Genetic Algorithm used presently, and along with their 

components (operators and triggers), are being subjected to modfications and 

evolutions. 

In our work, we shall be using proven and pertinent operators. But as mentioned 

in an earlier Chapter, the triggers are generally a neglected lot since they are 

(apparently) less 'visible' in the Genetic Algorithms. The triggers w d  be designed 

fresh for incorporation in our (proposed) Genetic Algorithm. In short, we shall be 

exploiting the best operators on offer and suggest new triggers as per requirement. 

In h s  Chapter, we dscuss the adaptation of established components and 

suggestions proposed by our work for some of triggers. 

For desigmng a Genetic Algorithm, there are three angles of study 

a) Genetic Algorithm's exploration and exploitation possibdtty, 

b) Convergence (efficiency and effectiveness) and dversity of the 

population, and 

c) Nature of the 'problem' for whlch it is being designed. 

The pertinent information whlch plays vital role in arriving at the solution for the 

RCPSP are a) the tasks (for a feasible sequence), b) the task durations (for 

start/completion time), and c) the resource requirements (for resource allocation). 

Once these are made avdable now it is upto the proposed model how they are 

exploited to arrive at the optimum schedule, i.e. 
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a) feasible sequence without violating the precedence constraints, 

b) with least tardmess w i h n  the time budget, and 

c) optimized allocation of resource(s) to the tasks. 

The solution therefore has to carry with it the sequence of tasks and the start time 

of each task, assuming that the resource requirement is not d u t e d  for any task. At 

every stage of the algorithm it becomes vital that these are not compromised. 

5.2 en cod in^ and remesentation of solution 

Hartrnann(2002) observed that for many optimization problems, Genetic 

Algorithm don't operate du-ectly on the solutions for the problems. Instead, they 

make use of problem specific representations of the solutions. The genetic 

operators mod+ the representation, whch is then transformed into a solution by 

means of a so-called decodng procedure. It is therefore imperative that the 

chromosome representation be done appropriately. 

5.2.1 Basic Representation 

In general, there are mainly two chromosome encodng methods for representing 

the sequence of a set of numbers, as enumerated by Jean (1996): a) Adjacency, and 

b) Path Representation, with their own set of genetic operators. 

a) Adjacency Representation is designed to fachtate the manipulation of 'edges'. 

The crossover operators based on h s  representation generate offspring that 

inherit most of their edges from the parent chromosomes. Adjacency 

representation is not very supportive of classical crossover operators, like one- 

point or two-point crossover. When used' in RCPSP, Adjacency representation 

might create 'illegal' solution (or impossible schedule), whch straightaway removes 

it from option list. 
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b) Path Representation is the representation of a schedule, and is the favoured and 

simplest method for use with RCPSP. The schedule 5-1-7-8-9-4-6-2-3 is 

represented simply as [5 1 7 8 9 4 6 2 31. 

Genetic Algorithm being a very iterative process, the demand on processor time 

(rather than on memory as with some other algorithms) would be hlgh. Therefore 

any operation that taxes the processor would have to be properly justified. 

We proceed by real-value encolng, where the task number by itself would be the 

value of any specified allele. The representation is carried out in two stages as 

described here. 

We chose to define our chromosome as value (integer) coded path representation. 

The basic chromosome for a solution of the project with 'n' tasks where each task 

is designated as T,, for m=l  to n, would be as depicted in Figure 5.1 

Figure 5.1 : Basic Representation of the Chromosome 

For example, the schedule 5-1-7-8-9-4-6-2-3 is represented simply as in Figure 5.2. 

Figure 5.2: Example of a Basic Representation of the Chromosome 
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5.2.2 Final Representation 

In addtion to the sequence, our representation would have two more alleles, 

whch would carry addtional genetic characteristics. 

The frrst addtional allele would be based on its own properties, and carry 

information regarding fitness value or 'own strength' of the solution. It is a 

number generated by combination of two characteristics: a) the sequence of task, 

and b) the duration of the project. In essence, we are generating the fitness value 

as soon as the solution is generated, and allowing it to be carried by the 

clxomosome with itself. We have termed h s  as 'UnoSign' - short for 'Unique 

Number Signature' as h s  is expected to be exclusive for each dstinct solution. 

The second allele would come into existence once the solution becomes part of a 

population. T h s  would reflect number of clones or 'relative strength' of the 

solution. Thls allele is termed as 'Copy', as it would indlcate the number of copies 

of itself avdable for mating. 

Incorporating these two addtional alleles, the actual representation of our solution 

would therefore have (n+2) alleles, as depicted in Figure 5.3. 

Figure 5.3: Final Representation of the Chromosome 

The frrst n positions are input information. The (n+l) and (n+2)th positions are 

calculated information of each indvidual solution. Detded  dscussions of the 

methodologies for producing these two alleles as well as their specific usage are 

discussed elsewhere in t h s  Chapter. 
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5.3 Initial Population 

The initial population is of hgh  significance for a Genetic Algorithm since it 

provides a starting platform for the algorithm. Thls is a set of feasible solutions 

that forms the primitive parent group to generate the frrst of 'next' generation. The 

size of t h s  population is generally kept a relatively low, either as a predetermined 

number or as a (problem generated, program controlled) proportion of possible 

solutions. The former is practiced in most cases as it is easy to control. 

For our actual testing we keep initial population number at 50 (fifty). These d 

also be the population size of every subsequent population. 

The initial solutions are generated by forming feasible solutions that conform to 

the precedence constraints of the project. The precedence constraints are received 

from the Project input information. In addtion to precedence constraints, the 

input would contain information about resource availabhty, resource 

requirement(s) and duration of tasks. 

From the precedence constraints we generate the 'sequence', and get 

unconstrained project duration. Upon imposition of resource constraint 

information by a appropriately selected Schedule Generation Scheme (SGS), we 

get the 'schedule' - the project under constraint - where tarchess comes into 

effect. 

In the present work, we devise a mechanism for chechng the correctness or 

strength using UnoJign and Copy. For h s ,  we combine these hvo calculated data to 

get the 'fitness value' of the solution, which then goes for usage by dfferent 

segments of the Genetic Algorithm. 
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5.4 Fitness Function 

The 'fitness value' of each solution provides the 'own strength' of that solution. 

T h s  wdl decide the fate of the solution whether or not it wdl survive to advance 

into next generation. In the single mode RCPSP, the fitness value normally equals 

the makespan of the project. 

Peteghem and Vanhoucke (2008) observed that a good Fitness Function gives 

appropriate feedback to the Genetic Algorithm. Hartmann (2001) defined Fitness 

Function for a solution as a function of the Random key, error dstance and upper 

bound of the Project's makespan, whlch is given by the sum of the maximal 

durations of the activity. Jozefowska and Zimniak (2004) examined the dfferences 

between a Fitness Function with penalty, and one without. In most of the studes, 

infeasible solution demands a penalty factor - rather than rewardng the algorithm 

for generating feasible solutions at every attempt. 

The present work devises a Fitness Function that rewards each indvidual, and 

respects computation effort of the algorithm. We have developed a simple yet 

effective and efficient algorithm to calculate the fitness value by combining 

quantitative factor with a qualitative aspect based on logcal reasoning. 

The most obvious fitness value for a schedule would be a function of 'tardness' 

level - lower the tardness, hgher the 'strength' of the solution to go into the next 

generation and/or be selected for mating. A schedule that has the least tardness is 

obviously the best solution. 

However when we are operating in a large search space there is an equally obvious 

catch - more than one solution might have the same tardness value. Thls is a 

situation where quantitative decision parameter values are exactly the same, but 

nevertheless we have to select from that subset. In such a circumstances we need 

another measure to resolve the d e m m a  when only one schedule wdl get 

preference. Rather than placing the decision on some other pure quantitative 
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parameter, we introduce a qualitative decision but whch is based on the 'numbers' 

brought in as project information. 

A solution (or sequence) contains parallel tasks within its linear string. Let 

us consider an example. In isolation of other tasks, let us consider three 

tasks - Task A (tizrndation ofplant), and two of its irnrnedate successors, 

Task B (place orderfor machinery) and Task C (send engineersfor training). When 

sequencing, it is immaterial whether the three are placed as A-B-C or A-C- 

B, since in either case it wdl be the same project duration satisfying 

precedence constraints. Whde mahng the project description, it was 

immaterial either that they were placed in the order B written before C. 

However, some judgmental factors had prompted the Project Designer to 

intuitively label the tasks in the order of A, B and C. Accordmg to work 

requirements, B and C can proceed in parallel. But his experience had made 

the designer to position 'orderfor machinery ' before 'send engineersfor training' in 

the Task list. Let h s  be termed as 'design judgment' parameter - whch we 

decided to honour and u d z e  for bulldng the fitness value. In deference to 

that logical reasoning we can believe that, ceterisparibzrs, schedule A-B-C is a 

better option and therefore 'stronger' than schedule A-C-B. 

We proceed to design the Fitness Function as a combination of 'tardiness' and the 

'design judgment' parameter. The former is objective, and has a demonstrable 

quantitative value. The latter is subjective, but we attempt to convert that into an 

objective value. 

The sequence of the schedule is broken up (notionally) into a number of segments 

- each with equal number of tasks. For instance, if the project has 20 tasks, we 

may segregate them into blocks of five tasks, i.e. into four segments. A consistent 

algorithm converts each 'segment' into a 'number'. These numbers are then added 

up to arrive at a total sum, whlch would act as the unique signature of the 
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sequence. In effect, we arrive at a reflection of judgmental preferences towards the 

(preferred) parallel tasks. For our experimentations, thls number has demonstrated 

its abhty to be (empirically) unique for each schedule with a hgh  level of 

compliance. 

For dustrating the technique, consider a project with twelve tasks, labeled 1, 2, . . . 

11, 12, with the unconstrained project duration, 'D,', assumed to be 30 days. We 

take up two (feasible) solutions [#A] 1-2-3-4-5-6-7-8-9-10-1 1-12 and [#B] 1-2-4-5- 

7-8-3-6-11-9-10-12. Only one of these would have to be selected, as equal 

opportunity is not being encouraged. The resource-constrained duration, 'DCJ, of 

the project in both cases is (assumed to be) 35 days - which is the reason for 

&lemma. The tardness measure is 5 days. The proposed algorithm attempts to 

resolve h s  &lemma by tahng cues from the activity sequence. 

We explain the algorithm of the Fitness Function in four stages. 

Stage One 

The sequence is segregated into segments of four tasks (t=4) each. For [#A], we 

get (1-2-3-4), (5-6-7-8) and (9-10-11-12). The 'number' associated with each 

segment of the first sequence is calculated as: 

1 x 103 + 2 x 1 0 2  + 3 x 101 + 4 x 100 = 1234, 

5 X 103 + 6 X 102 + 7 X 101 + 8 X 100 = 5678, and 

9 x 103 + 10 x 102 + 11 x 101 + 12 x 100 = 10122 

S d a r l y ,  for [#B], the segments wdl be (1-2-4-5), (7-8-3-6) and (11-9-10-12). And 

the 'number associated with the segments are : 

1 x 103 + 2 x lo2 + 4 x lo1 + 5 x 100 = 1245, 

7 X 103 + 8 X 102 + 3 X lo1 + 6 X lo0 = 7836, and 
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The sum of the three numbers derived of the three segments for [#A] is 17035. 

Su-ndarly, for sequence [#B], the sum is 21093. 

On comparison, we find that the 'logically' favourable sequence [#A] has a lower 

number associated with it. In our example above, the unbroken sequence [#A] is 

'logtcally favourable' as compared to the sequence that has a broken 

continuation[#B]. (Theoretical and experimental proof for validating (or negating) 

this methodology is kept open for future work.) 

Thls algorithm for generating the 'number' is summarized as : 

N = I N S  OR 

= I Ns * 10 where S goes from (1 to n/g) 

Ns = C [Ir(s,i) * bci-l)] where i goes from (g to 1) 

Here, 

N : the 'number' for the current sequence 

n : number of tasks in the project 

g : segment size 

S : number of segments (= n/g) 

Ns : 'number' for the current segment 

i : the position of a task withln a segment #3 

T(,,i) : the i t h  task of the S t h  segment 

b : the 'base' used for converting (base70 system in otrr case) 
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multiply by 10 to have an addltional l g i t  at the end, whose purpose will 

be lscussed shortly. This operation is kept optional. 

g2 in case the last segment is a fraction of 'g', then the voids are filled up 

with zero(s) and treated as a full segment 

#3 the task at the leftmost position of the segment receives hghest 'i', that 

goes on decreasing for subsequent task. 

. . . Relationship 5.1 

Care is taken to ensure that all such 'number' generated for each indvidual 

sequence is of same length, L, if needed be by a d l n g  zero(s) at the end. In the 

above example, L is six. 

Staee Two fo~tional): 

A mohfication is made to N to overcome the remote ~ossibilitv of two (or more) 

schedules of equal Dc having equal N. The molfication is made in the last dlgit of 

N (kept zero by default) uthzing the algorithm depicted as Relationshp 5.2. In 

case thts stage is not used, h s  last dlgit doesn't exist in the resultant. 

If [N & Dc](S1) = [N & Dc](S2) 

Calculate 'Nc', of each schedule 

Nc, or 'curtailed N' is calculated by deducting 

the 'number' for the last segment from N 

Whde Nc(S1) = Nc(S2) 

Calculate subsequent N, by advancing (one) more 

segment(s) 

When Nc(S1) # Nc(S2) 

Add 1 to the hlgher N #4 
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(i.e. change the last &git of the original N from 

zero to one) 

#4 in case of comparison between more than two schedules, the last digits 

will be 0, 1, 2, and so on 

Stage Two is kept optional, and is to be used if it is felt (or proved) that the remote 

possibhty becomes actual. Mathematical veracity of this possibility is beyond 

scope of the present work. 

Staee Three: 

D, of the current schedule is attached (or concatenated) to the front of the N to 

get the 'complete number'. In our example, if we employ Stage Two, the 'complete 

number' for the first sequence is 35170350 and for the second it is 35210930. We 

term thls 'total number' as "UnoSign", and is the fitness value of a schedule. 

Staee Four: 

Finally "lower is better" is used for comparison between two schedules. Since our 

Genetic Algorithm produces feasible solution at every computational effort, 

therefore the question of fitness for a single indlvidual in isolation is meaningless. 

The degree of fitness when a pair is compared is the relevant information. 

To sum up, our Fitness Function is defined as 

. . . Relationship 5.3 

Each solution carries withln itself thls indlvidual fitness value as one of its genes at 

the (n + l)fh position, where 'n' is the number of tasks. 
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5.5 Elites, or 'Solution Set' 

As mentioned in a previous Chapter, 'elitism' is the technique of skunrning off the 

'best solution(s)' or 'elites'. 

We use this method for retaining five elites, but after retaining the copies of the 

solutions in the population. T h s  set is retained as the 'current best solution set' 

after generating a present population. Upon 'termination' of the Genetic 

Algorithm run, t h s  set is presented to the Project Manager from whch he may 

select the schedule of h s  choice. 

Each solution would be having the least possible tardness - preferably the ideal 

situation of zero tarlness. However each solution dffers in the sequence of tasks. 

The Project Manager then has the liberty of applying h s  judgment and any other 

criteria of selecting the sequence for implementation. 

5.6 Po~ulat ion size 

The population size (we term thls as PopJiye for implementation) of every 

generation, includng the initial population, is kept constant throughout the 

process. During processing withln one generation, PopJi~e number of offspring are 

placed in a 'notional next' population. 

For choice of 'fittest' solutions to allow them into next generation, we obtain a 

pool of double the size of PopJixe - 'parent' set plus 'offspring' set - both of equal 

size. Note that elites are already a subset of 'parent' set. Thereafter PopJiye 

numbers of 'fittest' solutions from the combined set is sent to 'next' generation. 

From the (presently) unfit solution set, 'forefather(s)' are retained (mtlmmtjed) for 

possible inclusion into subsequent generation. And remaining unfit ones are 

dscarded. 
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5.7 Clones 

Withn the current generation, the 'strength' of indvidual solution varies. As is 

with Nature, the 'stronger' indvidual is given hgher number of chances for 

mating. T h s  may be considered analogous to polyandry/polygamy, as well as 

multiple offspring from same mating pair. 

The 'number of chance' is made possible by (notionally) creating 'clones' of the 

parent population members. We have termed th s  indcation of the number of 

clones as 'Copy'. 

By default h s  value is made one or any positive integer, depending on an 

experimental parameter called 'Clone Factor'. Stronger solutions would have a 

hgher 'Copy' value. In the population, every time a parent is 'successfully' selected, 

its Copy value is reduced by one and is eligble for selection till its Copy is not zero. 

We formulate an algorithm for Copy by reworking Alcaraz and Maroto(2001)'s 

adaptation of Remainder Stochastic Sampling Without Replacement, whch they 

employed to reduce stochastic errors associated with Roulette Wheel Selection. 

Cop3 = r + C 

where r = INT 

here j goes from (0 to P) 

Here, 

Copy, is 'Copy' value of ith solution w i h n  current population, and is 
calculated by talung the integer portion of r 

Sw is makespan of 'worst' solution w i h n  current population, 

S is makespan of indvidual solution, 

P is population size, 

C is a 'Clone Factor', a positive integer specified between 1 and 5 
. . . Relationship 5.4 

'Cbjy' is carried with the chromosomes at the (n+2)'h position. 
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5.8 Selection 

Selection is one of the most sipficant operators of Genetic Algorithm. We have 

placed it under the 'triggers' category, as it does not duectly generate offspring. 

W i h n  a population, Selection triggers the choice of a parent for mating. 

Selection has to be meticulously carried out; otherwise the algorithm would 

degrade into a random-search methodology. We have devised a simple 

methodology of selection by assembling together acceptable hgh-quality 

characteristics from dfferent Selection methodologies. 

Quality or strength of a parent in our algorithm is decided by UnoSign value in its 

chromosome, where lower t h s  factor, better is an indvidual. Using UnoSign, we 

sort the parent population. From h s  sorted lot, any parent is selected by random 

ht .  T h s  we mate with another parent whose UnoSign factor is hgher than itself. 

In doing so we select a 'better spouse' for the current parent to mate with. For 

obvious reason, the frrst parent is selected from the (truncated) set of population 

that (notionally) excludes the 'best' feasible inhvidual. 

Prior to selection of either parent, the algorithm has to ascertain that the indvidual 

chosen for possible 'selection' have a positive Copy value. 

We term h s  selection algorithm as 'Better-Spouse Selection' 

Better-Spouse Selection makes sure that a selected parent dehtely mates with a stronger 

mate. 

(To avoid any bias, we refrain from referring the 'Better Spouse' either as Father or as Mother). 
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5.9 Crossover 

Crossover has been considered by many researchers as the most sipficant of 

genetic operators. We make use of a robust crossover techniques suggested for the 

RCPSP - the Precedence Set Crossover (PSX) technique. In h s  crossover genetic 
I 

characteristics from both the parents are carried over to offspring without 

violating precedence constraints - a concbtion of utmost importance whlle 

scheduling a Project. We dscuss the PSX technique as adopted for our algorithm. 

5.9.1 The Precedence-Set Crossover 

The PSX we describe here is an adaptation of the single-point crossover technique 

(let us term it PSX1). With further mocbfication(s), it can be adapted as a two- 

point (PSX2) or multi-point crossover (PSXm). 

PSX allows Offspring1 to inherit relative positions of tasks that belong to a 

(functionally derived) 'set' from Parentl, and rest of the tasks (the tasks whch do 

not appear in the 'set') from Parent2 Offspring2 d inherit relative positions of 

tasks in the set from Parent2, and rest of the tasks from Parentl. 

Given a (random) task j,  the 'set' is created by placing the task j,  its predecessors 

(not necessarily immedate), and its successors (not necessarily immecbate) to the 

initially empty set. We depict a small project as Figure 5.4 

Methodology for generating two 

offspring from a pair of (eligible) 

parents is represented in Figure 5.5. 

The frrst step consists of selecting a 

project task in a random way. In t h s  

example let task 7 be the selected 

task. 

Figure 5.4 : A Project Network 
(Activity on Node) 
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Then, precedence set Rj is constructed, as Q = (1, 2, 5, 7, 8).  We have shaded 

these tasks in the parents. (This is the 'functionally derived' set we mentioned 

earlier) 

Offspringl must inherit positions of 

tasks in Rj with their relative order in 

Parentl's sequence, and rest of the 

tasks, with their relative order in 

Parent2's sequence. For generating 

Offspringl we go through the 

Parent2's sequence, task by task. 

When we find a task, before drawing 

it in Offspringl, we must be sure 

that it preserves relative order of 

shaded tasks in Parentl's sequence 

(if it is a shaded task) or relative 

order of unshaded tasks in Parent2 

(if it is an unshaded task). 

Task selected, j : 7 

Predecessors of j, Pj : {1,2,5) 

Successors of j, Sj : (8) 

The 'set', Rj (0, 1, 2, 5, 7, 8) 

P1 m 3 1 4 0 6 -  I 

P2 -3IGm I 

J 
0 1  1 1 

0 2  m-p.JgTJ I 

Figure 5.5 : The PSXl Mechanism 

The first task in the Parent2's sequence is task 2, whlch is a shaded task, and 

therefore it must preserve relative order of shaded tasks in Parentl's sequence. As 

in Parentl, task 2 appears after taskl, in Offspringl this order must be preserved, 

so frrst we draw task 1 and then task 2. The next task in the Parent2 is task 1, 

whlch has already been drawn in Offspringl. Next, task 4 is not a shaded task, so 

it can duectly be drawn in Offspringl. Task 5 coming after that is a shaded task 

and tasks 1 and 2 must appear before it. As these tasks have already been drawn in 

Offspringl, task 5 can duectly be drawn in Offspringl sequence. 

We follow t h ~ s  procedure until Offspringl's sequence is completed. We can 

observe that in Offspringl, tasks 1, 2, 5, 7 and 8 preserve their relative order in 
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Parentl's sequence, and unshaded tasks - 3, 4 and 6 preserve their relative 

positions in Parent2's sequence. The precedence relations are fulfilled Offspringl. 

To construct Offspring2, the procedure is the same, but now it will inherit 

positions of shaded tasks with their relative order in Parent2's sequence, and rest 

of tasks, with their relative positions in Parentl's sequence, so that Offspring2 is 

also a precedence feasible solution. 

At the end of PSX we have a group of four solutions to choose from. Crossovers 

are carried out ull 

a) offspring are generated equal in number to Population size (or its 

multiple, or some other predetermined number), or 

b) all the parents finish their 'Cop_yy' value - 

whchever is earlier. 

We have kept dus 'offspring limit' to be equal to PopJire . From thls pool of [2 X 

PopSize] solutions we copy off the elites and select PopJixe number of indviduals 

for the 'next' generation. These two pick-ups are made on the basis of fitness, i.e. 

those with lower 'UnoJign'value are picked up. 

5.9.2 Crossover Points 

Having placed the mechanism of PSX, we experiment with thls crossover 

technique on two modes: 

a) Mid-Point crossover, where the two spouse mates at their respective 

mid-point as the crossover point to produce one pair of offspring. T h s  

may be analogous to the 'oneparent - one @air o j  child' policy. 

b) Random-Point crossover, where the 'stronger' spouse mates multiple 

times with the same 'weaker' spouse, on dfferent crossover points to 
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produce (possibly) more than one offspring. Thls may be analogous to 

the 'oneparents, mult$le (number o j  child'. The number of time they mate is 

decided by Copy value of the 'better spouse'. 

5.9.3 Building Blocks 

For producing 'better' offspring, many researchers use the ' b d l n g  blocks' 

mechanism. They provide a faster convergence. 

We restrain our algorithm from using t h s  methodology. Since the search space has 

dramatic variation - depenlng on the test problem - there is a possibility of false 

and premature convergence if builbng blocks are uthzed. 

Moreover, the converse of thls mechanism is favoured for scheduling problems, 

especially if it is a tightly resource constrained situation. BullQng block mechanism 

is favoured if we are dealing at identifying patterns. But in our study area we 

deliberately break down patterns so that sampling is evenly but randomly 

bstributed over the search space. 

5.10 Intrusions 

Genetic Algorithm advocates introduction of (sudden) lversity in a population to 

seek variation in search locality. We shall make use of 'immigration' and 'domant- 

forgather' as two methods of introducing such dversity. 

5.10.1 Immigration 

The 'alien' is a solution freshly generated by the same algorithm as was used to 

generate members of the initial population. T h s  alien would immigrate if entry is 

permitted into the 'current' population. The analogy of this mechanism is trans- 

border movement of population (e.g. people coming into a new counuy for 
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permanent residency). History has ample proof that immigrant population does 

bring in fresh gene pool. But th.ts is a dangerous proposition as there is every 

possibhty of worsening of the situation. The 'alien' has to prove its wortl.llness to 

be allowed the status of an 'immigrant'. T h s  would be possible if two probabhties 

are in their favour 

a) a (very low) probability for generation of the alien, and 

b) a (even lower) probabhty for permission to allow infiltration 

As is evident, vector multiplication of these two probabhties therefore makes the 

occurrence of an alien infiltration a very low possibhty. Nevertheless, thls 

technique would bring in sudden dversity to the population. But if the two 

probabhties are kept hgh, the search gets relegated into a simple fresh generating 

mechanism. 

The first low probabhty decides whether or not to generate the alien. In case of 

favourable probabhty, a new indvidual - the alien - is generated. The alien now 

tries to infiltrate into the current population by identifying its probable position. 

T h s  position is identified as any single indvidual who's UnoSign is lower than 

itself, or the weakest of the inlviduals withln the population. 

But the 'alien' has to overcome yet another low probabhty. In case of favourable 

probabhty again, the alien replaces the identified indvidual of the population. The 

status of the 'alien' is now converted into 'immtgrant' - a fact that has no further 

bearing, as it is considered at par with any other indvidual of the population. 

We are favouring the 'immigrant' method of dversity as it involves relatively less 

computational effort. A sequence depends entirely on precedence constraints. 

Mutation by means of (random) switching or alteration of genes (or alleles) usually 

results in performing a hlgh number of backtracking and precedence checks to 

prove the correctness of a sequence. With lower amount of computational effort 

we generate a perfectly correct sequence, exploiting an already proven algorithm. 
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Many researchers use mutation, but hscard the mutant if it violates constraint(s) - 

thereby laying waste the computational efforts. 

5.10.2 Dormant-Forefather 

We devise and experiment with use of another mechanism - 'domzant$r$ather', for 

introducing dversity. This may be considered as an analogy to the Egyptian Mummy 

theory where the ancient Egyptians mummtJed the bodes of the departed. They 

believed that one day in the future these (strong and important) 'people' would be 

brought back to life into a civilization when science and technology is far 

improved. And they would get a fresh lease of life to perform all normal activities. 

In many cases it is possible that strong genetic material that might otherwise have 

been lost would bring positive dversity to a much later generation, when the 

nearby optima is favourable and is possibly not a premature one. As explained for 

alien immigration, the probabhty factor for dormant-forefather immigration also 

needs to be kept low. 

The concept is shown in Figure 5.6. Here solutions [I], [2], and [3] have htgher 

fitness value, but are convergng prematurely onto sub-optimal area [A] and [C]. 

But solution [4], whtch is in correct alignment with the optimal solution area [B], 

gets dominated by the other three since it is having a lower fitness va lue . ' ~ t  the 

time of survival of the fittest, point [4] gets eliminated. T h s  means that we lose a 

potentially strong parent, but whose time has not yet come. 

However once in a whde a (randomly selected) solution may be temporarily stored, 

and be made a canddate for infiltration attempt in a much later generation. In 

Figure 5.6, as soon as solutions that start c h b i n g  up area [B] are visible in a 

generation, we might gain by reviving solution [4]. This is the concept behind our 

proposed Egyptian Mummy immigrant or Domzant-Forefather immigrant. 
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Figure 5.6 : Concept of the Dormant-Forefather (Egyptian Mummy) 

One (or more) of the indrviduals of a generation who faded in the 'survival of the 

fittest' dctum would be considered for 'mummzJiation'. Thls indrvidual is identified 

from the 'dl-timed and unfit' lot by a (pure or calculated) random function, if a low 

probability for doing so is triggered. If it overcomes that low probability, the 

indrvidual is preserved for possible inclusion in a subsequent generation. The 

remaining 'unfit' indviduals are dscarded as per classical Genetic Algorithm 

norms. We term this mummified indvidual(s) is as 'domantrforefaather'. 

Whlle processing a subsequent generation of our Genetic Algorithm, at the 

juncture when the algorithm try for 'immtgrant' infiltration, another low probabhty 

would trigger the possibility of revival of (one of) the 'domantrforef.the.(s)'. 

If thls probability factor is favourable, we revive (one of) the dormant-forefather 

and convert it's status into that of an 'alien'. Thereafter the possibhty of 

infiltration, etc. is performed as was carried out for immigration. 

The logic for 'domantrfor$ather' approach is to recheck previously dscarded search 

locations. It was possible that due to non-support from others, an indvidual of a 
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generation failed to h n t  at possible optima area. But at a later generation when we 

are more near optimization (technological4 and scientEfl;al~ advanced !), the dormant 

forefather can be revived to (possibly) speed up the process. 

A Dormant Forefather would prove its worth upon revival if the search locality 

where the optimal lies is the locality from where the indvidual was originally 

dscarded. 

Other researchers have used the term 'j5refatber' for their own usage in dfferent 

context. Aporntewan, et a1 (2001)used it to denote a pair of inhviduals that act as 

forefather to a clan. In Genetic Algorithm literature, a clan refers to a set of strings 

whch has a common trait (e.g. 1010, 1110, 1011 belongs to 1*1*). A clan is 

denoted by a probabhty vector, p'. The p' is a copy of vector p of whch some p[i] 

are randomly set to "0" or "1" accordng to the forefather. 

Ogno, et a1 (2002) in their work for their Pedegree Analysis Programme tried to 

find out characteristics of a gven strain data by going up to forefathers from a 

descendant. 

5.11 Termination 

To avoid a perpetual Genetic Algorithm, it has to be terminated once certain 

criteria are met. The most common criteria are dscussed in another Chapter. We 

experimented termination based on dfferent suggested methodologies, and have 

designed an Adaptive Termination algorithm. 

5.11.1 Fixed Generations Termination 

As the classical method of termination, we experimented with pre-specified 

number of generations. The Genetic Algorithm was allowed to continue dl thls 

maximum number of generations was processed irrespective of complexity of the 

Chapter 5 # Page 107 
I'omulatton of an Optimized r\lgonthm for llcsourcc Schedul~ng and Allocation in Pro)ccts : A Gtncfir Algorifbmr Approach 



Project characteris tics. IColisch and Hartmann, (2006) have published results for 

the test data on 'fured' number of schedules. 

5.11.2 Fitness-Deviation Termination 

The Genetic Algorithm was terminated as soon as fitness deviation of a 

population is w i h n  a pre-specified level (very small), and fitness deviation 

between successive generations also approach (another) pre-specified level (very 

small, possibly zero). fTn case we encotlnter divergent deviation betweenpoptllations, apossible 

modzjcation to our algon'thm would be to in~ease  the 'intmsion 'probabiIitie~.] 

5.11.3 Adaptive Termination 

In deference to indvidual characteristics of each Project, we design an Adaptive 

Termination algorithm for termination. 

Each Project has its own set of tasks and resource types. Moreover, Projects dffer 

in their number of possible solutions, or the search space. T h s  we term as 

Complexity level. The Complexity level of a Project increases by duect @near or 

exponential function based) proportion to the precedence constraint of Project 

tasks. Keeping th s  in mind we designed an algorithm that would be adaptive to 

these three Project parameters for decidmg the termination criteria. The adaptive 

algorithm is designed by evolving it to a final stage through gradual incorporation 

of parameters. 

The Adaptive Termination algorithm is a function of three parameters, Project 

length or the number of tasks, number of resources under constraint, and 

complexity level. Combined, they arrive at MaxGen, as p e n  in Relationshp 5.5 
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G = f [F ,  R,) CI 

where, G is number of generations, M a d e n  

T is number of tasks, 

R is number of constrained resources, and 

C is Complexity level 

We group up the frrst two factors and term the group as Project Factor (P), and 

rework the last factor as Complexdy Factor (C). Thus as a general form, we get G as 

a function of P and C, or 

G = fP,Cl, 

where P = f p, R] 

. . . Relattonsh$5.6 
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5.11.3.1 Adaptive Termination 1 

Initially the algorithm is based on two assumptions - 

a. the Project is 'not complex' and hence doesn't require much 

emphasis on its complexity level, and 

b. is dependent only on the Project Factors. 

With such assumptions, we calculate G by leaving aside C, i.e. keeping it at 1, as 

given in Relationshp 5.7 

G = f[P],withC= 1 

Where P = f p, R], 

. . . Relationsb$5.7 

For example, if the project has 60 tasks and u d z e s  4 types of constrained 

resources then the Genetic Algorithm is processed for 240 generations. 
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5.11.3.2 Adaptive Termination 2 

Next we remove the assumption regardmg 'Complexity' of the Project, and 

introduce C through combination of functions. 

G = f [ T I  R, f '(0)l 

where 0 is the indcator of search space, i.e. the complexity level, and 

c = f'(0) 

. . . Relationship 5.8 

The segment f'(0) is combined with Relationshp 5.7 to dampen the rate of 

change (or velocity) of complexity. T h s  is the second stage of evolution of the 

proposed Adaptive Termination. Logarithmic functions act a good damper, and 

we propose to implement the same. 

But thts relationship has damped the complexity level to a very low level, almost 

making the rate of growth flat. The exponential nature of complexity is brought 

back and the Termination criteria allowed to accelerate, but under damping by a 

logarithmic function. Thus the algorithm is allowed to evolve further. 
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5.11.3.3 Adaptive Termination 3 

We introduce a combination of functions for addressing more characteristics of 

project complexity. Exponential function is proposed to respect velocity, and 

Logarithmic function would try to control it, as depicted in Relationshp 5.9 

where 

p is the base of an exponential function for C, whch is exponentially 

raised to a function of 8 and 4, 

b is base of the logarithmic operation and 

4 is a h t i n g  number whch depends on the search space. 

. . . Relationship 5.9 

The conceptual mechanism of thls Damped-Acceleration due to combination of 

Logarithmic and Exponential function on an exponential set of data is illustrated 

in Figure 5.6. 

Original (Ex~onential) - 

Damping (Logarithmic) 

Figure 5.6 : The Damped-Acceleration mechanism 
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Implementation methodology of these Adaptive Termination algorithm relations is 

dtscussed in the next Chapter. We experimented by computational application of 

the algorithm, and mathematical proof is kept outside scope of our work. 

5.12 Post Termination 

Once the process terminates, the current set of 'elite' are presented as Result set to 

the Project Manager. Instead of presenting a single 'best' result, it is prudent to 

provide a set of 'good' results on whch the Project Manager can apply qualitative 

judgment to arrive at the final decision. 

Because our algorithm not permitting repetition withln the elites - by employing 

UnoStgn based sorting - the Result set would have unique alternative solutions. 

The chromosome we developed does not carry the resource requirement, and 

start-finish time of activities. T h s  was done to avoid transporting and processing a 

huge chromosome during program run. 

Once the algorithm terminates, the program would run (a modlfied segment of) 

the scheduling algorithm on Result set individuals and provide pertinent output for 

the Project Manager. 
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chapter S* 

Implementation 

and Experimental Setup 

In thir Chapter, we describe implementation and expennmentation, and anabsis 

methodology o f  our work. The Chapter commences with a descniption about the 

platform for implementation, folowed by a short description about data-set used 

for testing. A j e r  this, the Chapter is divided into two parts. Part A describes 

functions created as components o f  the program, and simultaneous3 elucidates 

tactics /or conversion and adaptation of the (mathematical) relationsbps 

involved - as perflow o f  the algorithm. Part B describes the experimentation 

setup and parameter settings. We describe the Design o f  Experiment, where 

parameters taken up for tuning are formal4 charted. The Chapter concludes 

with a discussion o f  methodology o f  result anabsis, and criteria for model 

validation. 



6.1 A General Outline 

Genetic Algorithm as implemented in our work is a blend of proven and proposed 

components. The proven components are collected from literature, and adapted 

for use by incorporating variations. As is done in most Genetic Algorithms, 

controlled use of Random Number has been done extensively. 

For implementation we use commonly avadable platform and software mainly 

from convenience point of view. T h s  also places us at par with.most of other 

research work, whch facilitates uncomplicated comparison. 

6.1.1 Platform Description (hardware, software, etc) 

Implementation of the algorithm is done in Structured C, and compiled with 

Borland@C++. In doing so, we exploited certain features of the compiler that is 

not typical of (I<ernighan/Ritche) C. For example, we incorporated features of 

C++ for file rea lng  and writing. 

The program is run on Intel Pentium4 machne of 2GHz speed with 512MB RAM 

under Microsoft Windows XP environment. Depenlng on data-set and 

parameters selected for testing and monitoring, run time for a full data-set ranged 

from under seven minutes (averaging 875 &second per instance) to just above 

twenty four hours (averaging three minutes per instance). 

6.1.2 Input Information - The Test Data-Set 

6.1.2.1 The Input Data-set 

We tested our algorithm on internationally accepted standard benchmark instances 

provided by Icolisch and Sprecher (1996) for evaluation of scheduling techniques 

for the RCPSP. It is called PSPLIB, and is widely acknowledged in the literature 

for the purpose. As test instances, we employed the standard SMFF (Single Mode, 

Full Factorial) set of the PSPLIB. These are labeled as J30, J60, J90 and J120, 

Chapter 6 # Page 115 
Formulation of  an Optimized Algorithm for Resource Scheduling and rlllocation in Projccts : A Gencfic Algorilhms Approach 



indcating the Project lengths. The sets J30 and J6O consist of (48 X 10 =) 480 

project instances each, and we have used these two as our test data-set. 

Each of the sets deals with four constrained renewable resources. Each task has 

one execution mode. T h s  set is dependent on three parameters, roughly 

corresponcGng to the interconnectedness of the task dependencies, the number of 

resource types, and resource quantity avdable. Other test problems provided by 

the PSPLIB include SMCP, MMCP, and MMFF sets. 

The comparison of performance between algorithms of dfferent researchers who 

use t h s  data-set is compiled regularly by the moderators of the library. We use the 

updated comparison of I<olish and Hartmann (2006) for benchmarking our 

experimental results. Here the authors of the paper have invited 'future studes' to 

make use of the compiled results for benchmarking. Previous comparison 

literature was made by Hartmann and I<olisch (2000) and I<olisch and Padman 

In the same library, latest updated listing of best result on each instance set by 

different researchers is avadable. On our last access (October 2008), we located 

results of 211d May, 2008 for J30, and 24th October, 2005 for J6O data-set. 

6.1.2.2 Other Test Data-set 

SMFF data-set of PSPLIB is the most widely used test data for the RCPSP. There 

are other standard data-sets withln t h s  library, as well as available from other 

libraries and authors whch are used for benchmarlung. A short description of 

these is provided here. 

a) PAT : T h s  relatively easy set of instances was introduced by James Patterson in 

h s  comparison of exact solution methods for resource constmined project 

scheduling. The Patterson set (PAT) consists of 110 project scheduling problems 

whose tasks require multiple resources and are defined with one execution mode. 
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The resource constraints are not very tight, and in many cases the optimal 

resource-constrained solution is the same as the resource-unconstrained solution. 

b) SMCP : The Single Mode Ceteris Paribus set is similar to the Patterson set, but 

they range in size from 10 to 40 tasks and include more resource restrictions. The 

set includes 200 problems with 1 to 4 renewable resource types. Each task has only 

one execution mode. 

c) MMFF : The Multi-Mode Full Factorial set consists of problems that include 

four resource types, two renewable and two non-renewable. Only about 85 percent 

of the instances in thls set are known to have feasible solutions. The possibility of 

generating problems with no solution arises with the addtion of non-renewable 
1 

resources. 

d) BMRX : The BenchMaRX problem was proposed by Barry Fox and Mark 

finger in early 1995. It is a single problem with 12 parts. Each part adds addtional 

constraints or problem modfications that test various aspects of a solution 

method. The fust four parts are fairly standard formulations. It gets harder from 

there. The problem is large: 575 tasks, 3 types of labor resources and 14 locauon- 

based resources. In addltion to resource/location constraints, it includes many 

temporal restrictions such as three shfts per day with resources h t e d  to certain 

shfts and task start/finish required withln a shft  or allowed to cross shfts. The 

last of the twelve parts includes multiple objectives. By varying resource avadabhty 

and work orders after a schedule has been determined, the problem also tests the 

abhty of solution methods to adapt to dynamic changes. 

e) Boctor sets : Boctor has given a set of test data, whch is termed as 

boctor50mm boctor100rnrn. 

f )  Alvarez-Tamarit sets : Three sets of test data has been designed by the authors, 

viz probl03, prob27 and prob51. 
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As noted earlier, we have experimented on the SMFF set proposed by I<olisch and 

Sprecher (1996). For further description regardlng instance generation mechanism, 

the instance generator (ProGen), solution sets, etc we refer to the PSPLIB. 

We depict the format of our test data (SMFF) as gven in the PSPLIB in Figure 

6.1. The Library have modlfied it from the ProGen format to the Patterson 

format. 

Let us denote 

j=1,. . . , J : jobs 
r=1, . . . ,  R : resource types 
S(j) : number of immediate successor-jobs of job j 
S(j,s) : s-th immediate successor-job of job j 
d(j) : non-preemptable duration of job j 
K(r) : resource availability of resource type r within each 
period 
k(j,r) : resource usage of job j w.r.t. resource type r 

The format is : 

J R 
K(1) K(2) . . . . K (R) 
d(l) k(l,l) . . k(l,R) S(1) s(l,l) . . S(l,S(l)) 
. . 
. . 
d(J) k(J,l) . . k(J,R) S(J) 0 

Fipure 6.1 : PSPLIB instance input format 

Note that for a project with 30 activities, the instance size (j) is 32. The two 

additional tasks are the initial point and the conclusion point, whlch are dummy 

tasks. (For ourpupose whenever we mention 'tasks: we would be referring to 3': i e. project sixe 

that includes the dummy activities.) 

Based on the above format definition, an example of a test project instance of 32 

tasks (i.e. 30 activities) is given in Figure 6.2. We shall refer to h s  instance for 

dfferent components of our implementation. 
4 
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6.1.2.3 Modifications for changing to other forms 

Even though we used the SMFF data-set, but with a small modfication of our 

program, we were able to test adaptability of our algorithm to accept other data- 

sets. 

Fipure 6.2 : Instance example of the J30 test data-set ; File name : 5301-l.rcp 

Each data-set consists of four components 

a) Tasks (or activities or nodes, dependng on the authors' preference of 
term), 

b) Resources (we focused on quantity constrained renewable resources), 
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c) Precedence Constraints (whtch of predecessor or successor is depicted), 
and 

d) Completion time (of the task) 

The major dfference amongst input data-set lies in the position format of the 

above four components. Once thls is analyzed and comprehended, and requisite 

change made in the 'input information' function, the remainder of our program 

remains the same. However at all times, we concentrated on the Single Mode 

aspect. 

Part A : Im~lementation 

6.2 en cod in^ and Representation of Chromosome 

Project schedule has three generic components, viz. 

a) the Spatial component, that denotes position of a task in the chromosome, 

b) the Temporal component, that denotes (combination of) Start-time, Finish 
time and Duration, and 

c) the Resource component, that denotes resource requirement(s). 

In our representation, the Spatial component is p e n  priority since we focus our 

study on total makespan of the sequence. The Temporal and Resource 

components are not carried with the chromosomes. If needed be, with a rninor 

modfication these components can be incorporated, as was tested for viability. 

Reducing chromosome size lessened burden on computational resource especially 

when project parameters are on a hlgher side. Task duration and resource 

requirement being constant throughout processing for a Project, we store them 

only once and refer to that as and when required. 
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The chromosome is represented as a 'struct' data-type of C, with two dstinct 

portions, 

a) a single dmension integer array of length equal to number of tasks to take 

in spatial information. Extendng to multiple dunensions would allow the 

array to integrate temporal information as well as Resource requirement 

(and allocation) information of each task. 

b) two adltional genes, one to hold the Fitness Value ('UnoSkn') and the 

second to hold the number of clones ('Copy'). These two genetic factors are 

described in the previous Chapter. 

The length of the chromosome is programmed as (pseudo) adaptive, depenlrig on 

the size of project under test. When we run on a project whose length is 'n', size of 

the chromosome becomes 'n+2'. Thus, when we test the J30 data-set whlch has 32 

tasks (30 activities, plus two dummies at the end), our chromosome will have 34 

genes. Upon modfying the program for running the J6O set, the size of 

chromosome would change to 64. 

6.3 Initial Population 

We use the same population size for initial population as well as for subsequent 

generations. A member of the initial population (sequence) is generated using a 

conventional methodology by ignoring resource constraints but in total deference 

of precedence constraints. 

6.3.1 Sequence Generation 

Inlviduals of the initial population is generated by a method of 'peers and 

successors', using a serial algorithm. The sequence is generated by the algorithm as 

described in Figure 6.1 : 
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If for a Project of 'j' tasks, the 'mth' gene in the chromosome is already 

placed with task Tn, then 

next task to be sequenced as (m+l)th gene would be 

a) any of T,'s successor task, 

b) any task from the peer pool 

where 'peer' is any task all of whose predecessors have been 

sequenced 

Every gene in the chromosome now has two information 

a) its position (m) in the chromosome, and 

b) its Task number (T,), as per Project design 

Figure 6.3 : The Algorithm for Sequence Generation 

We proceed to fill up the chromosome serially from fust position till nth position, 

with task selected at random but accordng to the above algorithm. T h s  continues 

dl all but two last genes are filled up. Obviously TI  is the initial (dummy) task of 

the project, and T, is the final (dummy) task. The last two positions are filled up 

after calculation of UnoSign and Copy. 

6.3.2 Unconstrained makespan 

The indviduals sequences of the initial population being unconstrained sequence , 

would have a makespan of ideal and minimum duration. The Finish-Time of Ti is 

the unconstrained makespan. Next we proceed to allocate resource to the tasks. 

Chapter 6 # Page 122 
Formulation of an Optimized Algorithm for Rcsource Scheduling and Allocation in l'rojccts : A Gene/icA~ori~hrns t\pproach 



6.4 Schedule Generation Scheme 

Allocation of constrained resource to a Project sequence generates the 'Schedule' 

for a specific sequence. We assume that partial allocation of resource is not 

permitted and tasks are of non-preemptable duration 

There are two basic Schedule Generation Schemes (SGS) - Serial and Parallel. We 

favour the Serial SGS for adaptation into our algorithm. Hartmann(2002) pointed 

out that activity list representation (i.e. sequencing) together with Serial SGS (i.e. 

scheduling) leads to better results than other representation of the RCPSP. 

For implementing the Serial SGS, an algorithm is devised that scans the already 

scheduled 'stub' (segment of the chromosome from frrst position) for locating 

position for the task at hand. Thls we term as 'Sweepcreep' algorithm, since the task 

'sweeps' for a slot, and if not possible to be scheduled, it 'creeps' to a subsequent 

slot. The Sweepcreep algorithm is summarized in Figure 6.2. 

For scheduling the 'mth' task in the sequence, 

Start from beginning of the stub 

(1) Check (Sweepfor) availability of all resources at' time slot t 

If avadable for total duration of the activity, 

Place the task at that time slot 

Else shtft(Creep up) one time-step ahead and Sweepcreep from(1) 
all over, 

Unul 

a) either the task is placed, 

b) or end of the stub is reached 

If end of stub is reached 

Place the task at h s  end position 

Pick up next task of the sequence for scheduling. 

Figure 6.4 : The Sweep-Creep Algorithm 
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As mentioned earlier, resource requirement and duration of each task is placed 

separately, and is brought in for the pertinent task. The time window is temporarily 

created during generation of each schedule. From the time window for the last 

task, we get the (resource constrained) makespan of the current schedule, whlch is 

next uultzed for calculating Fitness Value of the current schedule. 

The Finish-Time of the last task, T,, is now the resource-constrained makespan of 

the schedule. Henceforth, all reference to makespan would indcate the resource- 

constrained makespan, if not otherwise stated. 

6.5 Fitness Function 

To dustrate calculation of the Fitness Value, UnoSign, we take example of three 

(precedence feasible) schedules of the Project depicted in Table 6.1 alongwith their 

(resource constrained) makespan. The unconstrained makespan (or the 

unconstrained Critical Duration) of the Project is calculated to be 38, and 

optimum makespan (post allocation of constrained resources) is 43, accordng to 

results avadable at PSPLIB. 

Table 6.1 : Example of schedules, J30 data-set 

Schedule 
N o  

#* 

#* 

#C 
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Sequence of the Schedule 

1-4-3-13-18-10-9-8-7-27-12-5-2-16-15-21-6-19-1 1-14-17-22-29-26- 
20-25-28-23-24-31-30-32 

1-3-8-4-5-19-12-13-9-7-18-29-10-14-17-2-27-1 1-1 6-6-1 5-20-21-25- 
28-26-31-22-23-24-30-32 

1-3-8-13-12-1 8-7-19-29-2-4-5-1 5-9-14-27-17-6-10-1 6-22-21-1 1-20- 
25-23-24-28-30-26-31-32 

Resource 
Cons traned 
Makespan 

47 days 

47 days 

49 days 





As Stage Three, we concatenate the (resource-constrained) makespan to the front 

of each Number. 

T h s  provides UnoSign for each schedule, as depicted in Table 6.3 

At Stage Four we use the fitness function: k w e r  is Better(UnoSign)]. In our 

examples, since UnoSign B < UnoSign ,I, therefore B is a 'better' or 'stronger' 

schedule. 

Schedule No. 

#A 

#B 

#C 

In our implementation we use a 'long integer' data type of C, to store UnoSzgn at 

the (n+l)th gene in the chromosome. 

6.6 Elites, or 'Solution Set' 

Sequence of the Schedule 

1-4-3-13-18-10-9-8-7-27-12-5-2-1 6-15-21-6-19- 
11-14-1 7-22-29-26-20-25-28-23-24-31-30-32 

1-3-8-4-5-19-12-13-9-7-1 8-29-10-14-17-2-27- 
11-16-6-1 5-20-21-25-28-26-31-22-23-24-30-32 

1-3-8-13-12-18-7-19-29-2-4-5-15-9-14-27-17-6- 
10-1 6-22-21-1 1-20-25-23-24-28-30-26-31-32 

The 'best' set of solutions of any current generation (includng the initial 

population) is copied off as elites. At any given point of processing, the elites form 

the 'solution set' that may be presented to the Project Manager for his use. For our 

implementation, we have used an elite set of five solutions, and the (five) solutions 

with lowest UnoSign qualify to be in t h s  set. 
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Resource 
Cons truned 
Makespan 

47 days 

47 days 

49 days 

UnoSzgn 

471275495 

47 127 3497 

491378905 



6.7 Po~ulation size 

Population size for our algorithm is kept the same for initial population and 

subsequent generations. We call it MaxPop. For most part of our work, we used 

fifty as MaxPop. However we experimented with h r t y  as well to check the impact 

of such change. 

During processing a generation, we allow the 

population to (notionally) swell up to double 

of MaxPop by generating new indviduals. T h s  

way we use an adaptation of the 'Steady-State 

Genetic Algorithm'. The 'parents' are retained 

alongwlth the 'offspring', both in equal 

numbers. 

The 'next' generation is selected out of ths.  

'double size' group 

6.8 Clones 

With an aim of allowing a 'stronger' parent to 

be able to produce more offspring, we 

produce (notional) clones or 'copies'. We 

demonstrate usage of our 'Copy' algorithm with 

the help of a set of makespan that we collected 

from t h t y  schedules of the Project of our 

example. 
Table 6.4 : Calculation of Copy, i.e 

permitted clones 

We use Relationshp 5.4, with Clone Factor, C = 1. 
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The worst schedule (#12, makespan 78) has a T less than one. Similarly with 

another schedule (#19, makespan 76). To allow these 'worse' schedules to 

(potentially) mate, we have to retain at least one copy each in the fresh parent 

population. Thls justifies the sipficance of our 'Clone Factor'. 

Note that due to 'cloning', we notionally have a total of 167 parents in our 

example. 

Every time a parent mates successfully, its Copy is 1 

reduced by one. A parent is eligible to mate till it ' 
has a positive Copy value. 

Copy is carried with each indvidual as (n+2)th 

gene of the chromosome. Incorporation of thls 

gene into the chromosome completes 

representation of a schedule, and makes a 

schedule ready to be selected for mating. 

6.9 Selection 

For selection of (a pair of) parents to mate, we 

u d z e  the 'Better-Spouse Selection', as described in 

the previous Chapter. For illustrating the usage, 

we employ the results of Table 6.4 and have 

included UnoSign. Table 6.5 is sorted in ascendng 

order of UnoSkn, abidng by our Fitness 

Function. We notice that the schedule with least 

r? * 
9 " 
a 2. t i k  3 % 2 5 2 6  5 

p l  #10 43 8 431264976 
p2 #4 43 8 431303180 
p3 #20 44 7 441197373 

p4 #3 45 7 451247336 
p5 #18 46 7 461232932 

p6 #25 46 7 461438728 
p7 #16 47 7 471273497 

p8 #1 47 7 471275495 

p9 #27 47 7 471399203 
p10 #7 48 7 481146718 
p l l  #21 48 7 481502204 
p12 #30 49 6 491313714 
p13 #8 49 6 491378905 
p14 #22 50 6 501247662 
p15 #26 51 6 511791490 
pl6 #24 52 6 521663820 
p17 #13 54 5 541297582 
p18 #9 54 5 541617016 
p19 #6 54 5 541901366 
p20 #17 55 5 551494499 
p21 #29 56 5 561400711 
p22 #15 56 5 561481315 
p23 #2 56 5 561535584 
p24 #11 57 5 571405738 
p25 #23 57 5 571592580 
p26 #28 58 5 581614600 
p27 #5 67 3 671743986 

p28 #14 68 3 681362700 
p29 #19 76 1 761818987 
p30 #12 78 1 781766235 

Table 6.5 : Schedules list sorted 
on UnoSign 
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UnoSrgn has top priority, and hghest value of Copy. The implication is that a 'fitter' 

schedule will have a hgher probabhty of getting selected. 

On random, we chose any parent from amongst p2 to p30. Let dus be the ~ ( n ) ~ ~  

schedule in the sorted list. We select the spouse for this schedule from anyone 

'better than' the nth one. For either selection, if Copy value of the selected schedule 

is found to be zero, we discard the choice and chose another. 

As soon as a pair of parents' selection (and thereafter their mating) is successful, 

we reduce the Copy value of the two selected parents by one. It is possible that the 

Copy value now becomes zero, in whch case such parent is no longer eligible to be 

selected. 

For our experimentation, we compared Better-Spouse Selection (BS) with the 

Russian Roulette Selection (RR) technique. Selected parents are now invited for 

mating to produce offspring by crossover. 

6.10 Crossover 

For crossover we have adopted a methodology that is robust and proven for the 

RCPSP. Single Point Precedence Set Crossover (PSX1) guarantees conformance to 

precedence-constraint of a project, whde maintaining sequence conformance of 

the two parents in generating offspring. For our usage, we have adjusted and 

amended certain aspects of PSX1. 

We allow mating to be successful, without any deterrent of the crossover 

probabhty. Or  stated in another form, in deference to those authors who advocate 

a hgh  crossover probabhty, we use a probabhty of one (i.e. hundred percent 

chance) for mating. 
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Once selected, the parents' chromosomes exchange genes only from the first 'n' 

positions, where Project Tasks feature. UnoJIgn and Copy genes are not exchanged 

(obviously). We start off with an empty chromosome (of normal size, i.e. n+2) for 

the offspring. Based on mode of crossover - Mrd-Point or Random-Point, 

pertinent genes from mating parent are copied into the new chromosome. 

Crossover point, mating scheme, number of offspring produced, etc are 

dependent on the mode of crossover chosen. 

6.10.1 Crossover point 

a) For Mid-Point crossover mode, the point of crossover is taken as integer 

portion of n/2, i.e., the operation [INT (n/2)] is used. 

b) In case of Random-Point crossover mode, we select the point from 

anywhere between [2nd to (n-l)th] position. 

6.10.2 Mating schemes and number of offspring 

a) For Mid-Point crossover mode, we have two mating schemes, viz. 

i. Parentl (mates with Parent2) to produce Offspringl, and 

ii. Parent2 (mates with Parentl) to produce Offspring2 

The two mating schemes generate two dfferent offspring. 

b) In Random-Point crossover mode, we denote the 'Better-Spouse' as Parentl. 

T h s  parent is allowed to mate (possibly multiple times) with the (first 

selected) other parent; but the reverse scheme of mating is not permitted. 

Mating is permitted at least once (to produce one offspring) with the 
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maximum number of possible mating limited to current Copy value of 

Parentl. 

Therefore the mating scheme is 

Parentl (mates [C time(s)] with) Parent2 to produce C Offspring(s) 

where C is the current Copy value of Parentl. 

Once an offspring is produced, its UnoSign is determined immedlately. To avoid 

possible premature convergence, we dscard any duplication of offspring, and also 

check its possible duplication with any parent. After crossover operation is 

complete MaxPop indlviduals are taken to the next generation. 

Characteristics of the crossover being utilized is summarized in Table6.6. 

Table 6.6 : Characteristics of crossover utilized. 

Crossover technique : Precedence Set Crossover, Single Point, or PSXl 

6.11 Next Generation 

Characteristics 

Crossover point 

Mating schemes 

(vmbol we use 

x to denote 'mates with' 

3 to denote 'to produce3 

Offspring produced 

At any point of processing, we have the 'current' population and the elites. When 

offspring are produced, the total number of indlviduals in hand swells to twice of 

MaxPop. Note that elites are a subset of the parent population. 
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Mid-Point crossover 

INT [n/2] 

a) parent1 x Parent21 3 

0 ffspringl 

b) parent2 x Parentl] 3 

Offspring2 

Two 

Random-Point crossover 

RANDOM [rd to (n-l)th] - 

{[BetterSpouse x Parent21 3 

Offspring) C times Max 

where C is current Copy valze of 
the BetterSpouse 

Copy(BetterSpouse) , minimum 
One 



From h s  pool of [2 X MaxPop] indviduals, we allow the best MaxPop number of 

indviduals to proceed into the next generation. Five of the best indviduals 

amongst t h s  'next' generation is copied off as elites. The criterion for 'best' 

indvidual is again our fitness function, e w e r  is Better (UnoSign)]. 

The 'next' generation is now made vulnerable for possible intrusion of 'aliens', 

either as immigrants or as domantrforejaathers. Since our solution method employs 

Random Numbers generously (albeit in a controlled manner) there is high amount 

of sub-optimal and 'noisy' solutions. This is a situation whch Sastry and Goldberg 

(2007) advocates crossover to be stronger, at the cost of mutation. We took thls 

generalization a step further and avoid mutation altogether as a technique for 

introducing dversity of a population. 

At h s  point let us term thls generation as 'pseudo-current' generation. Once these 

intrusion phases are over, h s  'pseudo-current' generation takes the role of 

'current' generation. 

6 . E  Intrusions 

To introduce sudden asymmetry in the 'pseudo-current' generation, we try to 

'intrude' it by 'alien' indviduals. T h s  is attempted by an alien indvidual who might 

be either an 'immigrant' (freshly generated) or a 'domantrforefaather' (generated in an 

earlier generation). In every population we have restricted the number of attempts 

for intrusion at five per type. 

6.12.1 Immigration 

For possible immigration, we have to overcome two probabilities 

a) probabhty of generating an alien, and 
b) probabhty of intrusion into 'pseudo-current' generation by the alien. 

Chapter G # Page 132 
Formulation of an Optirnizcd Algorithm for Resource Scheduling and Allocation in l'rojccts : A Gcnc/icAlgori/hmsApproach 



Both are kept low, in the range of 0.3 (or below). These are applied as analogous 

to the Boolean 'AND' operator. In effect, the chance of an immigrant becoming a 

member of the population is a very low probability of 0.09. 

If the first probabhty is favourable, we generate a fresh indvidual using the same 

function of our program that generated members of the initial population. It is 

then compared with members of the 'pseudo-current' generation. The inhvidual 

whose UnoSign is immehately lower than UnoSign of the alien is targeted for 

replacement. If UnoSign of alien is lower than the weakest inhvidual, then the 

weakest inhvidual is targeted. However, intrusion by replacement is permitted 

only if the second probability is favourable. 

A slight variation of intrusion would be to shf t  down all lower inhviduals to make 

space for the immigrant. In that case the 'target' indvidual would remain in 

population, at the cost of the 'weakest' one. 

6.12.2 Dormant-Forefather 

If allowed, attempt for infiltrating into the 'pseudo-current' generation by Dormant- 

Fonfutber proceeds simultaneously with possible Immigration. To allow ths  

mechanism or not is controlled during each experimental run. T h s  we dld to 

check effectiveness of the Dormant-Forefather technique. 

A Dormant-Forefather is retained from the discarded indviduals of previous 

generation(s). Inhvidual(s) to be retained is selected randomly from the dscarded 

lot, and retained - if favoured by a low probabhty - for 'mummification'. We 

have used a 'mummies set' of ten Dormant-Forefathers. 

The possibhty factor for infiltration by a Dormant-Forefather is kept even lower than 

that for immigrant intrusion. It is made to depend on three probabhties, each of 

low value in the range of 0.3 or below: 
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a) probabhty that some forefathers has been mummified, whch are still in 

the 'mummies set', and 

b) probabhty of reviving a Dormant-Forefather, selected at random from 

the set of (ten) 'mummies', 

c) probabhty that the revived individual d be allowed entry into 

'pseudo-current' generation. 

Once a Dormant-Forefather is finally allowed entry into a population, it moves away 

from the 'mummies set'. One indvidual of the discarded lot of the 'pseudo- 

current' generation fills up the vacant slot. 

6.13 Termination 

We experimented termination using three dfferent criterions - 

a) Fixed Generation Termination, 

b) Fitness-Deviation Termination, and 

c) Adaptive Termination. 

6.13.1 Fixed Generation Termination 

For the Fixed Generation Termination, we initially test feasibility of our algorithm 

with maximum generations (MaxGen) of (i) one hundred, and (ii) five hundred, 

keeping MaxPop at h t y .  Next, to check conformity of our algorithm results with 

published results, we change MaxPop to fifty, and ran the Genetic Algorithm for (i) 

twenty, (ii) hundred, and (iii) thousand MaxGen. Ths part of the experiment is 

more for checlung effectiveness of Termination algorithm rather than to test 

parameters. 
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6.13.2 Fitness-Deviation Termination 

For experimentation with Fitness-Deviation Termination, we used the following 

scheme 

a) Deviation of Elite, or oEL : UnoSign deviation between 'best' and 'worst' of 
elites less than or equal to p percent, AND 

b) Deviation of Population, or oPO : UnoSign deviation between 'best' and 
'worst' of population less than or equal to 6 percent, AND 

c) Deviation of Generations, or oGE : Deviation of oPO between amongst 
subsequent generations equal to o percent 

In some cases we had to restrict runaway processing, as the number of generations 

were increasing much more than generations required for convergence in other 

instances. Therefore we added another criterion that restricted generations to 

match parity with reported schedule(s) in the literature selected for comparing 

optimal results. Thus the last criteria of the scheme is 

d) OR, MaxGen, whle processing the Genetic Algorithm with predefined 

MaxPop. 

We summarize thls Fitness-Deviation Termination criterion as 

[ ( o E L < = p )  AND 

( aPO < = 6 )  AND 

( oGE = o )  

I 
OR 

[MaxGen * MaxPop = Max#Schedules litcramre] 

where p, 8, and o are the permissible h u t s  
\ 

. . Relationship : 6. I 
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6.13.3 Adaptive Termination 

We use of different characteristics of the Project., viz. Project length, number of 

Resources under constraint, and Complexity level for devising an Adaptive 

Termination. In the first instance we ignore the Complexity level and use only the ' 

common and constant characteristics for the data-set. We test three variations of 

Adaptive Termination algorithm; each subsequent being a refinement of the 

previous one. 

a) To accommodate the characteristics - Project Length (T) and Resources 

under constraint (R), we simply take the product of the two, as MaxGen i.e. 

. . . Relationship : 6.2 

The Genetic Algorithm adapts to these two common characteristics of all Projects 

w i h n  the test data-set, and proceeds with the processing. When we switch for 

processing a longer Project, say change the data-set from J30 to the J6O series, we 

wdl have a deeper termination. S i d a r  will be the case with a Project that has more 

number of Resources under constraint. We label h s  as Adaptive Termination 1, 

or AdapTerml , as depicted in Relationship 6.2. 

b) Next we incorporate the Complexity level of a Project as an adhtional 

parameter to make the criteria more adaptive to Project characteristics. 

We define Complexity as a measure of (or proportional to) the maximum possible 

schedules of a Project. We term th~s  as MmSdl. For example, MaxSdl for the 

Project in Figure 6.2 (let us call it Pnyect A) would be around (3 X 104). On the other 

hand, the project depicted as 13035-6.rcp in PSPLIB (let us call it Project B) would 

have in excess of (3 X 109) schedules. 
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Even though both projects are of same length and use the same number of 

constrained resources, but the Qfference in degree of complexity is of the order 

105. For the J6O data-set, the range is (1.02 X 109) of J60-0l.rcp to (2.1 1 X 1018) of 

J6041-6.rcp test file. 

When we process Project A with termination criteria of, say 3000 schedules, we 

are exploring about 10 percent of total search space, or MaxSdh when we search 

for solution of the least complex of data-set J30. On the other hand for same 

termination criteria, in Project B we would be searchng only about (10-4) percent 

of the search space. If we use our previous method [i.e. G = T * R] with a MaxPup 

of fifty, we would be searchlng for optimal solution from amongst (30 * 4 * 50 * 2 

=) 12,000 schedules. We d be searchng about 40 percent of total search space 

of Project A, and (4 X percent of Project B. Comparing both situations, the 

lfference is of the order 105. To circumvent thls Qchotomy, we seek to provide 

proportional search space sampling for every Project. 

One obvious way would be simply to sample a ftved percentage of the search 

space - say ten percent of MaxSdl. In that case, we wd have 

MaxGen (Project A) = 60, and 

MaxGen (Project B) = (60 X 106) 

whch is again impractical considering the computational depth whch would be 

required for Project B. 

To dampen the sharp increase we test Logarithmic function, whch allows a 

proportional change with controlled velocity. 

Withln the framework of Adaptive Termination algorithm as gven in the previous 

Chapter, two versions are devised and tested. The first is a Logarithmic 

relationshp that we term as Adaptive Termination 2, and the second is a 
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combination of Exponential and Logarithmic functions that we term as Adaptive 

Termination 3. 

i) Adaptive Termination 2 

G = * R] * INTPogbM] . . . Relationsb$6.3 

ii) Adaptive Termination 3 

[INl-(logbM) - (4-41 

G = v * R ] * p  , for M >= lom . . . Relationsb$ 6.4 (a) 

= * R] * INT[logi,M] , for M < lom . . . Relationshzp 6.4 fl) 
where 

G : MaxGen 

T : Project length 

R : Constrained Resources 

M : MaxSdl, 

p : Base of the exponential function, 

b : Base of the logarithm used, and 

$ : A limiting factor 

w : A small non-negative integer. 

The Projects are segregated as having 'low complexity' if M < 10' and as 'hgh 

complexity' if M >= 10'. For tuning the parameters of Relationshp 6.4, we 

experimented with dfferent (combinations 04 values of P, b, 4, and o. We term 

Relationshp 6.3 as AdapTerm2, and Relationshp 6.4 as AdapTerm3. 

Relationshp 6.4 has evolved in stages by incorporating addtional features in 

previous ones. It has Relationshp 6.2 and Relationshlp 6.3 w i h n  it. 
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Part B: Experimental Setuv 

6.14 D e s i p  of Experiment 

Design of Experiment (DOE) is a structured and organized method used for 

determining the relationshp between hfferent factors affecting a process and the 

output of that process. When the results of these experiments are analyzed, they 

help to identify optimal conhtions, the factors that most influence the results (and 

those that do not) as well as details such as the existence of interactions and 

synerges between factors. Sir Ronald A. Fisher, the renowned mathematician and 

geneticist frrst developed thls method in the 1920s and 1930. Today, Fisher's 

methods of design and analysis are international standards in business and applied 

science. 

Experimental design is a strategy to gather empirical knowledge, i.e. knowledge 

based on the analysis of experimental data and not purely on theoretical models. It 

can be applied whenever we intend to investigate a phenomenon in order to gain 

understanmng or improve performance. Design of Experiments (DOE) is widely 

used in research and development, where a large proportion of the resources go 

towards solving optimization problems. The key to minimizing optimization costs 

is to conduct as few experiments as possible. A careful Design of Experiment 

result in necessitating only a small and relevant set of experiments, and thus helps 

to reduce costs. 

In the Design Matrix, we have carefully charted out the components to be tested 

and their parameters (or factors) to be tuned. In our experimentation, the focus 

was on checlung the parameters related to the 'trigger' components of Genetic 

Algorithm. 
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6.14.1 The Design Matrix 

The experiments are to be conducted in two Sections. Section 1 would check if 

our algorithm actually runs, and that the results are measurable with published best 

results. Section 2 will be for testing and tuning the components and parameters of 

our proposed algorithm. 

The Design Matrix for our experimentation is given as Table 6.7 

6.14.2 The Experimentation Plan 

Based on relevant test combinations, we conduct a controlled number of 

experiments that would be significant for our study. One parameter or mode was 

tested with its dfferent values. Then the 'best' value was carried over to the next 

set of experiments. T h s  way we proceed to a next set of experiment carrying the 

best set of parameter values and modes. 

The Experimentation Plan is given as Table 6.8. In other Chapter(s) we shall be 

referring to the experiment taken up for dscussion by their Experiment Serial 

Number (ESN). The ESN contains 

a) the Section to whch the experiment belongs as per Design Matrix, 

b) the Experiment# as per Design Matrix, 

c) a subset w i h n  Experiment# to indcate data-set, and 

d) a count# w i h n  subset to indcate serial number 
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Table 6.7 : The Design Matrix 

Section A For checking Effectiveness of the Algorithm Other paramcters and conlponents collated from hterature 
IJaramctcr/ Nethod D e s c r ~ ~ u o n  Value 

b/IasPop Size of (each) population 30 50 Effect~veness of the algo~lthm IS checkcd wlth MaxPop = 30 

h/lasGen, G T e r m n a ~ o n  cr~teria 100 20 
Compar~son of the algorithm wlth published benchmark results 

500 100 uslng MaxPop = 50 
1000 

Section B : For Testing and Tunin? Darameters of the Alcorithm Change the test parameters, ~etenspanbtis 
Parameter / Method Descr l~uon Value / Mode 

Ex~eriment 1 : Selecuon 
Clone Factor m n ~ r n u m  clones 1 3 5 Test the unpact of Clones Factor on Better Spouse 

Selecuon Selecuon Techn~que Russ~an Roulette Better Spouse Check ~f BetterSpoz/se produces 'better' offspr~ng 

Ex~eriment 2 : Crossover 
Crossover Mode m d - P o ~ n  t Random-Po~n t 

Ex~eriment 3 Intrus~ons Compare impact of d~fferent probabhty values 

a) I r n m i ~ r a ~ o n  
P(ahen) Generaung an ahen 0 3  0 1  

P(lnfdtrauon) Inf i l t ra~ng the populauon, 0 3  0 1  
conrrerslon to' imm~gran t' 

(Seclron B conr~nued on next page) 

I 



Table 6.7 : The Design A l a t ~ ~ x  (contd) 

J~ect ion  B : For Testinp and Tuninp Darameters of the Al~orithm (contd..) 

Parameter / Method Description Value / r\/lode 
b) Dormant-Forefather Allow Disallo\v Check in~pact of proposed Dormant Forefathel 

P(mumrmficatton) Retaming a dlscalded sol11 0 3 0 1 
P(revnral) Rewval of a 'mummy' 0 3  0 1  

P(1nfdtratton) Infdtraung into populatton 0 3 0 1 

Fitness-Deviatton 
(sEL Deviauon of Elites 0 01 0 005 
oPO Deviation of Population 0 10 0050 
oGE Deviauon of Generatton 0 1 0  0050 

MaxGen The fourth crlterla 1000 1000 

C$ 
3 " =I- 
3 
." 

AdapTerml MaxGen, G = * R, keeping C = 1 

Ex~eriment 4 Termnation Check proposed terrmnauon algorrthms 

F ~ s e d  MasGen (Refer Sectlon A, and Experments 1,2, and 3) 

P The root factor of C 1 5  

AdapTerm2 
b The base of Logar~thm 

MasGen, G = [TS * R] * P 
= AdapTerm2 

MaxGen, G = [T * R] * INT[log,g 

10 20 ('b' 1s tested ln AdapTermII, and used for AdapTermIII ) 

, for M >= 10' 

, for M < 10' 

The hrmung numbers \ \ ~ h c h  
bi - depend on search space 

5 - 1 6 - 4 For 130 data-set 

-- 10 - 4 10 - 5 For J6O data-set 



Table 6.8 The Experimentation Plan 
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130 30 1 1 MP 0 1) D FG 100 

160 30 BS 3 R1' (O3,03) A (O3,O 3,0  3) FG 500 

130 50 1 1 MI' (0,1,O 1) D PG 20 

130 50 IUi 1 MP ('),I, 0 1) D FG 100 

130 50 I 3 MI' (0,1,01) D 1TG 1000 

160 50 RR 1 MP @,I, 0 1) D FG 20 

160 50 RR 1 MI' (0,1,O 1) D FG 100 

160 50 lilt 3 MP 0 1) D FG 1000 

130 50 Rli 3 MP 0 1) D FG 100 

J30 50 Rl i  5 MI' 0 1) D ITG 100 

160 50 1 3 MP r G  100 (O,l,O 1) D 

160 50 lUi 5 MP (0,1, 0 1) D FG 100 

130 50 BS 3 MP 0 1) D FG 20 

130 50 BS 3 MP (0,1,O 1) D PG 100 

130 50 BS 3 MP 0 1) D FG 1000 

J6O 50 BS 3 MP (0,1,O 1) D FG 20 

J6O 50 BS 3 MP (0,1,O 1) D FG 100 

J6O 50 BS 3 MP (0,1,O 1) D FG 1000 

130 50 BS 3 l ip  (0,1,O 1) D FG 100 

130 50 BS 3 lip 0 1) D FG 1000 

160 50 BS 3 RP PG 100 (0,1,0 1) D 

J6O 50 BS 3 lip (0,1,O 1) D FG 1000 

J30 50 BS 3 liP @A 0 3) D FG 1000 

130 50 BS 3 RP (0 3,0 3) A (03,03,O 3) FG 1000 

130 50 BS 3 Rl' (Ol ,Ol )A(01 ,01 ,O1)  FG 1000 

J30 50 BS 3 RP ( 0 3 , 0 3 ) A ( O l , O l , O l )  TG 1000 

130 50 BS 3 1iP (0 1,O 1) A (0 3 ,0  3 ,0  3) FG 1000 

130 50 BS 3 RP (0 3 ,0  3) A (0 3 ,0  3 ,0  3) 17D (001, 0 10,0 10) 

J30 50 BS 3 liP (0 3 ,0  3) t\ (0 3 ,0  3 ,0  3) FD (0 05,O 50,O 50) 

160 50 BS 3 RP (O3,03) A (03 ,03 ,03)  FD (O01,O 10,0  10) 

J60 50 BS 3 RP (0 3 ,0  3) r\ (0 3 ,0  3 ,0  3) ITD (0 05,0 50,0 50) 

# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

- 
m 
G 

3g 
$@, 

8 5  w z  
Alal 

Alb l  

A2al 

A2a2 

t\2a3 

A2bl 

A2b2 

r\2b3 

Blal 

Bla2 

Blbl  

Blb2 

Bla3 

Bla4 

Bla5 

Blb3 

Blb4 

Blb5 

B2al 

B2a2 

B2bl 

B2b2 

B3al 

B3a2 

B3a3 

B3a4 

B3a5 

B4al 

B4a2 

B4bl 

B4b2 



T a b l e  6.8 T h e  Exper imen ta t ion  P l a n  (Contd) 
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6.15 Methodolorn for Result Analvsis 

For analyzing the results, we use common statistical tools and technique, and 

graphical &splay by transferring the result sets to spreadsheets. The analysis of 

result is done in different stages using simplified adaptation of statistical 

relationshlps. The Algorithm is validated from three angles - eJe~~iveness, a c L w a y  

and eficieny. Finally we present our proposed Optimization Algorithm based on 

the analysis. 

i) To compare with results of other researchers, we use Percentage Average 

Deviations (PAD) as devised by I<olisch and Hartmann (2006) in their 

methodology. 

CMakespanpest] - CMakespanpeference] 
PAD = * 100 

For our experimentation, we have taken PSPLIB information as Reference. The 

results are considered better as PAD keeps reducing, and approaches zero. 

ii) For comparing performance between (combination of) modes and/or 

parameters, for each run of every test instance we devise the Percentage Instance 

Deviation (PID) for individual instance, 

Makespan pest] - Makespan pieference] 
PID = * 100 

Makespanpieference] 

The results are considered better as PID approaches zero. 
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The effectiveness of 'this' combination under scan, as compared to some 'other' 

combination, is to be considered better by comparison of Average PID (APID), if 

APID th, < APID other 

. . . Relationship 6.7(a) 

where 

APID th, = C PID, / x i  = PAD as 

for all instances, i, withln a data-set, tested with 'this' combination 

. . . Relationship 6.7(6) 

... Relationship 6.7 

(It may be noted that APID is same as PAD, but calculated in a roundabout way) 

Performance Level Variation (PLV), and the related Average PLV, whlch we now 

define, measures a change in performance between the two combinations. 

PID,,other - PID,,thzs 
PLV(ths, other) , = * 100 

PID, other 

. . Relationship 6.8 

And, 

PAD othtr - PAD thtf 

APLV(ths, other) = * 100 
PAD other 

. . . Relationship 6.9 

A positive value for the two implies an improvement in performance due to 'this' 

combination as compared to some 'other' combination. For most of our 

comparisons, we shall be using equivalent results of ESN A series of experiments 

as the 'other' experiment. 

- 
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iii) To validate efficiency of a selected combination, we define and calculate an 

Efln'eny Index @I) for each test instance. T h s  E f i ~ i e n y  .Index is an indlcation of 

effectiveness of the method in reachng a level of accuracy w i h n  the sample area 

of the total search space. E f i ~ i e n y  Index for the ilh instance w i h n  a specific data- 

set, 

Makespan(peference1i / Makespan(lrest1 i 
EI i = Log10 

Sample proportion i 

. . . Relationsb@ 6.1 O(a) 

where, 
r 

MaxPop * MaxGen i [as per Termination Criteria used] 

Sample Proportion i = 
MaxJdl i 

Efficiency of a combination is to be considered better if E f i ~ i e n y  Index is hgher as 

compared to that of another combination for the same instance. T h s  is an index at 

the instance level, and is not to be averaged out over the total data-set. 

iv) To finally present the proposed algorithm, we check performance of our 

algorithm. The set with best (i.e. lowest) PAD, whch should ideally correspond to 

hghest APLV, is to be presented as our proposed Optimization Algorithm. 
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chapter Seven 

Analvsis of Experimental Results 

In thir Chapter we present the experimental results, and anabsis thereof using 

simple statistical measures. The Chapter is laid out most4 as sequenced in the 

Experimentation Plan. Towards the end we present the proposed algorithm. 



7.1 Introduction 

During experimentation, shfting of values of the parameters under test was done 

at times to tune those. That way, we proceed as per the Plan, but keep modifying 

and changing values in it. The Matrix and the Plan presented in the previous 

Chapter is the final setting, based on which we proceed to report our findngs. 

T h s  Chapter is laid out as per sequence of experimentation as charted in the 

Experimentation Plan. The complete results of the experiments as laid out in the 

Experimental Plan are given as Table 7.1. Next we proceed to analyze subsets of 

the experimental result. Finally we compare experimental results with benchmark 

results before presenting the proposed model in its final form. 

7.2 Propram Feasibilitv and Conformance 

The first part of experimentation is an attempt to establish feasibhty and 

conformance of the overall algorithm. Here we deal with Section A as depicted in 

the Design Matrix. 

7.2.1 Program feasibility 

Before we run our program to test concurrence with benchmark results, we check 

whether the algorithm d actually deliver results as expected of a Genetic 

Algorithm. For h s  we carefully make combination of components and 

parameters. These are noted as experiment set A1 on the Plan, correspondng to 

first segment of Section A. 

The program ran well to deliver reasonable accuracy of results and proved its 

feasibhty. 
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Table 7.1 Expermental Results (contd) 



Table 7.1 : Experimental Results (contd) 
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J30 50 BS 3 RP (0.3,03)A(0.3,0.3,0.3) AT3 (10,1.5,6-0) 

J6O 50 BS 3 hll' (0.3,0.3) A (0.3,O 3,O 3) AT3 (20, 1 5, 10-5) 

J6O 50 BS 3 RP (0.3,0.3) A (0 3,0.3, 0 3) AT3 (20, 1.5, 10-5) 



7.2.2 Conformance to Benchmark Literature 

With the feasibhty of our program in place, we next proceed to run the program 

in a near s d a r  combination as set out in the benchmark result literature of 

I<olisch and Hartmann(ZOO6). These experiments are depicted as Experiment 

Serial Number (ESN) as A2a for data-set J30 and A2b for J6O. 

The benchmark result literature provides the Average Deviations O/o (whch we 

have termed as Percentage Average, Deviation, or PAD) from optimal makespan - 

for 530 data-set. For J60, PAD is from Critical Path Lower Bound. For our 

experimental comparison, documented makespan for the test data-set are used as 

available in the PSPLIB drrectly. The published results as compared with the best 

of our experimental results are provided at Section 7.3 of t h s  Chapter. 

The PAD comparison of our initial setup with the Average Deviations (Yo) of 

published results is presented again in Table 7.2 

ESN Data-set Max schedules 
PAD ( Y o )  

Benchmark Result Range** Experimental Results 

A2al 130 1000 0.10 - 0.54 5.565 

A2a2 J30 5000 0.03 - 0.25 3.913 

A2a3 130 50000 0.00 - 0.08 1.919 

A2bl J60 1000 11.59 - 12.77 22.967 

A2b2 J6O 5000 11.07 - 12.03 19.626 

A2b3 J6O 50000 10.64 - 11.54 17.338 

Table 7.2 : The initial Test Results vis-i-vis Benchmark Results Range 
*" Ref Table 7.1 3 (a and b) 

As expected of a Genetic Algorithm, the deviation has decreased to increase 

accuracy of the algorithm under test whde operating on a larger sample space. 

But error factor was h g h  for smaller search samples. To  visualize thls, we present 

summary of best, mean and worst PID results for each instance of each data set in 
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the Figure 7.1 for experiments ESN A2a2 and 7.A2b2 whlch ran 5000 schedules 

each. 
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Fipure 7.l(b): Summary of deviations, J60, Experiment ESN A2b2 

As evident from the two Figures, the deviations are wide, and so is the range of 

deviation for the settings we used in our initial experiments. 
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Our aim henceforth would be to tune the parameters and set mode in such a way 

that these two features reduce, and both approach zero. We shall compare change 

in (improvement) status at subsequent stages and at the end, by constantly 

referring Table 7.1 for pertinent subset of results on two fronts, viz. 

a) improvement as compared to these initial results, using APLV, and 

b) improvement as compared to benchmark results, using PAD. 

7.3 Validation of Parameters and O~erator Modes 

The lfferent parameters and operator modes are now taken up for validation, 

either in isolation (ceterirparibtcs) or as combination of proven elements. 

7.3.1 Clones Factor and Better-Spouse Selection 

As per the Design Matrix, the first 

parameter we take up is the Clones 

Factor to check its impact on Selection 

of parents. In experiment set ESN A2a 

and A2b we have already checked 

Russian Roulette Selection with Clones 

Factor kept at one. Now we carry our 

experiments using three and five for 

Clones Factor using Russian Roulette. 

For each experiment here we check a 

total of 5000 schedules, and each data- 

set is run ten times. 

Clones Factor 

Chapter 7 # Page 155 
Fomulauon of an Ophrmzcd t\lgonthm for Resource Scheduhng and Allocauon tn Prolccts A Genctrc Algonfhms Approach 



We notice that there is an improvement in results if Clones Factor is increased 

from one to three. T h s  may be (tentatively) attributed to increase in the number 

of clones of stronger indviduals in the Selection pool. But when we increase 

Clones Factor further, there is only minimal further improvement. Performance 

improved by more than sixteen percent for J30, and about six percent for J6O data- 

set. 

For further experimentation, we use Clones Factor = 3, and keep it steady there. 

Selection mode is now switched to Better-Spouse Selection mechanism, and 

remainder of experiments under ESN B1 is carried out. 

Table 7.4 : Experimental Results for Better-Spouse Selection 

As evident froin Table7.4 the results are favorable. For lower number of 

Termination generations, we had a 11 - 12 percent improvement. Once the 

number of generations increased, improvement in performance shot up to nearly 

z 
2 

Bla3 

Bla4 

Bla5 

Blb3 

Blb4 

Blb5 

15 percent for J60, and 30 percent for J30 data-set. 

w 
N 

. 4  m 

C 
0 

.+2 
2 
0 
k 

50 

50 

50 

50 

50 

50 

u 

% 
m 
U 

S 

J30 

J30 

J30 

J6O 

J60 

JGO 

For checlung effectiveness of the Better-Spouse Selection technique, PADS of these 

experiments are compared with the equivalent experiments that employ Russian 
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Roulette Selection. Then APLV is computed for Better-Spoase Selection over 

Russian Roulette, as given on the last column ofTable 7.5. 

Table 7.5 : Performance comparison between BS and RR Selection 

On both data-sets, Better-Spouse Selection outperforms the Russian Roulette 

Selection technique for converging strongly at the optimal result. T h s  vindtcates 

our assumption that deliberate mating with a stronger spouse produces better 

offspring. For our next level of experimentation, we use BS as our default 

Selection mechanism. 

7.2.2 Crossover Mode 
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Tdl now the Mid Point crossover mode has been the default mode. Moving ahead 

on the Design Matrix, we next vary Crossover mode to check impact, setting 

Better-Spouse Selection as default. The ESN B2 set is compared with equivalent 

experiments of ESN B1 set. As evident from the table, comparative results 

improved with Random-Point crossover when hlgher number (50,000) of samples 
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are tested. For malclng addtional 

comment on quality of these two 

methods, they would be taken up 

alternately for checlung their 

performance in tandem with other 

parameter / modes. Next we check the 

two intrusion mechanisms, viz. 

Immigrant and Dormant-Forgather. 

Table 7.6 : Comparison of Crossover mode 

7.2.3 Intrusion Mechanisms 

So far our experiments had been using Immigrant mechanism (with both 

probabhties kept at 0.1 each) as default technique for introducing dversity. 

Dormant-Forgather was dsallowed (except in ESN A l b l  experiment where its 

feasibhty was tested). The next set of experiments is marked as ESN B3, and 

impact of the two intrusion techniques are tested on J30 data-set. We keep 

MaxGen f ~ ~ e d  at the longer 1000, to probe into a deeper space or age-range. 

Table 7.7 : Performance comparison of Intrusion Techniques 
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As expected, deviation from optimal solution displays an inverse relationshp with 

probability factor values. Performance improves further when both techniques are 

used in tandem. The APLV of the best combination of intrusion parameters (ESN 

B3a2) over the worst (ESN B2a2) is 17.585%, whch we consider a potentially 

sipficant improvement. 

For reminder of the experiments, we use intrusion probabhty combination as used 

for ESN B3a2. That way actual probability of Immigration is maintained constant at 

0.09, and of Domant-Forgather it is 0.027 - both being fairly low. 

7.2.4 Termination 

7.2.4.1 Fixed Generation Termination 

All experiments ull now were conducted with fured generation termination. T h s  

implies that with a MaxPop of fifty for our significant experiments, the sample 

search space was (50 X 20 =) 1000, (50 X 100 =) 5000, and (50 S 1000 =) 50000 

schedules. 

However such ' f ~ ~ e d '  criteria misses a crucial aspect. Once the algorithm is made a 

general one (to operate on other than test data, whose optimal makespan would 

not be known for comparison) for any Project, such criteria would be hard pressed 

due to possible deficiency of ideal fitness value for such field Project. To avoid any 

bias against unknown Projects, we decided not to advocate ' f ~ ~ e d '  termination 

criteria, and test two other possible techniques. 

The cumulative improvement untd th.ts point of experimentation is manifested by 

an APLV of 43.095 percent for the current (best) combination of modes and 

parameters (ESN B3a2) over equivalent initial combination (ESN A2a3). On 

instances level thts is Illustrated in Figure 7.2, where improvement up to 100 

percent is frequently evident. 
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Fipure 7.2 : Performance comparison between initial set and current (best) set 
of parameters and modes 

With the identified set of parameters and modes having demonstrated 

improvement of performance ull now, we proceed to conduct the remainder of 

experiments viz. set ESN B4 for evaluating Termination criteria. 

The first set of test is for evaluating Fitness-Deviation Termination, and then test 

the Adaptive Terminations. We test both Mid-Point and Random-Point crossover 

modes alternately for all the termination techniques. 

7.2.4.2 Fitness-Deviation Termination 

As per our DOE, we test Fitness- 

Deviation Termination (FD) with two 

combinations of (p, 6 and a) as 

depicted in Table 7.8. 

Limits 
Deviations 

Lower Higher 

aPO 0.10 0.50 
aGE 0.10 0.50 

Table 7.8 : Deviation h t s  for 
Fitness-Deviation Termination 

As fourth criterion, MaxGen is kept at 100, so we terminate processing at 5000 

schedules. The experiments are denoted as ESN B4a and B4b with serial numbers 
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one and two. Relevant results are &splayed in Table 7.9, whch also includes count 

of how many instances out of a total of (480 X 10 =) 4800 terminate by whch part 

of the criteria. 

Table 7.9 : Termination by Fitness-Deviation criteria 

Examining Table 7.9, we get mixed signals from the results of h s  experiment set. 

When Fitness-Deviation h t s  are kept tight for both data-sets, the instances tend 

to terminate in the MaxGen, i.e. fourth criteria. This is simply another type of 

Fixed Generation termination. On the other hand when Fitness-Deviation h t s  

are kept loose the convergence is relatively fast - but on sub-optimal regon. In 

case of ESN B4b2, the convergence led to even worse result as compared to 

results with our orignal settings. 

ESN 

B4al 

B4a2 

B4bl 

B4b2 

One way of avoihng this paradox might be to keep the deviation h t s  tight, but 

increase MaxGen h t .  Our objective of h s  set of experiments is to check 

possible pitfall of the method that has a strong tendency of false convergence. 

PAD 

3 562 

3 816 

17 453 

19 761 

The results justify h s  tendency, and we therefore seek some other conclusive 

method for Termination. T h s  leads us to the next set of experimentation where 

we test evolution of a proposed Adaptive Termination Algorithm. 

APLV (thls, ESN A) 

8 9701 

2 4789 

11 0720 

-0 6879 

Data-set 

J30 

130 

J60 

160 
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Instances terrmnatmg on 

Devlatlon hrmts 

826 

3725 

18 

4113 

MaxCen 

3974 

1075 

4782 

687 



7.2.4.3 Adaptive Termination 

Experiment set ESN B4x5 to B4x18 (where x = a and b alternately) is the 

specified experiments for evolution of Adaptive Termination Algorithm. 

Since we have not yet exactly.pinpointed better of the two options for crossover 

Random-Point crossover and hhd-Point crossover, we alternately test these mode. 

We keep MaxPop constant at fifty, and use Best-Spouse Selection mode throughout 

these experiments. For dversity, we employ both intrusions, with all probabhties 

kept at 0.3. 

Every Resource Constrained Project has three specific characteristics, viz. 

1. Project Length (T), 

2. Number of Resource under constraint (R), and 

3. Project (precedence) Complexity (C). 

We now proceed to experiment with hfferent combinations of these three to 

finally evolve a Termination algorithm that adapts itself to these criteria. We term 

every stages of evolution as Adaptive Termination, with a serial number at each 

tall. 

7.2.4.3.1 Adaptive Termination 1 

For the first stage of evolution, we define Max6en as product of Project Length 

(T) and number of Resource under constraint (R). For our experiments, we are 

using J30 (T = 30) and J6O (T = 60) data-set, each with R = 4. 

Experiments for J30 data-set are labeled as ESN B4a5 and B4a6, whose processing 

would terminate at MaxGen = 120 generations, thereby sampling 6000 schedules. 

Experiments for J6O data-set are labeled as ESN B4b5 and B4b6. Termination 

criteria for testing these instances would 'adapt' itself and terminate at 240 
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generations, after sampling 12000 schedules. Results of the experiments are 

&splayed as Table 7.1 0. 

Table 7.10 : Termination by Adaptive Termination 1 

With the present combinations, we get better result as compared to equivalent 

experiments in the initial stage, whch is depicted as PAD and APLV above. 

Though very margtnal, but there is a consistency in improvement trend when 

Random-Point crossover mode is udzed.  

Y 

S 

Next, we test Adaptive Termination 2 by introducing the Complexity Factor, C. 

d 0 
a$ 
E 

c a- 

1.2*10-3 

1.7*10-11 

7.2.4.3.2 Adaptive Termination 2 

V) 

3" 
2 
5: 
U, 
% 

Complexity of a Project is (proportional to) number of possible schedules (MJ due 

to the Project's precedence constraints. Thls is represented as C in Adaptive 

Termination 2 relationshp. Since M increases steeply with incorporation of 

adhtional precedence constraint, we dampen the velocity of such increase by using 

a logarithmic function : G = * R] * INTPogbMI. For a specific data-set, the 

variable we examine is the base of logarithm, 'by, the others being 'adapted' as 

dctated by the Project. 

a" 
0 
E 
3 2  
g 

w 

MI' 

RP 

MI' 

RP 

2 Y 
V) 

0 u 

V) 

-5 

Chapter 7 # Page 163 
I'ormulabon of an Opurm~ed  Algonthm for liesource Schedubng and Allocabon In Prolccts A GcnefrcAlgon/hmsAppronch 

Z 
5 
m 

6000 

12000 

4d 

w 

Comparisons 

B4a5 

B4a6 

B4b5 

B4b6 

2 

Fa U B  

A2a2 

A2b2 

J30 

J60 

8 ' 2  bDz a g 
2 $ g  a ; 2 e.3 

& $  

10*10-3 

7.08*10-l2 

5*108 

7*1016 

2 
h 

2.417 

2.326 

16.169 

16.011 

- 
5 

4 

38.2315 

40.5571 

17.6144 

18.4194 



We test two values of 'b', viz. 10 and 20. For our test data-set, calculations shown 

by Figure 7.3(a) and Figure 7.3(b) produce dlscrete MaxGen levels depending on 

integer portion (or characteristic) of the logarithmic segment. 

F i ~ u r e  7.3 (a) : Discrete MaxGen as outcome MaxSdl, Adaptive 
Termination 2 (Data-set J30, sorted on MaxSdl)) 

1.20E03 
i3 

1.00E03 -- 
9) 

I-, a.ooEt02 - 
m 
$ 6 . 0 0 H 2  - - 
$ 4.00Ec02 - 

(3 2 2.00Et02 - 
E 

o.ooE00 - 

Ficure 7.3 (b) : Discrete MaxGen as outcome MaxSdl, Adaptive 
Termination 2 (Data-set J60, sorted on Maddl)) 
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The experiment set for AdapTem2 is denoted on the Experimentation Plan as 

ESN B4(a o r  b)(7 to 10). Test results are tabulated in Table 7.1 1. 

Table 7.11 : Termination by Adaptive Termination 2 

It is obvious that a lugher logarithmic base acts as a better damper. A lower 

logarithmic base results in hgher MaxGen, and therefore a large sample area is 

tested. But when compared to the total search area (MaxSdl), th.ts sample area gets 

proportionally smaller. Thls inverse relationshp demonstrates efficiency of our 

algorithm. In tandem with better efficiency, the PAD inches up favourably on the 

benchmark result set. 

For some of the experiments; our results have started performing better than 

equivalent initial results. T h s  was to be expected since MaxGen have crossed over 

into the thousands area. 

Base of 
Logarithm 

10 

20 

The efficiency of the adaptive algorithm is demonstrated by the following figure, 

where we plot the Efficiency Index of the instances of the best result, i.e. ESN 

B4a8. 

APLV 

(this, higher gen at ESN 
A) 

0.3648 

12.8050 

16.2439 

12.1471 

14.5064 

PAD 

1.981 

1.912 

15.118 

14.522 

2.011 

1.994 

15.232 

14.823 

Crossover 
mode 

MP 

RP 

MP 

RP 

MP 

RP 

MP 

RP 

ESN 

B4a7 

B4a8 

- 

B4b7 

B4b8 

- 

B4a9 

B4a10 

B4b9 

B4b10 

- 
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APLV 

(this, eqv of ESN A) 

49.3739 

51.1372 

22.9702 

26.0082 

48.6072 

49.0417 

22.3890 

24.4733 

Data Set 

J30 

J60 

130 

J60 
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Fi~ure  7.4 : Efficiency Index Vs Project Complexity, Adaptive Termination 2 
(Data-set J30, sorted on MaxJdl) 

Even though we test a proportionally smaller sample set, but w i h n  that we not 

only improve our PAD rating but also the efficiency level. In other words, as 

complexity of the Project increases we are able to approach optimal solution set 

with a proportionally increasing level of efficiency employing a relatively slower 

increase in MaxGen size. 

For malung a comparative analysis, we plot PLV of ESN B4a8, whlch &splays 

improvement of initial solution, per instance, as Figure 7.5 Even though there are 

a few worsening cases, but in most of the instances the present algorithm 

produced hundred percent improvements, i.e. accurate makespan as provided by 

PSPLIB. The APLV of above 50 implies that the algorithm with thls combination 

has evolved to provide improvement of initial results halfway through towards 

optimal solution. . 

This vindcates the assumption that a complex project should be provided with a 

larger sample set, whch is the basis of our adaptive algorithms. 
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Fi~ure  7.5 : Performance Changes, Adaptive Termination 2 (Data-set 530) 

T h s  Termination relationshp acts only as a damper, and does not fully respect the 

exponential increase of complexity. To try to address this lacuna, we proceed to . 

take AdapTemZ into another stage of evolution. 

7.2.4.3.3 Adaptive Termination 3 

Adaptive Termination 3 (AdapTem3) is a combination of exponential and 

logarithmic functions. The exponential component wdl try to push up the resultant 

(i.e. Ma~Cen), but the logarithmic component would act as a damper to that rate of 

change of velocity. In other words, Ma~cGen would be allowed to accelerate vis-h- 

vis project complexity, but at a controlled rate. 

We use stronger damping as complexity increases. Using Relationshp 6.4 for 

Adaptive Termination 3, we employ 10 as the base of logarithm for J30, and for 

J6O we use 20. For testing ($ - a), we use (5-1) and (6-4) for J30 data-set. Since J6O 

instances have a hgher complexity in the range of 108 to 1018 we test hgher values 
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of (4 - w), at (10-4) and (10-5) The base of the exponenual hncuon 1s tested at 2 

and 1 5 for further damplng the exponenual funcuon The &screte MaxGen as an 

outcome of use of the above comblnauon 1s &splayed In Flgure 7 6(a) and Flgure 
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Ficure 7.6 (a): Dlscrete MaxGen as outcome MaxSdl, Adapuve Termnauon 3 
(Data-set J30, sorted on MaxSdO) 

Firure 7.6 (b): Dlscrete MaxGen as outcome MaxSdl, Adapuve Termnauon 3 
(Data-set J60, sorted on MaxSdl)) 
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Since we have not yet made a decision on crossover mode, we alternately test with 

Mid-Point crossover and Random-Point crossover. We employ both Intrusion 

methods, setting parameters at [(0.3, 0.3) A (0.3, 0.3, 0.3)]. For Selection, we 

employ Better-Spouse. MaxPop is kept steady at fifty. T h s  set of experiment is 

labeled ESN B4a11 to 14 and B4b11 to 14, for J30 and J6O respectively. 

The experimental results are &splayed in Table 7.12 along with the initial results 

and benchmark results range. 

Table 7.12 : Experimental results of Adaptive Termination 3 

ESN 

B4all 

B4a12 

B4a13 

B4a14 

B4bll 

B4b12 

B4b13 

B4b14 

It is observed that by employing combination as described, the algorithm has 

achleved the best APLV of 99.8195 for the J30 data-set over results acheved by 

the initial settings. The present result acheved on PAD evaluation is comparable 

to the best of benchmark results. 

For the J6O data-set, the best APLV is 44.9079, i.e. almost halfway through 

towards acheving optimal results. When PAD is compared to benchmark results, 

the experimental results falls short of the best by about a percent. 

Data- 
set 

J30 

J60 

If we compare results acheved by the two crossover modes, Random-Point 

crossover is providng margnally better results than md-Point mode. 
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Crossover 
mode 

Mr 

RP 

r\@ 

RP 

Mr 

RP 

Mr 

RP 

AdapTerm 3 
parameters 

(10, 2, 5-1) 

(10, 2, 5-1) 

(10,1.5,6-0) 

(10, 1.5, 6-0) 

(20, 2, 10-4) 

(20, 2, 10-4) 

(20, 1.5, 10-5) 

(20, 1.5, 10-5) 

PAD APLV 
(this, 5000) 

99.2960 

99.8195 

97.8430 

98.3213 

43.9648 

44.9079 

37.9859 

41.3179 

~ ~ ~ ~ h ~ ~ ~ k  range 

0.00 - 2.08 

10.71 - 15.94 

APLV 
(this, 50000) 

98.5646 

99.6319 

95.6016 

96.5770 

36.5701 

37.6377 

29.8023 

33.5739 

T~~~ ~~~~l~~ 

0.028 

0.007 

0.084 

0.066 

10.997 

10.812 

12.171 

11.517 



The efficiency index for the best result is provided in Figure 7.7 
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F i ~ u r e  7.7: Efficiency Index Vs Project Complexity, Adaptive Termination 3 
(Data-set J30, sorted on MaxJdl) 

Compared with Figure 7.4, it becomes evident that when accuracy of result is of 

prime concern, an increase in sample search area produces better result with hgher 

efficiency. T h s  is the best justification for usage of complexity-proportional 

termination criteria, whlch we have already devised as Adaptive Termination 3. 

For data set J30, we depict the PIDs of ESN B4a12 in Figure 7.8(a), for 

comparison with Figure 7.l(a). Similar depiction for ESN B4b12 is shown in 

Figure 7.8@). 

We can summarize that Adaptive Termination 3 permits exponential increase of 

sample search space to acheve (near) optimal results, but the permission is granted 

proportional to the complexity level of the Project. 
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Fipure 7.8(a): Summary of deviations, J30, ESN B4a12 
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F i ~ u r e  7.8!b): Summary of deviations, J60, ESN B4b12 

It is dstinctly clear that the present combinations of modes and parameters have 

achleved sigruficant improvement as compared to the initial settings. Whde 

comparing with benchmark results, the test results shows that the current settings 

have managed to push the experimental algorithm quite substantially up the 

optimal results range. 
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7.3 Com~arison with Published Results 

In Table 7.13 (a) and (b) comparison of results are made on equitable information 

collated from benchmark results from pubhshed hterature, notably Icohsch and 

Hartmann(2006). In some other hterature, authors have reported results in 

dfferent formats, using self-defined comparison parameters. These could not be 

benchmarked due to the inherent dversity, and/or are not being benchmarked by 

the OR community in contemporary literature. As such, those results are not 

considered for comparison here. 

In the two tables below, we have incorporated our best result in s i d a r  tabular 

format as published. The tables are truncated at fifteen entries, with the topmost 

being the best. The iniual test results of the present work are included at the 

bottom row of both tables. 

Table 7.13 (a): Comparison with benchmark results : J30 

## Tcrm~natlon Cnteria Max Schcdules / /  Arrangcd as sortcd on  last column 
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S1 

No 

1 
2 
3 

& '4 ;"$j 
5 

Year 

2007 
2003 
2006 
2008 ?; 
2007 

Author 

Ranjbar, et a1 
Kochetov, Stolyar 
Debels, et a1 - i p *  

::. ~ i e s $ ' ~ o r E  ,- $; 
Kemmoe, et a1 

Algonthm 

Scatter Search 
GA, TS 
Scatter search 

',"GA'.(B~~TGA~): " ?: ,+: w,"* 

PSO 

SGS 

Senal 
Both 
Senal 

'Sehal- '1 

Average Devlauons % from 
opumal Makespan 

T e r m a ~ o n  cntena ## 

1,000 
0 10 
0 10 
0 10 

4 ,PL007 (Adai;6$e Terrmnihon)" 
026 1 021 1 -- 

5,000 
0 03 
0 04 
0 04 

50,000 
0 00 
0 00 
0 00 



Table 7.13 (b): Companson with benchmark results : J6O 

## Tcrmlnatlon Crltcria Max Schcdulcs / /  Arranged as bortcd on  last column 

For reporting the best results of the present work, we have not segregated it 

accordng to the tabled terrninauon criteria. The reason being that our termination 

criteria is Adaptive Termination 3, whch is made flexible proportional to 

complexity level of the project instance - the very foundation of the GA model 

presented in this work. 

S1 

No 

1 
2 
3 
4 
5 

Moreover, the entry of the best results of present work is kept at a modest 

&stance from the top, by displaying precision of results upto thrd place after 

decimal. As evident, we have compared our results only with 50,000 termination 

criteria entries of other authors. The reason being that Adaptive Termination 3 

analyses a proportionally hgher number of solutions for complex projects. 

Year 

2007 
2006 
2008 
2003 
2004 

Author 

Ranjbar, et a1 
Debels, et a1 
Valls, et a1 
Kochetov, Stolyar 
Valls, et a1 

We have restricted analysis of results for present work only to slrnple tests as 

depicted in a previous Chapter. As menuoned there, these tests are modeled in hne 

w t h  the widely u d z e d  test parameters of ICohsch and Hartmann(ZOO6). The 

reason being that it allowed us compare results from a wider pool of pubhshed 

results. 
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Algonthm 

Scatter Search, FBI 
Scatter search, FBI 
GA, hybnd, FBI 
GA, TS 
GA, FBI 

SGS 

Senal 
Senal 
Senal 
Both 
Senal 

Average Devlahons % from 
opttmal Makespan 

Termat ton  cntena # #  

1,000 
11 59 
11 73 
11 56 
11 71 
12 21 

5,000 
11 07 
11 10 
11 10 
11 17 
11 27 

50,000 
10 64 
10 71 
10 73 
10 74 
10 74 



7.4 Presentation of the Al~orithm 

In several stages with mix-and-match of dfferent combination of modes and 

tuning of parameters, the algorithm is now in a position to be proposed as 

outcome of the present work. 

From the ESN B4 set, the experiments with the best results are run again multiple 

times for checktng repeatabhty. The combination corresponlng to ESN B4a12 

for data-set 530 and ESN B4b12 for data-set J6O has the overall best performance. 

Based on these finlngs and related analysis, we present the proposed algorithm 

for optimizing resource scheduling and allocation of projects summarized as 

follows : 

A) Sequencing , : Serial, forward sequencing 

B) Schedule Generation Scheme : Sweep-Creep (serial, forward scheduling) 

C) Optimization Approach : Genetic Algorithm, with its components - 

i) Fitness : Sequence and makespan based UnoSign 

ii) Selection : Better-Spouse Selection, based on UnoSign 

iii) Crossover : Precedence-Set crossover, Random point 

iv) Diversity : 

a) Immigrant, with suggested probabilities (0.3 * 0.3) 

b) Dormant-Forefather, with suggested probabilities (0.3 * 0.3 * 0.3) 

v) Termination : Adaptive Termination 3, for maximum 
generations, viz. 

~1N~( lo@M) - (4-41 

G = P * R ] * ~  , for M >= 104 

= P * R] * INTPogbM] , for M < 10' 
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where 
G : MaxGen 

T : Project length 

R : Constrained Resources 

M : MaxSdl, 

p : Base of the exponential function, 

b : Base of the logarithm used, and 

4 : A h u n g  factor 

w : A small non-negative integer. 

Because of two dstinctive features, viz. 

a) The Better-Spouse Selection operator, and 

b) Adaptive Termination 

we propose to term proposed Genetic Algorithm as "Better-Spouse Selection and 

Adaptive Termination Based Ceneti~.Algonthrn", or BATGA. 

T h s  adaptation of Genetic Algorithm, or BATGA, has fachtated optimization of 

the RCPSP up to a level at par with comparable contemporary results. However 

the algorithm falls short of matchng the best of published results, whch is a fair 

indcation that further tuning of components and parameters of BATGA has to be 

carried out. 
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Chapter E&ht 

Conclusions 

In this concluding Chapter we provide a summary o f  work carried out, 

including that o f  our initial background study. AAftr that, a short discussion 

about strength and shortcomings of the proposed algorithm is presented. Based 

on the work and experience gained, we thereafter hint at possible contribution 

to the knowledge domain. 

A work ofthis nature can never be conclusive. Keeping that in mind, we chart 

out a j w  area and directions, towards which we sh$fOcus where further studies 

might be carried out. 



8.1 Summarv of Research Issues 

In the total course of our research, our focus was primarily on an attempt to 

provide a as much possible a realistic solution to a problem area that is universal in 

its proliferation. Withln the area of work, we took up an approach that was then 

molfied for its applicabhty. Withln the demarcated boundary, our extent of work 

is of computational experimentation of the proposed algorithm. With appropriate 

modesty we acknowledge that contributions from other researchers have been the 

foundation of our work. On  such strong foundation, h s  work is just a modest 

attempt at furthering research in the chosen field. 

Project Management is a mission involving hgh  degree of adverse probabhties. 

Conforming to Murphy's Law, - fay th ing  can go wrong, it will - completion of a 

Project w i h n  budgeted time and cost frame is a Herculean task. 

The Project Manager is in the unenviable position of trying to manage the lmted  

available resources to deliver the Project w i h n  its framework. But adversities 

work overtime to ma.ke sure that h s  efforts gets pulled to the extremes, and even 

after that results are acheved at a heavy price. One area where most of the Project 

Manager 's time and energy goes in is reworhng of Project schedules. Once a 

schedule is in place, theoretically the work should proceed as per plan. But factors, 

usually exogenous, dsrupt the plan, and it requires reworhng. The only ally with 

the Project Manager in such a situation is the software that aids scheduling. 

But software is as good as the algorithm on whch it runs. Therefore constant 

upgradation of the mechanics of the algorithm is one way of assisting the Project 

Manager in h s  work. 

Scheduling of Projects with constrained resource has been s tu led  from multiple 

fronts since the advent of mathematical 'optimization'. With the advent of newer 

optimization techniques, Resource Scheduling is one area where it is applied to 

arrive at better solution. For Project Management, the problem that deals with 
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constrained resource scheduling is termed as the Resource Constrained Project 

Scheduling Problem, or RCPSP. Since the 1950s numerous researchers using 

contemporary optimization techniques have attempted to arrive at optimal 

algorithm for tackhng h s  problem. Being a NP-Hard problem, the optima is 

elusive, and welcomes any betterment of existing algorithm. 

With the advent of heuristic techniques, Operations Research community has 

dscovered a totally new dunension of solution approach. One such approach, 

Genetic Algorithm, has been used for RCPSP with multiple adaptations of the 

orignal concept. Ever-new metaheuristics are evolving to design algorithm for 

talung RCPSP as near as possible towards the optima. T h s  sequence of 

background study helped us identify the exact problem, and the approaches made 

for optimizing it. 

In this work, we present adaptations of proven and robust Genetic Algorithm 

components, and have incorporated some innovative measures. For ths, we 

studed the mechanism of Genetic Algorithm and operational intricacies of the 

hfferent components. Having identified short but critical gaps where the 

methodology may be adapted and modfied, we proceed to do so - first as an 

algorithm, and thereafter implementing it for experimentation. During algorithm 

design and development, we kept options open for evolving it to the final state. 

For validation of our algorithm, we proceed to run the program on internationally 

accepted benchmark test data-set. As compared to initial settings, the algorithm is 

made to evolve to its presentable stage. At t h s  stage, the results acheved healthy 

improvement as compared to initial ones. The final results nearly matches the 

leahng results available in literature. Analytically, the algorithm proved its 

worhness on three fronts - effectiveness, accuracy and efficiency. 
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Acknowledging two lst inct  characteristics of the algorithm, the proposed model 

is termed as "Better-Spouse Selection and Adaptive _Ternination Based Geneti Algorithm", 

or BATGA. 

8.2 Strencth and Shortcominps of the Alporithm 

Experimentation has shown that BATGA is quite effective in its objective to 

provide effective, accurate and efficient convergence, almost at par with the best 

set of results published. The adaptive nature of the algorithm is its best 

strongpoint. 

Selection is an important component of Genetic Algorithm. BATGA incorporates 

a technique where it deliberately selects a Better-Spoase for mating. T h s  technique 

has proved its worhness  by providing very strong positive results. 

With correct setting of program parameters, the algorithm has proved its abhty to 

test dfferent data-set. Limitations crept in due to computational constraints, and 

on a stronger platform, h s  algorithm has a capabhty to process complex Projects 

with even tighter constraints. 

In contrast to a few other proposed algorithms in literature, BATGA minimizes 

'wastage' of computational effort. The results are deliberately made to be feasible, 

and thereby eligble to be evaluated. Of course, keeping in view the requirement of 

a Genetic Algorithm, 'unfit' results are dscarded. A feature of BATGA allows 

random probabhty based recall of such previously dscarded results, thereby 

possibly reducing computational effort even further. 

In spite of the positive vibes, BATGA is not devoid of shortcomings. We question 

our own claim regardng 'uniqueness' of UnoSign. We have claimed that UnoSign 

provided actionable uniqueness of schedules - but that is purely based on program 

output. The uniqueness was demonstrated when we calculated UnoS&n by 
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independently generating all possible schedules of some of less complex instances. 

But that was only a limited empirical outcome. 

What we assume to be the strongpoint of BATGA is also its weakest defense. 

Conceptually, an adaptive algorithm would provide results with increasing 

efficiency. But the adaptive function itself has to prove its robustness in face of 

adversity. 

8.3 Contribution to Knowled_~e Base 

The RCPSP, by its very nature, invites ever-new angle for optimization. Genetic 

Algorithm, the approach whch we have selected, encourages constant 

modfication and adaptation of its basic structure. The present work has attempted 

a few specific contributions to these knowledge domains - both apparently 

interlaced. 

8.3.1 Sweep-Creep SGS 

In BATGA, a modfied serial, forward scheduling SGS is put forward and termed 

as Sweep-Creep mechanism. While scheduling, this mechanism constantly matches 

resource requirement of activity being scheduled with current position of resource 

availabhty . 

8.3.2 UnoSign based Fitness Value 

In many literatures, duplicate solutions were encountered amongst schedules of 

s l d a r  makespan. Since makespan is the decisive fitness check for the RCPSP, thls 

duplication led to dscardng of feasible solution and/or devising complex fitness 

functions. 
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BATGA employs a unique signature - UnoSign - for each solution generated 

w i h n ,  whtch is derived from acuvity sequence and makespan of each schedule. 

Derived only once, UnoSign reduces calculations of other factors later on, thereby 

lessening demand on computational resources. UnoSign is exploited in many 

locations of BATGA, viz. cloning of parents, selection for mating, skullrmng off 

of elites (or solution set), and survivor selection for next generation. 

8.3.3 Better-Spouse Selection 

A modfied version of Russian Roulette Selection is put forward as component of 

BATGA. We call h s  Better-Spouse Selection, where the algorithm deliberately 

forces the selection process to chose a stronger mate for the first one. Therefore, 

crossover can never take place between parents of equal strength - a drawback 

that would otherwise waste processing effort of the algorithm. 

8.3.4 Adaptive Termination, AdapTerm3 

Most of Genetic Algorithm adaptation for RCPSP runs with fixed number of 

generations, overloohng the complexity level of the Project, etc. For example, 

consider a Genetic Algorithm with fifty as population size and run it for a 

thousand generations. Some (Project) instances of J30 data-set with a maximum of 

about eighteen thousand feasible schedules makes use of such Genetic Algorithm 

meaningless. On  the other end of the scale would be instances that would be as 

complex as having about 108 schedules. 

A feature of BATGA addresses h s  uneven dstribution of sample space. We 

introduce an adaptive termination for the Genetic Algorithm, whtch is dependent 

on three crucial Project characteristics - the number of activities, the number of 

resources under constraint, and complexity level of the Project. Using a 

combination of Exponential and Logarithmic functions, an algorithm is presented 

that allows the Genetic Algorithm to adapt to Project parameters. This we term as 
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AdapTem3, whch assists BATGA to decide by itself the maximum generations the 

process should run. AdapTem3 mechanism runs an accelerating-damping 

combination to change maximum generations in proportion to input information 

of all the three project characteristics. 

8.4 Directions for Further Research 

Despite promise of wide scope, the present work is only a h t e d  effort w i t h  the 

field of study. We can view h s  wide picture from three perspectives - assistance 

for the Project Manager on the macro level, the RCPSP in the micro level, and 

Genetic Algorithm as the approach. 

On all of these fronts, a number of issues remain untouched by our work, and 

many of those touched has ample possibhty for future research for improvement 

on results acheved. Our experience shows that in spite of extensive amount of 

reported work, there is sull scope for improvement and contribution. 

8.4.1 The Macro Perspective 

Software usage for Project Management can go only one way - up. A number of 

possibilities exist where studes can be carried out in Business Informatics for 

application in h s  field. We have focused only on (constrained) resource 

scheduling, whch aids the Project Manager in decidng on delivery date by optimal 

management of resources. Each item in the list of Project Management 

Ihowledge Area of the PMBOIC would trigger other area of study. As evident 

from Table 1.1 and Table 1.2, the present study has operated in a small niche of a 

section of that list. 

The present work is on managing a single project, since every instance of the test 

data-set represents a project. Or  for that matter, a study whose result would 

improve decision malung by the Project Manager for the Project under 
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jurisd.tction. When we view the picture from a hgher level, an organization (be it 

the Government or a Corporate house) has a number of Projects under its fold. 

Each with its own characteristics, maybe on opposite side of the spectrum. Thls 

bouquet is Project Portfolio of the organization. We invite attention towards 

pioneering conceptual work initiated globally in the area of Project Portfolio 

Management. A further extension is in the area of Program Management, which is 

in a relatively nascent stage. Here the Project is considered as a module of a 

Program, i.e. we get a even wider field. These are the macro avenues where 

exploration has to be made to seek incorporation of the present work as a 

component. 

8.4.2 The Micro Perspective 

Because of its NP-hard nature, the R C P S ~  was and would be subjected to research 

for years. Right from the days of exact mehodologies till the newest adaptation of 

Ant-Colony Optimization, an algorithm to acheve full optimality has eluded the 

RCPSP. Different methodologies for optimization of the components have been 

tried, but the 'whole' seems to be far away. 

Schedule Generation Schemes are theoretically h t e d  in generic number. But 

variation w i h n  the set would always be a potential. hunting ground. We have 

implemented a serial, fonvard scheduling mechanism (the Sweep-Creep). It is 

obviously a h t e d  use, and other variations would have to be experimented upon. 

At every point of scheduling, the Sweep-Creep mechanism keeps checlung current 

avdabhty of resources. Thls is one feature we tried to exploit for malung the 

program respond to dynamic change in resource avdabhty. The concept is 

presented as Appendx 111. We expect to carry forward the present work in that 

drrection, as one its extensions. 
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8.4.3 The Approach 

For approachng optimality of RCPSP we have employed Genetic Algorithm. 

Operations Research brethren are employing hybrids for acheving better results. 

Hybrid Genetic Algorithm of Valls, et a1 and Genetic Algorithm - Tabu Search 

combination of I<ochetov and Stolyar (2003) have proSed t h s  possibhty. We 

invite attention for hybridzing BATGA in toto or components thereof for 

bettering the present set of reported RCPSP results. One suggested way to speed 

up the search would be by employing Ant-Colony Optimization (ACO) in tandem 

with BATGA. T h s  hybridnation should yield good results especially when the 

search area is large, and multiple sub-optimal peaks exist. Once the ACO hlnts at 

the feasible zone, BATGA would take over for homing in on the solution. T h s  

way we can avoid the redundancies of Genetic Algorithm, i.e. generating and 

&scar&ng sub-optimal solutions. 

Alun to Fuzzy Genetic Algorithm of Pan and Yeh (2003), a h n t  of using Neural 

Networks for malung the algorithm 'learn' has been made in the concept paper at 

Appenclm 11. The AdopTem 1, 2, and 3 of BATGA &splays an interesting 

characteristic of the Natural world, that they seem to act as neurons but in its 

primitive stages of evolution. If proved so, and thereby improved upon, we feel 

that a hybrid system of Neural Networks with BATGA would deliver a potent 

combination for practical application of the proposed algorithm for aidmg the 

Project Manager. 

The mathematical relationshps of BATGA have been formulated by experimental 

tuning of parameters. The structure of the relationshps, especially that of the 

fitness value, UnoSign, and termination criteria, AdapTems 2 and 3 begs for 

mathema tical validation. 

For AdapTerm3, we have udzed  a Logarithmic damper on an Exponential 

accelerator function. To establish credble design and u d t y  of adaptive 
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termination, it would be worth experimentation using other combinations. A 

possible combination is a Polynomial damper on an Exponential accelerator. 

For correlation between parameters and sensitivity study of impact of those, we 

have used very simple relationshps for comparison with benchmark results. 

Detaded statistical analysis, specifically ANOVA and Sensitivity Analysis, can be 

carried out for further validation of the algorithm. T h s  approach of analysis would 

provide further integrity of performance of BATGA. 

Due to lack of plausible proof, we have questioned our own claim of uniqueness 

of UnoJtgn. S d a r l y ,  AdapTem parameters are provided w i h n  h t e d  exposure. 

Theoretical validation of the parameters of these two critical components is an 

area where we invite attention. Addtional study can be made only for empirical 

verification of the structure and values of variables thereof. 

Finally, field-testing of the algorithm using real data would prove its worhness for 

practical usage in Project Management software. Since our study was initiated by 

exploring at the macro level, we do not wish to remain complacent now that our 

algorithm has provided good results. Future work for validating robustness of 

BATGA is envisioned by putting it to process real data of Projects - on both 

inline as well as off-line mode. 

8.5 Practical Utilization of BATGA 

The commercial market has a number of Project Management software. Notable 

amongst them (in their Iate~t incIiuiduaI  version^;) would be MS Project, Primavera, 

Scitor Project Scheduler, etc. In a seminar paper at the Johannes I<epler 

Universitat Linz, a comparison of seven Project Management software was made 

by Miihlbauer, et.a1(2007), although not benchmarked. On our last access, 

Wilupeda listed above a hundred Project Management software in their page 
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http://en.wilupeda.org/wilu/List~of~projectmanagementsofare. Accormng 

to IGm (2007), the demand of project scheduling software has continued to grow 

at an annual rate of almost 20%. 

As mentioned elsewhere in h s  document, sofhvare would be as fast as the 

algorithm it uses. Mellentien and Trautmann (2001) by their tests on commercial 

project management software - for performance, revealed a considerable 

performance gap between the implemented method and state-of-the-art project 

scheduling algorithms. When matched with research results of those days, they 

concluded that there was sd l  a significant potential for improving solutions to 

resource allocation problems in practice. To maintain parity with majority research, 

these tests were carried out on the PSPLIB instances. An indcation of the gap is 

provided in Table 8.1 by comparison of their findngs with contemporary literature 

results at that time. 

Table 8.1: Gap between liferature result and commercial implementation (ZOO?) 

Author / 
Software 

Alcaraz, Moroto 
Tormos, Lova 
Hartmam 

Acos Plus.1 
CA SuperProject 

CS Project 
MS Project 

Scitor Project 

In the concludng remarks, Smith (2004) observes that the best measure of the 

effectiveness of a scheduling algorithm should come from the industry. In light of 

ths, the outcomes and addtion to the body of knowledge by the present work is 

now dependent on incorporating them into PMIS, for use by Project Managers of 

the real world. With all humbleness, the algorithm proposed in the present work - 

BATGA - is put forward for possible inclusion in Project Management software. 

Chapter 8 # Page 186 
Formulation of an Optimized Algorithm for Resource Scheduling and Allocation in Projects : A Generic A~orirrlmrs )Approach 

Year / Version 

2001 
2001 
1998 

8.2 
5.0a 002 

3.0 
2000 
8.0.1 

- 
Mean Deviation % 030) 

0.12 
0.07 
0.08 

3.87 
5.39 
3.50 
5.18 
4.85 



B e  present work  have irnpbmented an adaptation of Genetic Jborithm for 

approaching optima of the WPSP as an attempt to fonnuhte an optimized 

aborithm for resource scheduling and al'lbcation in Projects. Within its boundary 

fimitations, the approach achieved respectabb resubs when compared with 

benchmar~resubs. Whilk this might soundgooli; there is a consderabb amount of 

w o r b e t  to be done for mabng the @ J I G '  robust anduniversal4 acceptabb. 

W e  rest with the likelihoodthat whatever fittlk contribution the present wor&made 

into the knowbdge domain to try mitiBating uncertainty of Project Nanagement 

woulXinvite attention for scrutiny and&rther study. 
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Glossary 

We present a short gIossary of terns peclf iab coined and/ or used in this 

work. 



Adaptive Termination; using features of input information; 
AdapTerm 

of the i'nput project instance. 

Adaptive Termination using number of project activities, 
AdapTerm 1 

and resources under constraint 

Inclusion of project complexity information and damping 
AdapTerm 2 

function to AdapTerm 1 

AdapTerrn 3 

Alien 

APID 

Inclusion of accelerator function to AdapTerm 2 

A freshly generated indvidual whlch would try to infiltrate 

the population (except the initial population) 

Average Percentage Instance Deviation for indvidual 

instance; comparative measure 

Average Performance Level Variation; comparative 

measure between dfferent parameter settings; for same 

instance 

Selection for mating as used in BATGA; the second 
Better-Spouse 

'spouse' wdl always have better fitness value that the f ~ s t .  

Dormant- 

Forefather 

Number of times a parent is eligible to be selected for 

mating; also number of maximum Offspring the 'better- 

spouse' can have if BATGA use Random-Point crossover. 

Unary operator; mechanism for introducing dversity into a 

population; analogous to the Egyptian Mummy 
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A retained solution whlch was to be otherwise dscarded, 
Egyptian Mummy 

for possible revival later on; analogous concept of 

Immigrant 

Efficiency Index; accuracy for deviation as compared to 

proportion of schedules sampled in an instance 

The alien, after it receives favourable response to first of 

the two intrusibn probabilities 

Movement of an alien or a Dormant Forefather into a 
Infiltrate 

population; after overcoming probabhty barrier. 

Population size in a generation, includng that of Initial 
MaxPop 

population. 

Maximum number of schedules possible for a specific 
MaxSdl 

instance; indicates Complexity level of the Project 

Conversion of a possibly weak, about to be cltscarded 
Mummify, 

solution, into a Dormant Forefather; retaining the 
Murnrnifica tion 

Dorrnan t Forefather (for future revival) 

PAD 

PID 

PLV 

Percentage Average Deviation; comparative measure; 

comparison with benchmarks 

Percentage Instance Deviation for indvidual instance; 

comparative measure 

Performance Level Variation; comparative measure 

between dfferent parameter settings; for same instance 

Sweep-Creep Scheduling mechanism 

Fitness Value of schedules; unique signature; calculation 
UnoSign 

based on sequence of activity and constrained makespan 
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Published Paper 

This paper ruas proposed to  be a backgrounder for developing an algorithm to  

treamline prqect planning and implementation ~trategies Ly ddiusing possible 

rdaptation o f  tools and techniques used LJJ the world o f  Infomation Technologv. 

The present work is an extension ofthis paper, and has addressed a portion ofthe 

otal road-map. 

-his concept paper was presented at an International Conference, NICOM'04, Nirma 
lniversity, India, January 2004. Chapter in "Managing Trade, Technology and 
!nvironment". Ed. Mallikarjun, M and Chugan, PK. ISBN: 81-7446-363-x. Excel Books. 
b n  C;RK - 600 7nnd 



Towards an Optimized Algorithm for 

Scheduling and Resource Allocation of Infrastructure Projects. 
(A Background Study) 

Tridib R. Sarma 

Abstract : 

The field of Project Management OM),  because o f  its viszble impact, has shown an extraordina~ growth 

international&, eespecialb in the developed nations. Project Management tools and techniques, and the 

related Infomation .System - developed especialbfor Engineering Projects,foms an integralpart o f  modern 
n Pyect Management. But in the Developing and Underdev$loped nations, the emphasis on professional 

PM is relatiieb less. This has resded in massive over-eqenditzins and mowce loss dzie to Time e9 Cost 

ovemns. Even the developed nations are not total& free from such mismanagement. In most cases the 

improper management and execution o f  schedules is the major culprit. It becomes ve7y much evident that 

project ovemns shows its presence and impact on the macro level. However its impact on m a y  fronts can 

be gauged, controlled and remedied to a great extent at the micro level. The most important a~pect for this 

impact control and management is the Project Monitoring System. Operating this in tandem with 

professional4 laid down project schedules and correct resource allocation for the scheddedjobs in m a y  cases 

leads to a higher level o f  streamlining o f  l'yect Implementation. 

Keywords : Project Management, Algorithm, Scheduling, Resource Scheduling, Resource Constraints 
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1. Infrastructure Management 

Busmesses, mdustnes, orgamzations and natlons of every sue and focus are countmg on 

professionally managed project management slulls to make them succeed m the ever more 

compeative global marketplace. Infrastructure Management and Development, alongwith 

the related aspects of E n p e e r m g  Project Management is an area that has a dtrect bearmg 

on the National as well as International scenano for sustammg the economc as well as 

Indusmal growth of the present day. The Importance of h s  area can be gauged from the 

fact many counmes has bodes to momtor works of Infrastructural Importance. Both 

Government as well as the Industry estabhshes such bodes. Inda has a full-fledged Umon 

W s u y  with the name of b s t r y  of Project Implementation @PI) to momtor macro 

projects. On the mternational front, the leadmg body is the UNIDO. The professionals 

commg under the purview of h s  field have thelr own body with the self explamng name 

Project Management Institute (PMI), whose headquarters is m Pennsylvarua (USA), with 

Chapters all over the world. 

Project Management tools and techmques, and the related Information System - developed 

especially for especially for Enpee rmg  Projects, forms an Integral part of modern Project 

Management. Because of its vlsible Impact, the field of Project Management has shown an 

extraordmary growth mternationally, especially m the developed natlons Indviduals slulled 

m the field of Enpee rmg  and Management are gradually gravitatmg towards the 

development and management of Infrastructural Projects. 

2. Infrastructure (mis)management in developing countries 

However m the developmg and under-developed nations, the Importance attached to 

thts area, especially by the professionals and powers to be, is relatlvely low. Thls 1s 

especially true m cases of Government/Serm-Government and PSU Projects. Even a 

small-scale project cannot be completed w i h  the budgeted TIme/Cost frame. Thls 

results m massive cost overruns - runnmg mto thousands of crores of taxpayer money. 

And h g h  tune overruns - r u n m g  mto years, whch m turn 1s translated mto cost 

overruns. To  stay on top, new projects and busmess development must be completed 

qmckly, m tune and w i h  cost budget Fdure  on any of these fronts would result m 
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masslve overruns of the two most unportant resources - tune and cost. T h s  gets 

negaavely reflected on the busmess of a fum, posiuon of the related mdustry and the 

economy of the naaon as a whole. 

In case of Indla, a report of 1998 cltes the fact that dl then, the country has lost over 

Rs. 45,000 crores due to cost and tune overruns m executtng major and mega projects - 

m the Pubhc Sector. T h s  report 1s based on facts collated and released by the 

Government as well as FICCI. The major contributors to this dublous dsttncaon are 

the power, radways and steel sectors - whlch accounts for around three-fourths of h s  

cost overrun. Clttng speclfic examples of Indan context, even m short would produce 

volumes, and 1s left out of the scope of this report. However a few example of 

ne~ghbonng naaons are provided. 

At h s  juncture, ~t would be pertment to state a paradoxical fact that t h~s  data on cost 

overrun doesn't fully capture the extent of the problem. Paradomcal m the sense that 

there are certam sectors where the m e  overrun doesn't get converted to cost 

overruns. In areas hke power and petrochemcals, equipment pnces have deched 

dramaacally over the years. So we land up m a pecuhar sltuaaon where we have m e  

overrun wlthout cost overruns. In such a sltuaaon we have to fall back on alternative 

course of acUon for converting the tune overrun to cost parameters. One convement 

and plausible way 1s to use the concept of Opportumty cost m terms of the profits 

foregone and extra costs m other ways. For example, take IOC's Pampat Refinery. It 
, 

had a tune overrun of 14 months (at the tune of the sad  report), but no cost overruns, 

wlth costs frozen at around Rs. 3,600 crores (mcludmg Rs. 800 crores for an associated 

p ~ p e h e  project). Yet t h~s  delay has meant that the country had to unport more 

petrochemcal products for that per~od. Also, smce IOC would have been enatled to a 

12% post tax return for the unmedate period, when the APM d l smanhg  began, the 

delay meant that IOC actually had lost out on an addaonal profit of around Rs. 250 

crores, or around 15% of ~ t s  total profits for the year. 

To a t e  a few examples of project overruns, let us turn our attenaon towards Myanmar 

(formerly Burma). A government report m 1999 proudly stated that forelgn 

mvestments were s d l  flowmg for two Hotel projects. One had an ongmal estlrnate of 

US$50M but had dl then cost the mvestors US$85M. And the other, also esumated at 
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US$50M, had cost gong up beyond US390M. TLU the tune of reportmg, none of the 

two were completed. Another example of mfrastructural project gomg h a ~ v ~ e  m 

Myanmar was yet another foreign mvestment sponsored natural gas p ~ p e h e  to 

Thalland whlch was expenencmg 70-80% cost overruns. It is mterestmg to note that m 

th~s report, the blame IS on the rnept and mefficlent d t a r y  junta who has 'zero 

t r a m g  m econormcs, finance and mvestrnent management' 

One example from Pabstan of gross msmanagement of enpeermg project 1s the 

Samdak Project - a rmnrng and smeltmg endeavor. Thls project was ldenufied and 

proposed way back m 1974. It was delayed by two decades due to vanous operaaonal 

and admmstraave hurdles. At one tune a Chtnese D m  entered rnto the plcture and 

offered ~ t s  techmcal slulls and experhse to b d d  the project on manufacturer's credtt 

Accorchg to the jornt schedule, the pro~ect should have been completed by June 1995. 

It dld start ~ t s  test operattons in 1995, but for only 45 days. Due to the lack of a 

refinery, the bhster copper had to be transported to Chma or Iran to make it 

marketable. T h ~ s  proved to be its nemesls. The Chmese fu-m at that pomt agreed to 

b d d  a refinery agam on deferred payment schedule. But nothrng came of ~ t ,  and after 

that test run, not a slngle ton of producaon have taken place. Experts beheve that the 

Samdak Project, whch 'had been grossly msmanaged m the past, can be revlved w~th  

professional help, addmg, it must be saved m the best naaonal mterest'. 

Even the developed nauons are not free from such msmanagement. However the 

focus of thls author's work is on the developing and underdeveloped naaons. One can 

go on c ~ m g  such examples from the poorer naaons. 

In most cases the unproper management and execuaon of schedules 1s the major 

culpnt. But should one blame only those who executes the schedules2 The body, 

whch had ongmally formulated the schedules, does m most cases lay down schedules 

that are too far away from achevable reahty. T h s  is a raw truth as m most cases the 

person who would finally control the execution of the plans - the Project Manager - 1s 
not made a party of the planrung phase. Or even ~f he is made so, durrng 

lrnplementatlon phases, sltuahon crops up whlch would call for changes m the plans - 

either subtle or drastic Couple that w~th confictmg resource allocanon and madequate 

momtormg, and one can very well lrnagme the resulung chaos. A project 1s an open 
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system, fully interacting with the environment - both for input(s) as well as output(s). 

The control and feedback mechanism installed for the project is the only tool that 

attempts to keep the project w i h  track to proceed towards its logcal and physical 

conclusion. 

It is very much evident that project overruns shows its presence and impact on the 

macro level. However its impact on many fronts can be gauged, controlled and 

remedled to a great extent at the micro level. For identifying the points where these 

checks can be incorporated, one needs to go into more details into the relevant aspects 

w i h  the field of Project Management. 

3. Project Management Knowledge Areas 

PMI have identified nine areas of Project Management Knowledge. (It is worthwhde to 

note here that PMI discourages use of the term 'functions' in h s  context, as the term 

'function' has been frequently misunderstood to mean an element of a functional 

organization.) The nine Project Management Knowledge Areas are : 

i. Project Integration Management, 

ii. Project Scope Management 
. . . 
m. Project Time Management 

iv. Project Cost Management 

v. Project Quality Management 

vi. Project Human Resource Management 

vii. Project Communication Management 

viii. Project h s k  Management 

ix. Project Procurement Management 

Within the scope of this paper, we proceed further into the 31d and 4& items of the 

above list, i.e. into Project Time Management and Project Cost Management. 

Project Time Management knowledge area identifies five major processes : 

1. Activity Definition - identifying the specific activities that must be 

performed to produce the various project deliverables, 
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2. Activity sequencing - identtfymg and documentmg mteractlvlty 

dependencies, 

3. Activity duration estimation - estunatmg the number of work penods 

whch ~111 be needed to complete mlvldual acttvlttes, 

4. Schedule development - analyzmg acttvlty sequences, acttvlty durattons, 

and resource requirements to create the project schedule, and, 

5. Schedule control - controlhg changes to the project schedule. 

In Fig 1.0 one can ldenbfy the speclfic rmcro-level positlon w1h.m Project Tune 

Management Knowledge area, understandrng and controhg of whch ultunately controls 

the macro mpacts. 
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Figure 1.0 : Project Time Management Overview 
(Sourtc PMBOK) 

1.1.3 Outputs 

.1 Acttvlty hst 

.2 Supporttng detds  

.3 Work Breakdown 
Structure updates 

.I Project network 
dtagram 

.2 Acuvlty hst updates 

.1 Acttvlty duraaon 
esumates 

.2 Basts of esumates 

.3 Acttvlty hst updates 

.1 Project schedule 

.2 Supporttng detds  

.3 Schedule management 
plan 

.4 Resource requement 
updates 

.1 Schedule updates 

.2 Correcttve actton 

.3 Lessons learned 

Majot 
Processes 

&3 
5 n 

w * QJ ; c a  

8 
9 s 

a 
N u 
A .6 

c 2 
' 

k " ' a 

' a z g 
U, -c 0 4 2 ~  

1.1.1 Inputs 

.1 Work Breakdown Structures 

.2 Scope Statement 
l33stoncal Informanon 

.4 Constramts 

.5 Assumptions 

. lAc t tv l tyL~t  

.2 Product Descnptton 

.3 Mandatory dependencies 

.4 Discrettonary dependencies 

.5 External dependencies 

.6 Constramts 

.7 Assumphons 

.1 Achvltyhst 

.2 Constramts 

.3 ~ssumpt tons  

.4 Resource requrements 

.5 Resource capabhaes 
-6 f istor~cal  mfomat~on 
.1 Project network dtagram 
.2 Acnvlty duratton esttmates 
.3 Resource reqmrements 
.4 Resource pool descnpnon 
-5 Calendars 
.6 Constramts 
.7 Assumpttons 
.8 Leads and lags 

.1 Project schedule 

.2 Performance reports 
-3 Change requests 
.4 Schedule management plan 

1.1.2 Tools and Techniques 

.1 Decomposinon 

.2 Templates 

.1 Precedence dtagrammmg 
method 

.2 Arrow dtagrammmg method 

.3 Condttonal dtagrammmg 
method 

.4 Network templates 

.I Expert judgement 

.2 Analogous eshmaaon 

.3 S~mulatton 

.1 Mathemattcal analysis 

.2 Duration compression 

.3 Slmulatton 

.4 Resource levelmg heunsttcs 

.5 Project management 
software 

.1 Schedule change control 
system 

.2 Performance measurement 

.3 Addtttonal p l anmg 

.4 Project management 
software 



S ~ d a r l y ,  we can ldenafy the rmcro level aspects of Pro~ect Cost Management, and 

pmpomt the control areas under the scope of speclfic studes. This can be done m Figure 

2.0. Project Cost Management mcludes the processes requlred to ensure that the project is 

completed urlthm the approved budget. As evident from figure 2.0, ~t mvolves 4 major 

processes, VIZ. 

1. Resource Planning - d e t e r m g  what resources and what quantttles of 

each should be used to perform the project acttvlttes, 

2. Cost estimation - developmg an appromatton of the costs of the 

resources needed to complete the pro~ect acuvitles, 

3 Cost Budgeting - Allocatmg the overall cost estrmate to m&vidual work 

items, and, 

4. Cost control - controlhg changes to the project budget. 

( Major Processes 

Figure 2.0 : Project Cost Management Overview 
(Source PMBOK) 
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factor due to obvlous reasons Thus ~t 1s unperaave that these two factors are the 

pnrne factors to be controlled 

The most Important tool m the hand of the Project Manager for h s  unpact control 

and management 1s the Project Momtormg System T h s  has to operate ln tandem 

w~th  professionally laid down project schedules and correct resource docatton for 

the scheduled jobs. A plan is never staac, especially for Infrastructure Projects As 

soon as a plan 1s finahzed, somethmg endogenous and/or exogenous mandates a 

change m ~ t .  T h s  mstabhty goes on to upset the subsequent stages, most percepttbly 

the resource allocaaons It thus becomes unperattve that the resources, whch are 

h t e  m numbers and quanttty, be reallocated. For a relaavely small project, manual 

reshufflmg mght be possible, but for Infrastructure Projects, h s  mvanably demands 

a fast and mtehgent computer software, mth necessary heurlstlcs b d t  m (The 

RCPS problem, to be dsscussed shortly, is a special case of resource levehg where 

the heunsac mvolved 1s a h t a a o n  on the quanaty of resource available The 

software lncorporawg h s  set of heur~sacs would be as fast as the algorithm ~t 

follows, cetens paribus). Based on the outcomes, the project acavlttes may be 

rescheduled or resequenced. These are mvanably mter related, and demands 

maxlrnum efficiency from the Project Manager HIS only ally m h s  battle agamst 

Tune-Cost overrun 1s the Computer, and the Project Management softwares wh~ch 

forms the Project Momtonng System, whch earher was referred to as the control 

and feedback mechamsm Thls m essence 1s the Project Momtormg System, whch 

shall be henceforth referred as ProMonS 

4. Project monitoring systems 

The most unportant component of ProMonS is the Project Management Informaaon 

System (PMIS). The penodtclty of reference and reporung by ProMonS 1s a crucial 

factor, and auns at constant c h e c h g  and momtormg of the present status of the 

project. Addttlonally ~t can be smtably upgraded to predtct the future parameters of 

the project based on hstoncal and other factors. Thls can be based on any planrung 

techmque used m the enterpnse Measurement, evaluaaon, trouble-shootmg and 
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improvement of performance are the prime objectives of the PMIS. Improvement 

comes through decision-making, whch is based on information. 

A Project Management Information System generally consists of three modules - 

PMIS/T :: Time Management Information; 

PMIS/C :: Cost Management Information; and 

PMIS/R :: Resources Management Information. 

In addtion to these, the Project Monitoring System would consist of a module to 

handle information on quality and quahty standards. S d a r l y  there would be a 

module to provide information on combined exception report on the total 

performance. 

The system works on certain algorithms, whch are based on pertinent assumptions, 

rules and constraints. To improve on the working and performance of the software, 

the algorithms needs to be stucbed, and newer and latest technologcal innovations 

needs to be incorporated. 

In thls paper, attempt is made to hlghhght one such area where improvement can be 

made by incorporating the latest tools and techniques. 

5 .  Resource allocation for infrastructure projects 

Infrastructure projects depend to a great extent on machmery and equipment. These are 

usually lirmted in numbers and scarce to get. In many cases delay occurs in project 

completion due to the non-availabhty of the same machmery and equipment for 

possible parallel jobs. The problem created due to inadequate resource allocation spdls 

over to create a time-overrun problem, which in turn creates problem in the cost 

management aspect. Procuring adcbtional machmery and equipment could mitigate this 

problem. But it is a rule rather than exception that procurement of such addtional 

machmery and equipment fails to be justified from the economical point of view. 

Therefore there is a paradoxical relationshp between resources requirement and 

availabhty, and their allocation. To study and analyse tlus situation, h s  problem has 

been brought into focus worldwide by the name of Resource-Constrained Scheduling 

Problem, or RCS Problem. 

Appendut I1 # Page 200 
Formulation OF an Optimized Algorithm For Kesourcc Scheduling and Allocation in Projects : A Genetic Algon'fhms Approach 



6. The Resource-Constrained Scheduling Problem; and Resource Allocation 

under Constraints 

The RCS problem, and the related resource allocation problem, has been evolved over a 

period of time. It has been studied from a number of angles, for varied applications. It 

initially started with job sequencing in the Shop-Floor, and allocating h t e  number of 

machmes, operators, etc. Presently h s  problem is also being studled for application in 

the area of hardware resource allocation, in the field of computing. And over time, thls 

problem got spdled over into the area of Project Management. 

For application into the area of Project Management, the problem was rechristened as 

the Resource-Constrained Project Scheduhg Problem (RCPSP). A RCPSP consists of a 

set of tasks, and a set of finite capacity resources. Each task puts some demand on the 

resources. A partial ordering of these tasks is also given specifying that some tasks must 

precede others. Generally the goal is to minimize makespan without violating the 

precedence constraints, or over-uthzing the resources. The prime focus of h s  problem 

is the formulation of the sequence of jobs (events and activities) for optimal ualtzation 

of the resources (usu. reusable) keeping into account the temporal restrictions. Thus 

there are resource constraints as well as sequence rules. 

Formally, the RCPS problem can be depicted as follows : 

Given : a set of tasks, T, 

a set of resources, R, 

a capacity function, C : R +N, 

a duration function, D : T +N, 

a uultzation function, U : T x R + N, 

a partial order, P on T, and 

a deadhe, d. 

Find : An assignment of start times S : T +N, satisfying the following : 

a) Precedence constraints : If t, precedes t, in the partial order P, 
then S(t,) + D(t,) I S(tJ 

b) Resource constraints : For any time x, let mnning(x) = {t 1 S(t) < x < S(t) 
+ D(t)). Then for all times x, and all r E R, 

C, €n,t,t!,(x,U (t,r) 5 C (4. 
: For all tasks t : S(t) 2 0 and S(t) + D(t) < d. 

-- - 
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One needs to understand this problem and its intricacies, the assumptions, etc. applied tLU 
- date alongwith the tools and techniques used to solve it. T h s  leads to identification of 

niches w i t h  it where studes can be carried out for improvement 

Formulating the total job sequence right from start of the project uLI its end (completion, 

or abandonment), with possible parallel paths, and simultaneously allocating resources has 

been attempted with the help of many methods and algorithms, classically with Network 

Analysis. With time, contemporary techniques - mostly evolving in the area of Operations 

Research, were used to take the RCPSP towards its optimal solution. A study of recent 

works in thls area reveals that the latest trend is the application of techniques hke Genetic 

Algorithm (GA), Neural Networks (NN), Machine Learning. (ML), etc amongst others 

7. Literature review 

A number of works have been carried out for obtaining the near optimal solution of the 

RCS problem for application in Production S c h e d h g .  The application of resource- 

constrained s c h e d h g  and allocation algorithms, and related topics as applicable to the 

field of Infrastructure Projects is however relatively less. In the following paragraphs, an 

attempt is made to capture the summary of a few of the works done, especially in the later 

area in recent times. 

One of the pioneering work done specifically in this field was by Balas E. (1971) who laid 

down a structural approach that involves a generalization of both the dtsjunctive graph 

method in job shop s c h e d h g  and the order theoretic methods for precedence 

constrained scheduling. 

In 1982, Lawler E.L. et a1 provided a conceptual summary of works and developments 

done in the area of deterministic s c h e d h g  and schedulmg. 

Bartush M. and co-workers provides a number of pioneering and referential works in the 

area of algorithm generation for schedulmg problems in construction industry. They have 

also produced literatures for integrating computers with project schedulmg. 
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Lenstra et a1 provided a treatment for solving complexities of s c h e d h g  project 

networks with precedence constraints. 

- 

During the mid '80s, a number of algorithmic works on project networks scheduhg and 

resource allocation were carried out by Mohring R.H. as well as Radermacher F.J., both 

jointly as well as independently. 

Crawford, J.M. approached the RCPS problem by a combination of l u t e d  discrepancy 

search (LDS) with a novel optimization technique. He arrived at a near final form 

heuristics for problems of realistic size and character. T h s  work have been run on a series 

of problems made available by Barry Fox of McDonnel Douglas and Mark Ringer of 

Honeywell, serving as Benchmarks Secretary in the AAAI Special Interests Group in 

Manufacturing and in the AIAA Artificial Intehgence Technical Committee respectively. 

Patterson J. et a1 applied the Integer Programming algorithm to project networks for 

solving the RCS problem. 

Presently works in h s  area is being actively carried out at a number of Universities and 

Institutions of international repute, especially at Monash University, Australia, Christian- 

Albrechts-Universitat zu Gel ,  Germany, Technische Universitat, Berlm, etc., where 

application potential of newer tools and techniques (of Artificial Intelligence and OR) 

have been studted. 

To understand the mechanisms of a dynamic system, the use of System Dynamics is one 

good tool. Love, P.E.D, et a1 aptly captured thls, in a paper in 2001, where they used 

System Dynamics to understand change and reworks in the construction projects. T h s  

powerful tool can be adapted to generate scenarios, and synthesize data sets. 

Project Management was provided with a radically new methodology - SYDPIM, which 

integrates the use of System Dynamics simulation models with the tradttional 

PERT/CPM network models. m s  was the out come of a massive UI< d t a r y  software 

project under the stewardship of Rodrigues, A.G. at the University of Strathlcyde. 
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A related but not exactly the same field of study is process resequencmg. Here the whole 

work sequence 1s altered, without violatmg rules and precedence, and alternaave 

sequences are developed. Then these new sequences are subjected to study for identtfymg 

a (set of) better possible alternaave to the ongmal sequence. Attempts to apply GA to h s  

were carned out by Altus S.S. et a1 and Rogers J L. 

The u n v e h g  of a number of techmques used for solvlng Arttficial Intelhgence (AI) 

problems have thrown open the posslbhty of further easmg the RCS and related 

problems for Project Management. 

Holland H.J. m 1975 prov~ded the pioneermg work m adaptmg Natural Systems' 

processes for Arhficlal Systems. He laid the foundations for A1 techruques. 

A number of works were produced m the area of mcorporatmg A1 techmques m solvmg 

the RCPSP. Hartmann S. and I<ohsch R. are the two major contributors m h s  area. Most 

of thelr works were carried out m the late '90s all date. 

Alvarez-Valdes R. et a1 described a heurisac algonthm based on e m p ~ ~ c a l  analysis for the 

RCPSP m the late '80s. S~rmlar work was done by Botor F. m early '90s. Drexel A. et a1 

gave new m o d e h g  concepts and studed thelr mpacts on the RCS problem. Neumann 

and Franck provlded some structural questions and priority-rule methods for the RCPSP 

w ~ t h  time wmdows In a few other works, Neumann was asslsted by Zlmmermann J. 

In 1995, Rabelo L. et a1 attempted a hybrid approach for real tune sequencmg and 

scheduhg problems. They used NN, GA, Smulatton and Machtne Learntng for thelr 

study. 

Stork, F. m a paper m 2000 studled the problem, and came out with a Branch and Bound 

algorithm for a stochastic setup of the RCPSP. 

Walker, E.D attempted a DBR (Drum-Buffer-Rope)-based approach to scheduhg 

resource-constramed multtple projects, and compared hls proposed heuristtc with more 

conventtonal methods, esp. PERT based ones. 
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Upon exammmg these recent works, ~t was ready apparent that there are many 

assumpaons, most common bemg that once a "proper plan" is created there 1s httle need 

for control. Then there are works that have used certam "rules", but whlch In practlce is 

not feasible. And a few of them have operated on statlc project enwonment These and 

other shortcommgs pout  out the possible ruche where new works can be carned out 

8. Problem formulation and methodology for solution 

By systema~cally changmg the rules, by consciously dscardmg and/or modlfymg the 

assumpaons and by modfymg constramts on araficlal scenanos and data sets, one can 

deplct a project as dynamc. The resultant changes due to these dynamcs are next 

attempted to be taken care of by shfung the resource alloca~ons T h s  m essence 1s the 

methodology to be followed for t a h g  the RCPS problem towards a optunal soluaon. 

Amongst the vanous research paradgms, the methodology proposed to be u&ed shall 

be one used umversally for algonthm deslgn, 1.e. Deegn-Development-Vahdatmn Slnce 

ths  paper 1s prepared as a background study, the detds of the methodology and other 

aspects IS kept beyond ~ t s  scope. But m essence, the RCPS problem 1s presently bemg 

experunented wlth apphcaaon of latest tools and techmques used for solvmg A1 

problems (based on adaptatton processes of the B~ologcal World) for arrivmg at an 

optunal soluaon. Geneuc algonthms are bemg heavdy used m h s  type of sltuatlons 

where certaln patterns exlst, and shlfts occur w ~ h  the patterns. Or otherw~se, 

externahtles exlst or are rncorporated that tnggers a change m the patterns. Another 

powerful techmque 1s the use of Neural Networks. T h s  1s to be used for unpartmg 

mtelhgence to the algonthm, so that to a great degree the system itself can predct or be 

able to control changes, and lead to adopbon and adaptation. The algonthrns so 

developed are based on synthehc data sets, avadable from dgta l  hbranes of dfferent 

Umversltles and Insutuuons. Alternately, data sets and scenanos are generated by 

hfferent su-nulaaon methods. T h s  pathway is flustrated as Figure 3.0. 
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Figure 3.0 : Pathway for developing the Algorithm 

Use GA for ~denl~fylng exact set of 
squcncc and allocat~on 

I 
I 
I 

check~ng robustness 

9. Conclusion 

Ths  paper has gven only the background of the topic. Because of its inherent nature, 

Infrastructure Project Management is a field of dynamic changes. The changes, both 

endogenous as well as exogenous, affect the plans and the related matters. Whch m most 

cases is translated to time overrun, or cost overrun, or both. For assisting the Project 

Manager, the PM software has to be incorporated with necessary fast and efficient 

algorithms. For developing and improving such algorithm, it is necessary to understand 

the dynamics of the changes involved, their impacts as well as the reactions required to 

control the varianon(s) due to these changes. 

T h ~ s  paper hlghhghts one mcro level problem, understandmg of whtch has a great impact 

on the macro level. Unless the Project Manager is fully equipped with the latest tools, 

incorporating the best and most efficient techniques, Time-Cost overruns would continue 

to plague the industry, and the economy as a whole. Thus an attempt shall be made to 

attack the Resource-Constrained Project S c h e d h g  problem with a set of new methods. 

Studies in thls duection have started only recently, and h s  author expects to further the 

studles. Subsequent write-ups shall highhght the outcomes of works by h s  author 
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Appendi  III 

Extension of BATGA 

A feature of the scheduling mechanism used for B A T G A  demonstrates an 

abihg to reqond to dynamic inte fference of input information. This fiature ir 

tentativeb tested for extension of B A T G A .  Being in its formative stages the 

formal report ir held back. 



The Sweep-Creep procedure developed for scheduling in BATGA demonstrates an 

abllity to respond to dynamic interference of input information. T h s  feature is 

tentatively tested for extension of BATGA. Being in its formative stages the 

formal report is held back. 

The Sweep-Creep algorithm is reproduced here, 

For scheduling the 'mth' task in the sequence, 

Start from begnning of the stub 

(1) Check (Sweep for) avadability of all resources at time slot t 

If avdable for total duration of the activity, 

Place the task at that time slot 

Else shlft(Creep up) one time-step ahead and Sweepcreep from(1) 
all over, 

Until 

a) either the task is placed, 

b) or end of the stub is reached 

If end of stub is reached 

Place the task at h s  end position 

Pick up next task of the sequence for scheduling. 

The Sweep-Creep Algorithm - 

At point (I), the algorithm checks status of resource availability in time slot, 't'. 

Every time the algorithm arrives at t h s  position, a check is made. This feature was 

exploited for testing response of our algorithm to external interference. 
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After the data-input segment of BATGA reads input information, the same 

placed in memory for subsequent processing. BATGA is now allowed to process 

the project information, as is normally expected of a Genetic Algorithm for 

project scheduling. 

We place a function witlun the program that randomly interferes with pertinent 

project information currently in store. Changing input information of one project 

with that of another project does h s .  For doing so, based on a random function, 

the data-input segment reads another project. The resource requirement of the 

current project is then replaced by those of the new project - but only of those 

activities yet to be scheduled in the current project. Ths ,  we decided, reflects a 

situation where the resource requirements of some activities change midway of 

processing a project for an optimum schedule. 

We had no comparative information / result to check accuracy and efficiency of 

BATGA's response. But the effectiveness was amply demonstrated. Because it is 

a Genetic Algorithm, BATGA proceeds with its processing irrespective of any 

change in problem data. The resultant is a change in makespan from the optimal, 

but whch is otherwise expected - as a reaction to change in exogenous 

interference. 

However, thls feature is yet to be fully experimented with. Being in its formative 

stage, we refrain from mahng a formal report, and have therefore appended 

rather than made it a feature of the main text. 

Annexure I11 # Page 211 
Forrnulatlon of an Opbrmzcd Algorithm for IZc~ourcc Scheduhng and Allocauon In Projects r\ Genc/~cA/gonlbms Approach 



and 

We include the digital sources (data-set, results, etc) and literature sources lprinted 
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