
r--

C

fE

.cces-·

/

f

A Study on Association Rule Mining
Algorithms in Data Mining

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

Anjan Das

Regn No: 029 of 1995

School of Science and Technology

Department of Computer Science and Information Technology

Tezpur University

April, 2006

Abstract

Different domains such as financial investment, health care, manufacturing and

production, telecommunication network, scientific domains, etc. have collected

huge amount of data due to advancements of database technologies. It has

been observed that these databa.')es contain various types of hidden patterns and

knowledge, which can be used for different purposes. KDD(Knowledge Discovery

in Databases) is the subject which deals with discovery of hidden patterns in

large databases. KDD is a long process and data mining is just a part of whole

KDD process. More formally, data mining is defined a.') non-trivial extraction

of implicit, previously unknown and potentially useful information from large

databases. Data mining is not a single subject. It is a result of confluence

of many inter-disciplinary subjects such as statistics, machine learning, neural

networks, information retrieval, database technology, etc. Data mining is not a

simple task either; it is a very challenging task. Some of the main challenges of

data mining are large data set and high dimension, user interaction and prior

knowledge, over-fitting and a.')sessing the statistical significance, understanding

the patterns, non-standard and incomplete data, mixed media data, management

of changing data and knowledge, integration, etc. As far as applications are

concerned, data mining has wide area of applications - loan repayment prediction,

crime detection, risk analysis, target marketing, banking, etc.

Association rule mining is one type of data mining techniques and also known

as market-basket problem. Association rules were first discussed by Agarwal et

al. in 1993 and find the influence of one set of items/attributes over another set

of items/attributes. One example of an association rule may be "When people

buy bread, they also buy butter 70% of the time". Associat.ion rules have wide

range of applications. Some of the domains where association rules have been

used successfully are business, engineering, medicine, telecommunications, etc.

Some more applications of association rules are: market basket analysis, finan

cial services, fraud detection, partial classifications, understanding customers'

buying patterns, etc. The important, keywords used in the context of association

rules are: itemset, support, candidate itemset, frequent / large itemset, confi

dence, minimum support, etc. Itemset is a non-empty set of items/attributes.

Support of an itemset X is the percentage of records /transactions or number

ii

of records/transactions in the database containing the itemset. Frequent/large

itemset is the itemset with support greater than a minimum threshold value.

Generally, association rule mining is a two step process - first step finds frequent

it.emset.s and second st.ep finds associat.ion rules among frequent. it.emset.s. Be

tween them, finding frequent itemsets is more challenging and interesting task.

That is why, most of the research works concentrate only on the first step i.e. de

veloping fast and efficient algorithms to find frequent itemsets in a large database.

For these reasons, the thesis also concentrates mostly on frequent itemsets finding

algorithms in large databases .

. There exist algorithms to find frequent itemsets. However, most of the algo

rithms are not efficient and scalable. Among the existing algorithms, ApTioTi

is one of the popular and robust algorithms to find frequent itemsets in static

databases. However, the algorithm generates too many unnecessary candidate

sets, which is responsible for exponential execution time of the algorithm. An

other very recent popular algorithm is BiLAssocRule algorithm, which uses the

same technique as ApTioTi and bitmaps of the attributes to find support counts

of the candidate itemsets. This algorithm also generates too many unneces

sary candidate sets. The thesis has reported modified versions of these two

algorithms (Modified-ApTioTi and Modified_Bit-AssocRule) which generate less

number of unnecessary candidate sets in lesser time. These modified algorithms

have ,used Boole's inequality to generate candidate sets with high probability to

become frequent itemsets. Experimental results have shown that the modified

algorithms generate much less number of candidate sets in comparison to their

parent algorithms.

Another popular technique to find frequent itemsets from large databases is hori

zontal partitioning algorithm. The partitioning algorithm partitions the database

horizontally and finds frequent itemsets in each partition. Then, these frequent

itemsets are merged together to find the final frequent itemsets. However, it

has been observed that this technique is not effective for larger dimensions. In

addition to that, execution time increases exponentially with the increase of

number of partitions. The thesis has reported one algorithm using vertical par

titions. Experimental results have shown that this technique is more effective in

databases with larger dimensions and execution time decreases with the number

of partitions.

iii

Nowadays, most of the databases are dynamic. Finding frequent itemsets in

dynamic databases is a challenging task. There exist some algorithms to find

frequent itemsets in dynamic databases. One of the popular and robust algo

rithms to find frequent itemsets in dynamic databases is Bor'ders algorithm. The

algorithm uses border sets to find frequent itemsets in updated database. How

ever, the algorithm suffers from the drawback of having to scan the old database

very frequently, which in turn increases the execution time of the algorithm. To

solve this problem, the thesis has reported a modified version of the Borders

algorithm (Modified_Borders), which uses two border sets instead of one border

set. It has been observed from the experimental results that the modified algo

rithm does not scan the whole database frequently. Hence, execution time also

significantly lesser than that of the original Borders.

So far, there has been a little work, to the best of our knowledge, to find frequent

itemsets in distributed dynamic databases. Existing algorithms to find frequent

itemsets in dynamic databases cannot be used directly in distri~:>uted environ

ment. So, ,the thesis has reported a distributed algorithm (Distributed_Borders)

to find frequent itemsets for distributed dynamic databases. The scalability

experiments showed that execution time increases linearly with the increase in

.size of the databases and speed-up experiments showed that algorithm achieves

sub-linear speedup.

KDD process and machine learning techniques take too much time when applied

on databases with irrelevant features. So, relevant feature selection is an impor

tant task in machine learning techniques. There exist some algorithms to select

relevant features. These algorithms use different criteria to decide whether a fea

ture is relevant or not. Moreover, it has been observed that there has been very

little work done to select relevant features using frequency (support) count of

the features. The thesis has reported one algorithm, called FFC (Feature selec

tion using Frequen.cy Count) to select relevant features using frequency (support)

count of the features. Experimental results showed that the algorithm is equally

efficient with its counterparts such as Branch & Bound, Relief, Focus, etc. The

main advantage of the algorithm is that it is very easy to implement in compar

ison to its counterparts.

View selection is an important technique in a data warehouse system. Here,

iv

the problem is to select an optimum views for materialization so that the query

response time is minimized. The existing algorithms have used very complex

techniques to select the views. As a result, these algorithms take too much time

to select the views. The thesis has reported a very simple algorithm, called D V

MAFC (Density-based View Materialization Algorithm using Frequency Count),

to select the views. The algorithm selects the views based on the benefit of the

views, access frequency of views, frequency!support count of sub-views, size of

the views, frequency of updated (insert, edit, delete) operations on each view and

number of rows affected by the update operations. The important concept used

in the algorithm is the use of concept of density to form clusters of the views and

then select the views from the clusters. Another concept is the use of supports of

the sub-views to select the views because it has been observed that the support

of the sub-views help select better views for materialization. The algorithm was

compared with one of t?e popular algorithms called PVMA (Progressive View

Materialization Algorithm). It was observed from the experimental results that

DVMAFC selects better views than that of PVMA. The main advantage of DV

MAFC over PVMA is the execution time complexity which is only O(nlogn) in

comparison to O(n'2) in case of PVM.:{'wliere n is the total number of views.

The thesis has concentrated mainly on the first step of the association mining

problem, i.e. frequent itemset finding because, the second step i.e. rule gener

ation task is quite trivial. It has analyzed important algorithms and reported

improved versions of some of the important algorithms, The thesis has also re

ported two new algorithms - one for feature selection and the other for view

selection. Association rule mining being a vast area of research, it is not possible

to explore every aspect of it in a stipulated period of time. So, there are still

ample scopes for future works. Some of the future works are as follows.

1. To extend the existing developments to enable to work over spatial, tem

poral ana high dimensional data such as gene expression data, protein

synthesis data, etc.

2. To explore the possibility of developing better and robust association min

ing algorithms using soft computing approach to discover more compre

hensive and interesting patterns.

v

3. To develop better and robust dynamic rule mining algorithms over huge

market-basket data as well as other huge data source such as quantitative,

temporal and spatial data.

vi

Declaration

I hereby declare that the thesis entitled A Study on Association Rule Mining

Algorithms in Data Mining submitted to the Department of Computer Science

and Information Technology. Tezpur University has been carried out by me and

was not submitted to any other institution for awards of any other degree.

Date: April 5, 2006 Anjan Das

Place: Shillong

TEZPUR UNIVERSITY

This is to certify that the thesis entitled JI Stud) on JIssociation (j{ufe

:Mining JICgontlims in (])ata :Mining submitted to Tezpur University in the

Department of Computer Science and Information Technology under the School

of Science and Technology in partial fulfillment for the award of the Degree of

Doctor of Philosophy in Computer Science is a record of research work carried

out by :Mr. JInjan (])as under my personal supervision and guidance.

All helps received by him from various sources have been duly

acknowledged.

No part of this thesis has been reproduced elsewhere for award of any other

degree.

Date: '2. 5 .I..t . ~006

L
Signature of pr~ervisor
Designation: Professor

School: Science and Technology

Department: Computer Science

and Information Technology

TEZPUR UNIVERSITY

This is to certify that the thesis entitled jI Stuay on jIssociation 1(ufe

Wining jI{gontfims in (j)ata Wining submitted by Wr. jInjan (j)as to

Tezpur University in the Department of Computer Science and Information

Technology under the School of Science and Technology in partial fulfillment

of the requirement for the award of the Degree of Doctor of Philosophy in

Computer Science has been examined by us on _____ _ and found to

be satisfactory.

The Committee recommends for the award of the degree of Doctor of

Philosophy.

Signature of:

Principal Supervisor External examiner

Associate Supervisor

Co-Supervisor

Date ------

List of Tables

3.1 A Sample Database - I 40

3.2 Parameters for Synthetic Databases - I 48

3.3 Parameters for Synthetic Databases - II . 56

3.4 A Sample Database - II. 62

3.5 Bitmaps for The I tern Attribute Values. 62

4.1 A Sample Database - III 80

4.2 Parameters for Synthetic Databases - III 81

4.3 A Sample Database - IV 88

4.4 Parameters for Synthetic Databases - IV 90

4.5 Parameters for Synthetic Databases - V . 96

5.1 TOld - I 104

5.2 Tnew - I 104

5.3 Told - II 110

5.4 Results - I 110

5.5 Tnew - II 111

5.6 Results - II 111

ix

LIST OF TABLES x

5.7 Parameters for Synthetic Databases - VI 112

5.8 Comparison on Whole Database Scan for Database T2014100K. 112

5.9 Comparison on Whole Database Scan for Database T20I6100K. 113

5.10 Comparison on Whole Database Scan for Database Connect4 . 113

5.11 Parameters for Synthetic Databases - VII 123

6.1 Experimental Results of Relief, B f3B, Focus, LVF and FFC ... 140

7.1 PVMA Example

7.2 Representation of Views

149

152

List of Figures

1.1 KDD Process 3

1.2 Three-tier Architecture of Data Mining 4

1.3 Data Mining as a Multi-Disciplinary Subject 8

3.1 Example of Ap1lori Algorithm. . 44

3.2 Example of AprioriTid Algorithm 46

3.3 Experimental Results of Apriori,AprioriTid & AprioriHybrid - I 48

3.4 Experimental Results of Apriori,AprioriTid & AprioriHybrid - II. 49

3.5 Experimental Results of Modified_Apriori - I .

3.6 Experimental Results of Modified_Apriori - II

3.7 Experimental Results of Modified_Apriori - III

3.8 Experimental R.esults of Modified_Ap1io1i - IV

3.9 Experimental Results of Modified_Apriori - V

3.10 Experimental Results of Modified_Apriori - VI

3.11 Experimental Results of Modified_Apriori - VII .

3.12 Experimental Results of Modified_Apriori - VIII

3.13 Experimental Results of Modified_Apriori - IX

Xl

57

57

58

58

59

59

60

60

61

LIST OF FIGURES xii

3.14 Example of BiLAssocRule Algorithm 65

3.15 Experimental Re~:mlts of Modified_BiLAssocRule - I 68

3.16 Experimental Results of Modified_BiLAssocRule - II . 69

3.17 Experimental Results of Modified_BiLAssocRule - III 70

3.18 Experimental Results of Modified_BiLAssocRule - IV 71

3.19 Experimental Results of Modified_BiLAssocRule - V . 72

4.1 Experimental Results of Horizontal Partition - I . 81

4.2 Experimental Results of Horizontal Partition - II 82

4.3 Experimental Results: HP & VP - I . 90

4.4 Experimental Results:HP & VP - II . 91

4.5 Experimental Results:HP & VP - III 92

4.6 Experimental Results: HP & VP - IV . 93

4.7 Experimentall{esults:HP & VP - V . . 94

4.8 Experimental Results of FP-growth(Database: T20I4DlOOK) 97

4.9 Experimental Results of FP-growth(Database: T20I6D100K) 97

5.1 Border Set 101

5.2 Average Execution Time for Borders & Modified_Borders (For Var-

ious Values of;(J') - I . 113

5.3 Average Execution Time for Borders & Modified_Borders (For Var

ious Values of f3') - II

5.4 Dist1"ibuted_B01·de1·s Architecture.

5.5 Execution Time of Dist1"ibuted_Bo1·de1"s for different Minimum Sup-

114

118

ports (minsup) 124

LIST OF FIGURES xiii

5.6 Execution Time of Distributed_Borders for different Database Sizes 125

5.7 Execution Time of Distributed_Borders for different Number of Sites125

6.1 Branch and Bound Search Tree . . . 130

7.1 A 3-D Data Cube Representation 143

7.2 A Lattice 145

7.3 Neighborhood, Core Points, etc. 151

7.4 Average Query Cost ('000 tuples) of DVMAFC & PVMA - I 157

7.5 Average Query Cost ('000 tuples) of DVMAFC & PVMA - II . 158

7.6 Execution Times of DVMAFC & PVMA - I 158

7.7 Execution Time of DVMAFC & PVMA - II 159

List of Algorithms

3.1 Apriori 42
3.2 A priori Tid. . . . 45
3.3 M odified~ priori 54
3.4 BiLAssocRule 64
3.5 M odified_BiLAssocRule . 66
4.1 Partition 77
4.2 Vertical Partition 85
5.1 Borders (Addition) ... 103
5.2 Borders (Addition a~d Deletion) . 106
5.3 Modified_Borders .. 109
5.4 Dist1-ibuted_B orders . 121
6.1 Branch f1 Bound 131
6.2 Relief· 133
6.3 Focus . 133

6.4 LVF 135
6.5 FFC 138
7.1 PVMA .. 148
7.2 DVMAFC. .. 155

xiv

Acknowledgment

First of all, I would like to express my profound sense of gratitude and sin

cere thanks to my supervisor Prof. Dhruba Kr. Bhattacharyya, Department of

Computer Science and Information Technology, Tezpur University for his sug

gestion to undertake the study of this challenging topic and his able guidance in

completing the work. His patience in this regard is praiseworthy.

I acknowledge with a deep sense of gratitude and appreciation the exchange of

ideas with Prof. Dilip Kr. Saikia, Prof. Malayananda Dutta, Dr. Rajib Kr.

Das, Dr. Smriti Kr. Sinha, Mr. Nityananda Sarma, Mr. Sarat Saharia and all

other faculty members of the Department of Computer Science and Information

Technology, Tezpur University.

I am also thankful to Mr. Bhogeshwar Borah of Tezpur University who equipped

me with necessary information and study materials for this venture. I also thank

him for giving me various suggestions from time to time.

My special thanks are also due to Dr. Shyamanta Moni Hazarika of Tezpur

University wilo li:a1:i been a: corist<i{nt" saurtEr of'~encoura:gemefir alrd inspiration

from the time of preparation of the thesis till its completion. I also thank him

for going through the thesis carefully and his valuable comments.

I would also like to thank those who took pain to review all my papers that were

submitted in various conferences or published in different journals.

I would also like to thank Dr. N. C. Bharali of St. Anthony'S College, Shillong

for his willingness to go through the thesis carefully and fine tuning it. I also

thank him for his valuable suggestions in this regard.

I feel obliged to Fr. Joseph Nellanatt, Head, Dept. of Computer Science, St. An

thony's College for his constant encouragement. He deserves my sincere thanks

for being flexible which enabled me to go to Tezpur University whenever situation

demanded. I am also thankful to him for allowing me to do some experiments

in the labs as well as use the resources in the department.

I am thankful to Fr. Stephen Mavely, former Principal of St. Anthony'S College.

Shillong and Fr. 1. Warpakma, Principal, St. Anthony's College, Shillong who

had given me necessary permission to undertake this work.

xv

I would also like to acknowledge the help and constructive criticism offered by

my friends and colleagues during the course of the study. In this regard, I am

indebted to Miss Aiusha V Hujon, Lecturer, St. Anthony's College, Shillong for

helping me draw certain difficult figures, Mr Basav Roy Choudhury, Lecturer,

St. Anthony's College, Shillong for his generous help, suggestions and encourage

ment in difficult times and Mr. Shantu Saikia, Lecturer, St. Anthony's College,

Shillong for helping me in all possible ways.

Finally, my tha~ks are particularly due to my parents, brothers, sisters and other

family members for their patience, help and encouragement during the course of

the study which enabled me to complete the work with full devotion.

Anjan Das

xvi

Contents

1 Introduction 1

1.1 What is Data Mining . 1

1.1.1 Definitions . . . 5

1.1.2 True Data Mining. 7

1.2 Data Mining as a Multi-disciplinary Subject 7

1.3 Data Warehouse and Data Mining. . 9

1.3.1 Data Cube, Cuboid and View 10

1.4 Challenges of Data Mining . . 11

1.5 Applications of Data Mining . 12

1.6 Different Types of Data Mining Techniques . 13

1.6.1 All Patterns Are Not Interesting. 14

1.7 Association Rule Mining 14

1. 7.1. Some Applications 15

1.8 Motivation. 16

1.9 Scope of The Thesis 19

1.10 Organization of The Thesis 20

xvii

CONTENTS xviii

2 Review 21

2.1 Finding Frequent Itemsets in Static

Databases .. 22

2.1.1 Distributed and Parallel Algorithms . 25

2.1.2 Multilevel Association Rules Mining. 26

2.1.3 Multidimensional Association Rule Mining 27

2.1.4 Spatial Association Rule Mining. 30

2.1.5 Constraint-based Association Rule Mining 32

2.2 Finding Frequent Itemset in Dynamic

Databases 34

2.3 Interestingness of Association Rules . 36

2.4 Multi-Objective Rule Mining. 36

2.5 Feature Selection 37

2.6 Discussion 38

3 Frequent Itemsets in Static Databases 39

3.1 Basic Concepts 40

3.2 Some Existing Algorithms 41

3.2.1 Apriori . .. 41

3.2.2 AprioriTid . 44

3.2.3 . AprioriHybrid . 47

3.2.4 Experimental Results . 47

3.2.5 Discussion 50

3.3 The Modified_Apriori Algorithm. 51

CONTENTS xix

3.3.1 Background.. 52

3.3.2 The Algorithm 53

3.3.3 Candidate Generation 53

3.3.4 Experimental Evaluation. 55

3.3.5 Using Multiplication Law of Probability to Generate Can-

didate Sets 61

3.4 Using Bitmaps to Find Frequent Itemsets . 62

3.4.1 BiLAssocRule Algorithm 63

3.4.2 Modified_BiLAssocRule Algorithm. 65

3.5 Discussion.................. 72

4 Frequent Itemsets Using Partitioning ... 74

4.1 Partition Algorithm .. 74

4.1.1 The Algorithm 75

4.1.2 Generation of Local Large Itemsets and Global Large Item-

sets. 76

4.1.3 An Example. 79

4.1.4 Experimental Results . 80

4.1.5 Discussion 83

4.2 Vertical Partition Algorithm 83

4.2.1 . The Algorithm 83

4.2.2 Generating Large Itemsets in a Partition 84

4.2.3 Combining Local Large Itemsets . 84

4.2.4 Support Count 87

CONTENTS xx

4.2.5 An Example. 88

4.2.6 Discussion.. 88

4.2.7 Experimental Results . 89

4.3 FP-growth and Vertical Partition 95

4.3.1 Experimental Results . 96

4.4 Discussion........... 96

5 Frequent Itemsets in Dynamic Databases 99

5.1 Borders Algorithm. 100

5.1.1 An Example 104

5.1.2 Deletion ... 105

5.1.3 Changing of Threshold 105

5.1.4 Discussion 105

5.2 Modified_Borders Algorithm. 107

5.2.1 The Algorithm 108

5.2.2 An Example 110

5.2.3 Experimental Results 111

5.3 Distnbuted_Borders 116

5.3.1 Distributed Algorithm For Maintaining Frequent Itemsets

in Dynamic Database . 117

5.3.2 . Local Pruning 120

5.3.3 Explanation of the Algorithm . 122

5.3.4 Experimental Results . 123

5.4 Discussion 126

CONTENTS

6 Feature Selection

6.1 Some Existing Feature Selection Algorithms

6.1.1 Brunch and Bound

6.1.2 Relief

6.1.3 Focus.

6.1.4 LVF

6.1.5 Discussion

6.2 The FFC Algorithm

6.3 Experimental Results.

6.3.1 Datasets Used .

6.3.2 Experimental Setup.

6.3.3 Results .. '

6.3.4 Observations

6.4 Discussion

7 Data Cube Materialization

7.1 Data Cube Lattice

7.2 Progressive View Materialization Algorithm (PVMA)

7.2.1 The Algorithm

7.2.2 Analysis

XXI

127

129

129

130

132

134

134

136

139

139

140

140

141

141

142

145

146

147

149

7.3 View Materialization Algorithm using Frequency Count. 149

7.3.1 Definitions

7.3.2 Frequent Sub-views .

150

152

CONTENTS xxii

7.3.3 Benefit of a Neighborhood . 153

7.3.4 The Algorithm(DVMAFC) . 153

7.4 Experimental Results . 154

7.5 Discussion....... 156

8 Conclusion and Future Works 160

8.1 Finding Frequent Itemsets Plays an Important Role in Association

Rule Mining 160

8.1.1 Solutions Provided 161

8.1.2 Partitioning is Another Good Approach 161

8.2 Finding Frequent Itemsets for Dynamic

Databases 161

8.3 Feature Selection 162

8.4 View Materialization 162

8.5 Future Works 163

I

D

t

t.seLof _items

X,Y,Z

A,B,E,G,H,J,K,Q

R, S, A l , A2 , A3 , A4 , A5

Xk

Sup(X)

k - itemset

s

minsup

conf

minconf

X=?Y

p(X =? Y)

C
L

a, b, h, l2

C

c[i], a[i], b[i]
c.count '

C(t)

Ck

Lk
TID

t.TID

Ck

P(A)
P(A n B)
P[i]
PA

List of Symbols

Set of all items/attributes in a database.

A database.

A transaction in D.

Set of itemsets contained in t.
Non-empty set of items/attributes:

Item/ attribute.

Item/ attribute.

A non-empty set of k items.

Support of an itemset X.

An itemset with k items.

Support.

Minimum support.

Confidence.

Minimum confidence.

Association rule between X and Y.

Confidence of X =? Y.

Set of all candidate itemsets.

Set of large itemsets.

Frequent/large itemsets.

Candidate itemset.

ith item in the itemset.

Support count of the candidate itemset c.

Candidates contained in transaction t.
Set of candidate k-itemset.

Set of large k - itemsets.

Transaction ID.

TID of the transaction t.

A set, where each member is of the

form < TID, {Xd >.
Probability of the event/item/feature/view.

Probability of occurring events A and B together.

Probability of ith item/attribute/feature.

Array of probabilities.

LIST OF SYMBOLS

(3
ITI
IMLI
p

p,q

np

Pi

~
If:
tidlist

c.tidlist

cr
Lt
Cf!
CG

Lf
£i
LG

Si

(3'

T~ld
~ew
Told

Tnew

Tdel

T~hole
Twhole

Laid

Bald

B:Xd
B" old

B:Uhole

Real number.

Average size of a transaction.

Mean size of a potentially large itemset.

Set of all partitions in D.

A partition in D.

Number of partitions.

ith partition.

A local candidate k-itemset in partition p.

A local large k-itemset in a partition p.

Array of T IDs.

tidlist of c.

xxiv

Set of local candidate k-itemset in a partition p.

Set of local large k-itemset in a partition p.

Set of global candidate k-itemset.

Set of all global candidate itemset.

Set of global large k-itemset.

The set of large item sets in the partition i.

The set of global large itemsets.

The site i.

Number of sites.

Positive real number(< minsup).

Old database at the site i.

Incremental database at site i.

The old database(U'T/,ld)'

The newly added records/transactions(U ~ew).

Records/transactions to be deleted.

I'/,ld U T~ew·
The whole database i.e. TOld U Tnew - Tdel .

or U T!vhole (Told U Tnew).

Set of frequent itemsets in Told(with local support).

Set of border itemsets in TOld(with local support).

First border set in Told.

Second border set in TOld .

First border set in Twho1e .

LIST OF SYMBOLS

B" whole

Uwhole

L whole

B whole

PB'
PB
PB', PE"
Fl

F

Lwhole(i)

B~hole
PB(i)

Sup(X)y

Sup(X)~

F

M

NoSample

Threshold

N

W,

Maxtries

ucon

minf

L' 1

Sf

f(x)

U,V,W,Vi

Second border set in Twhole .

Frequent itemsets in Twhole at the site i.

Set of frequent itemsets in ~uhole.

Set of border itemsets in Twhole.

Promoted border itemsets at the site i.

Set of all promoted border set (U P Bt).

First and second promoted border set.

Frequent itemsets in the updated database

at the site i.

xxv

Frequent itemsets in the updated database(U F').

{xix E Lwhole, Ixl = i}.
Border itemsets in Twhole at the site i.

{xix E PB, Ixl = i}.
Support of the itemset X in the database y.

Support of X at the site i for the database y.

Set of all features.

Number of features to be selected.

Sample size.

Lower limit of a feature's weight.

Total number of features.

Weight of j-th feature.

Number of iterations.

Upper level of inconsistency.

A feature.

Non-occurrence of the feature f.
ith feature.

Class attribute.

The increment to the minimum support.

Minimum number of selected features.

Set of features/items/attribute whose

non-occurrence is frequent.

Set of selected relevant features.

A criterion function.

Views.

LIST OF SYMBOLS

u---+v

R(u)

V

S

NR

bf

NMPV(v)

child(v)

benelitk(v)

profit(v)

cost(v)

SI,SU,SD

Iv
N(v)
Min Ben

Fv

Sup(v) ,

Cl

clid

MaxD

seeds

u is the parent of v in data cube lattice.

Size(number of rows) of u.

Set of all the views.

Set of selected views.

Set of views with negative profit.

Time for random block acceHH of the

storage device.

Blocking factor of the storage device.

Nearest Materialized Parent View of v.

xxvi

Child views of the view v in a lattice of views.

Benefit of v at iteration k.

Profit of v.

Cost of the view v.

Set of insert, delete and update operations

respectively.

Number of rows affected by insert, delete

and update operationH reHpectively.

Ftequencfes o(insert, delete and update

operations respectively.

Frequency of v.

Neighborhood of v.

Minimum benefit.

Set of frequent views.

Support of the view v.

A cluster.

Cluster id.

Maximum difference between two views.

LiHt of pOHsible core views.

View with maximum profit.

AP

AT

AH

BA

DVMAFC

FFC

HP

KDD

MA

MBA

PVMA

VP

List of Abbreviations

Apriori algorithm.

ApTioTiTid algorithm.

ApTioriHybrid algorithm.

BiLAssocRule algorithm.

Density-based View Materialization

Algorithm using Frequency Count.

Feature Selection using Frequency Count.

Horizontal Partition algorithm .

Knowledge Discovery in Databases.

Modified_ApTioTi algorithm.

M odified_BiLAssocRule algorithm.

Progressive View Materialization Algorithm.

Vertical Partition algorithm.

Chapter 1

Introduction

Huge amount of data have been collected through the advances of database

technologies and data' collection techniques. Some of the domains, where large

volume of data are stored are Financial Investment, Health Care, Manufactur

ing and Production, Telecommunication Network, Scientific Domain, etc. These

databases are full of hidden patterns and knowledge, which can be used for differ

ent purposes. The subject which deals with hidden patterns in a large database

and finds knowledge from a large database is known as Knowledge Discovery

in Database(KDD). Data Mining can be defined as extracting knowledge from

huge amount of data. The Following subsections will clarify the concept of data

mining more clearly.

1.1 What is Data Mining

In the simplest form, 'Data Mining can be defined as extraction of knowledge

from huge amount of data. More formally, data mining can be defined as the

non-trivial e~traction of implicit, previously unknown and potentially useful in

formation from database. So, it can be compared with gold mining, diamond

mining, etc. Some other terms with similar meaning are knowledge mining,

knowledge extmction, pattern analysis, data dredging, etc. Some people consider

data mining a.') a part of the whole KDD (Knowledge Discovery in Databa.')e)

(Figure 1.1 on page 3 [HKOl)) process, which can be defined as the non-trivial

1

CHAPTER 1. INTRODUCTION 2

process of identifying valid, novel, potentially useful and ultimately understand

able patterns. Again, many people treat data mining as synonym for KDD.

As shown in the Figure 1.1 on the next page, KDD consists of the following steps.

1. Cleaning and Integration: Noise and inconsistent data are removed. Mul

tiple data sources are combined.

2. Selection and Transformation: Required data are selected and transformed

into forms appropriate for mining using different data mining techniques.

3. Data Mining: Different techniques: algorithms are used to extract knowl

edge from the data.

4. Evaluation and Presentation: Interesting patterns are found depending on

some criteria. Patterns are represented using different types of GUI.

There are different architectures of a data mining system. However, the three-tier

architecture (Figure 1.2 on page 4 [HK01]) is more popular. In this architecture,

the major components are Database and Data Warehouse, Database or Data

war'ehouse seriJer, Data mining engine, Knowledge base, Pattern evaluation and

Graphical user interface. A brief description of these components is given below.

• Database, data warehouse: This refers to set of databases, data warehouses.

spreadsheets and other sources of data. Data cleaning and integration may

be required.

• Database or data warehouse server: This is required to store and fetch

relevant data.

• Knowledge base: This refers to knowledge repository, which is required to

find interesting patterns. It may include concept hiemrchy, meta data, user

beliefs, some threshold, etc.

CHAPTER 1. INTRODUCTION 3

r-----... --... ---.-.. --.--.·.----.---·--------.-I
! I

I F

I ~and . /·
""'*" /"

!

SelectIon and
1KnIfom lalla •

L /~
m'

--,/

Figure 1.1: KDD Process

I

I

CHAPTER 1. INTRODUCTION

,---------------------------------
I ,
i

Data Mining Engine

t
Database or Data
Warehouse server

Data Cleaning t
and Integration

------ .-- ------. -.....

t Filtering

.-------- - -------.. -.
.,

Figure 1.2: Three-tier Architecture of Data Mining

4

CHAPTER 1. INTRODUCTION 5

• Data mining engine: This is the main module which performs tasks such

as association, classification, clustering, evaluation, etc.

• Pattern evaluation: It determines whether a pattern is interesting or not.

To find the interestingness of a pattern, it interacts with data mining en

gine, knowledge base, etc.

• Graphical user interface: This module is responsible to interact with users.

The major task of this module is to take the user's query and other param

eters. Then it presents the results of the queries in some understandable

formats using the available GUI tools.

1.1.1 Definitions

The main purpose of data mining is to find hidden patterns from large databases.

However, data mining has been defined in many ways by different authors. Some

of tlw definitions are giv~n below [PujOl].

1. Data" mining or know.[edge~·discov€r:y in. databases, as it is also known, 1,S

the non-trivial extraction of implicit, previously unknown and potentially

useful information from the data. This encompasses a number of technical

approaches, such as clustering, data summarization, classification, finding

dependency networks, analyzing changes and detecting anomalies. By non

trivial, it means that information should not be easily retrievable. As for

example, calculating age from date of birth, which is stored in a database,

is not non-trivial, but finding average age of employees, who suffer from a

particular disease and work in a particular department, may be non-trivial.

Another term used in the definition is implicit. It means that information

retrieved should not be stored in database explicitly. However, it could

be derived from the existing data. Again, information or pattern should

be preyiously unknown and unexpected. As for example "80% people buy

bread and butter together" is not unknown. However, "2% people buy

bread and spoon together" may be unexpected. Information should be

useful to users. In other words, information should be presented in the

user understandable format so that they can be used in decision support

systems, etc.

CHAPTER 1. INTRODUCTION 6

2. Data mining is the search for the relationships and global patterns that ex

ist in large databases but are hidden among vast amount of data, such as

the relationship between patient data and their medical diagnostics. This

1-eiat'lOnship represents valuable knowledge about database, and the objects

in the database, if the database is faithful mirror of the real world regis

tered by the database. This definition gives importance on the relationships

among the objects in a database. Suppose, there is a database which stores

customers' data and sells data in a super market. Finding relationships be

tween customers' age and items bought by them may be interesting. As for

example, "customers in the age group of 10 to 20 years prefer food items

like maggi, cake, etc." may be useful to the super market owner.

3. Data mining refers to using a variety of techniques to identify nuggets of

information or decision-making knowledge in the database and extracting

these in such a way that they can be put to use in areas such as decision

support, prediction, forecasting and estimation. The data is often volumi

nous, but it has low value and no direct use can be made of it. It is the

hidden information in the data that is useful. Huge volume of data is not

useful by itself. Data mining techniques find value from this huge volume

of data, which can be used by decision makers.

4. Discovering relations that connect variables in a database is the subject of

data mining. The data mining system self-learns from the previous history

of the investigated system, formulating and testing hypothesis about rules

which systems obey. When concise and valuable knowledge about the sys

tem of interest is discovered, it can and should be interpreted into some

decision SUpp01t system, which helps the manager to make wise and in

formed business decision. Here, a data mining system has been considered

as a learning system, which learns from the existing data. So, it can be

compared with machine learning systems.

5. Data mining is a process of discovering meaningful, new correlation pat

terns and trends by shifting through large amount of data stored in reposi

tories, using pattern recognition techniques as well as statistical and math

ematical techniques. This definition says that data mining is meant to

handle large amount of data, which makes it different from other data ana-

CHAPTER 1. INTRODUCTION 7

lyzing tools. While dealing with large amount of data, it also uses existing

statistical and mathematical tools.

1.1.2 '!rue Data Mining

A true data mining system should be able to handle large volume of data and

uses advanced techniques to understand the data. So, it can be considered as the

advanced stage of OLAP (OnLine Analytical Processing). It is often confused

with OLAP. OLAP is generally involved with aggregate-style analytical process

ing. However, data mining uses advanced techniques to find the patterns in

the data in different forms. There are some commercial systems which are used

for information retrieval, answering queries, finding aggregate values, statistical

analysis, etc. These systems are not true data mining systems and should not

be confused with data mining systems.

1.2 Data Mining as a Multi-disciplinary Sub

ject

Data mining is not a single subject. It is the result of confluence of many inter

disciplinary subjects(Figure 1.3 on the next page [PujOl]). It uses techniques

from various subjects such as machine learning, statistics, neural networks, infor

mation retrieval, spatial data analysis, database technology, etc. These subjects

are established by themselves and have contributed a lot in developing different

data mining algorithms and enhancing their performance.

Let us consider the subject of statistics. Statistics is one important subject

from data ~ining point of view and a theory-rich method for data analysis.

It provides theoretical foundations and generates results which is difficult to

interpret. However, statistics is the foundation which data mining is based on.

There exist statistical tools to find patterns from data, which can be understood

by people with strong statistical background. Moreover, these tools deal with

small amount of data.

CHAPTER 1. INTRODUCTION

Database
technology

Information
science

Data Mining

Other discipline

...
Machine

/ \

learning

~ ,....-.->--~ '====="

Statistics Visualization

Figure 1.3: Data Mining as a Multi-Disciplinary Subject

8

Machine learning also has contributed in the development of data mining. Ma

chine learning is the automation of learning process which includes learning from

examples, reinforcement learning, learning with a teacher, etc. Again, machine

learning can be of two types - supervised learning and unsupervised learning. In

case of supervised learning, the system uses some training set to find descrip

tion of each Class. This description is used to place an unknown object in the

appropriate class. On the other hand, unsupervised learning system does not

use any training set and prior knowledge. It generates class descriptions from

observations and discovery.

Data visualization also is an important subject in the context of data mining.

CHAPTER 1. INTRODUCTION 9

Data visualization helps analysts get deeper understanding of data. It gIves

analysts visual representations such as map, charts, etc. for a large volume of

data. It also helps analysts concentrate on certain patterns and trends, which

are represented by different colors.

Database technology also helps data mining systems in different ways. How

ever, database systems and data mining systems are not same. In most of the

cases, data mining syst(~ms use datab8.'5e systems 8.'5 a simple repository of data.

which data mining algorithms are based on. Database systems use some power

ful and established techniques such as SQL, query optimization to retrieve data

efficiently. These techniques are used to develop similar techniques for data min

ing systems. Some database systems integrate some data mining tools within

themselves. In that case, data mining system is highly coupled with database

systems and both the systems use same memory and disk space. So, it can be

seen that database technologies have contributed a lot in development of data

mining.

Other disciplines such as neural network, genetic algorithms, fuzzy sets, informa

tion science, etc. abo have been used to develop efficient data mining algorithms.

So, it can be concluded that data mining is not an isolated subject. It is the

confluence of multi-disciplinary subjects.

1.3 Data Warehouse and Data Mining

Data warehouse is considered to be a pre-processing step for data mining. Ac

cording to W H Inmon, "A data warehouse is subject-oriented, integrated, time

variant and non-volatile collection of data in support of management's decision

making process" [Inm96]. According to this definition, main characteristics of a

data warehouse are

• It generally deals with broad subjects like customer, sales, etc. It does not

deal with day-to-day activit.ies.

• Data warehouse integrates many heterogeneous sources of data such 8.'5

relationa:l databases, spreadsheets, flat files, etc.

CHAPTER 1. INTRODUCTION 10

• Data in the data warehouse are attached with some time element because

it stores the historical data.

• Data in data warehouse is permanent. It does not require recovery, con

currency control, etc. Data are jUHt accessed for decision making.

Data warehouse provides a platform on which data mining techniques are based

on. It also provides various OLAP tools which can be integrated with data mining

techniques. So, a clear understanding of data warehouse is must to understand

data mining techniques.

1.3.1 Data Cube, Cuboid and View

Multidimensional data model is the basic data structure on which OLAP and

data warehouse tools are based on. This model views data in the form of data

cube. A data cube allows data to be modeled and view in multiple dimensions and

it consists of cubOids/views. In.SQL terminology, cuboids/views are nothing but

group-bys. As for an example, suppose, an organization keeps sales data with

respect to time (t), location(l} and branch (b). Here, the data cube consists of

eight possible group-bys: tlb, tl, tb, bl, t,l,b and none. Each individual group by

is called sub-cube or cuboid or view.

DSS queries find the answers from the data cube. It may take long time due to

huge size of data warehouse and the complexity of the query itself, which is not

acceptable in DSS environment. The requirement of the query execution time

is in the order of few seconds. Different techniques like query optimization and

query evaluation techniques [CS94, GHQ95, YL95] are being used to deal with

this problem. Different indexing techniques like bit-map index, join index are also

used to reduce the query response time to a great extent. In data warehouse, the

query response time largely depends on the efficient computation of data cube.

However, creating data cube on the fly is very much time and space consuming.

One very useful technique used in data warehouse systems is partial material

ization (pre-compute). which refers to materialization of some cuboids of a data

cube, so that OLAP queries can be answered from these cuboids. However, the

CHAPTER 1. INTRODUCTION 11

big question is "Which cuboids/views should be materialized T' Partial mate

rialization should 1,) select the cuboids to be materialized ii) use materialized

views to answer the queries and iii) efficiently update materialized cuboids when

data warehouse is updated. Selection of cuboids is not ea.')y. Many factors are

to be considered to select the cuboids. Among them, access frequencies of the

queries, accessing cost of the cuboids, storage requirements, physical database

design, etc. are important.

1.4 Challenges of Data Mining

There are many challenges which can be found to be bottlenecks in the develop

ment of data mining techniques. Among them, some of the main challenges are

given below.

• Larye data set and high dimension: Data mining algorithms have to deal

with huge amount of data - both in terms of size and dimension. That is

why, ~aster and efficient algorithms-are required~to handle these huge data.
l •

Some possible solutions are sampling, partitioning, parallel processing, etc.

• User interaction and prior knowledge: Data mining is an interactive and

iterative process. Here, user's interactions at various stages are required.

Domain knowledge may be used either in the form of high level specification

of the model or at the more detailed level

• Over-fitting and assessing the statistical significance: Data sets used for

data mining are collected from various sources resulting in the spurious

data sets. Therefore, some kinds of regularization methods and sampling

techniques. are used to design the models for data mining.

• Understanding the patterns: Discoveries should be made understandable to

the human. The frequently used techniques are rule structuring, natural

language processing, visualization of data, etc.

• Non-standard and incomplete data: The data can be missing and/or noisy.

• Mixed media data: Learning from data is represented by a combination of

various media - numeric, symbolic, images and text, etc.

CHAPTER 1. INTRODUCTION 12

• Management of changing data and knowledge: Data are often added, mod

ified and deleted from database. The algorithms should take care of the

changing patterns of the database.

• Integration: Data mining being a part of the entire decision making process.

it is required to integrate with database and final decision making process.

Researchers have tried and are trying to develop techniques to overcome these

challenges. However, there are still ample scopes for exploring best possible

solutions.

1.5 Applications of Data Mining

Data mining has wide area of applications. Some of them are highlighted below.

'. Loan Prepayment Prediction: The financial return of loans that a financial

institution recovers, depends mainly on life-span of the loan. Data mining

techniques help financial institutions predict number of loan repayments

in a year as a function of interest rates, borrowers' characteristics, account

data, etc. These information can be used to fix the parameters such as

interest rate, fees, etc. to maximize profits.

• Crime Detection: Data mining techniques can be used to solve cases which

do not have obvious leads. Suppose crime data are recorded in a database.

Then clustering techniques can be used to cluster the similar crimes based

on modus operandi and other parameters. If some suspects can be con

nected to some cases of a cluster, all other crimes of the cluster might have

been done by the same suspects. This way, it will be possible to clear up

old cases and determine patterns of behavior .

• Risk Analysis: Insurance companies can use data mining techniques to

form clusters of customers depending on various risk factors so that when

a new customer comes, he/she can be placed in one of the risk groups .

• Taryet Mar'keting: It will be useless to send the information for a new

product to all the customers. Companies can use data mining techniques

CHAPTER 1. INTRODUCTION , ~t!Uertdh •.
• < V . . 4ot4<r-!

&:!t~ • - -" '/17
'Q ' ,--,'

:J " '#,.
... / J.a"" },:4

to find potential customers, who will respond to the new prod ~~ o1)~£}\e-- " .. ,)_
at". .,.

mailing campaign. Companies can use data mining techniques t fil\d buy~' ::1, Jj

ing patterns of the customers to promote their products. i \. C"< ,

p'J~JIJ

• Banking: Banks can use data mining techniques in various ways to increase

their profits and manage their business properly. Banks can use data min-

ing techniques to detect withdrawal patterns of the customers, patterns of

credit card use, identifying loyal customers, determine credit card spending

patterns by the customer groups, etc.

1.6 Different Types of Data Mining Techniques

Databases contain different types data. So, different types of patterns exist in

these databases. Data mining systems try to find these patterns depending on the

database types and the users' needs. Basically there are two types of techniques

- descriptive and predictive. Descriptive techniques find patterns which describe

or characterize the data and the predictive techniques find patterns which are

used to make prediction.

below.

Some important data mining techniques are described

~0'? ")(0
• Classification: It refers to the classification of a data item into one of several

predefined categorical classes.

• Regression: It refers to the mapping of a data item to a real-valued predic

tion variable.

• Clustering: It refers to the mapping of a data item into one of several

clusters, where clusters are the natural groupings of data items based on

similarity metrics or probability density function.

• Association rule mining: It describes association relationship among the

attributes.

• Summarization: It provides a compact description of a subset of data.

• Dependency modeling: It describes the dependencies among variables.

CHAPTER 1. INTRODUCTION 14

• Sequence analyszs: It models sequential patterns like time series analysis.

The goal is to model the states of the process generating the sequence or

extract and report deviation of trends over time.

All of the above techniques are useful in deriving various kinds of interesting

patterns from databases and they have got different applications in different

domains. However, only association rule mining techniques will be studied in

the thesis because of wide area of applications of association rules in various

domains. Association rule mining technique and some of its applications have

been discussed in this chapter.

1.6.1 All Patterns Are Not Interesting

Data mining systems generate huge number of patterns. Obviously, all patterns

. are not interesting. Interestingness of a pattern depends on many factors such

as understandability, validity or usefulness of the pattern. Many a time users

give some thresholds to measure the interestingness of patterns. As for exam

ple, users may supply different support and confidence values to find interesting

association rules. A pattern may also be interesting, if it validates some hypoth

esis given by user. Similarly, a pattern may be interesting depending on user's

belief - an unexpected pattern may be interesting to certain kind of users. As

for example, the pattern "80% people buy bread and butter together" is not in

teresting because it is expected, but "1% people buy bread and spoon together"

may be interesting. Two important terms are generally used in relation to inter

estingness - completeness and optimization. Completeness refers to developing

of data mining algorithms which can find all patterns and Optimization refers to

developing of data mining algorithms which can find only interesting patterns.

The following section discusses association rule mining and its applications.

1.7 Association Rule Mining

Association rules were first discussed by Agarwal et al. in 1993. It is often

referred to as market-basket problem. Association rules find influence of one

CHAPTER 1. INTRODUCTION 15

set of items/attributes over another set of items/attributes in a database of

transactions. One example may be "When people buy diapers, they also buy

beer 60% of the time". Here, meaning of items and transaction depend on

applications. Formally, it can be defined as a rule in the form AI. A 2 , .•. Am ---+

B l , B 2 , ... , B n , where Ai'S and B;'s are predicates or items. The rule can also

be interpreted as conditional probability of occurring of Bj's in a transaction is

very high, given that-A/s have already occurred in the transaction. Following

are some examples of association rules.

1. Product(X, bread) ---+ Product(X, butter). Here, items are the things

bought by the customers and a transaction is the items bought together.

The meaning of the rule is that customers generally buy bread and butter

together.

2. age(X, 20-30), income(X, 10000 - 15000) ---+ product(X, mobile). Here,

items are values of the dimensions from a data warehouse with three di

mensions - age, income and product. The rule says that customers with

age between 20 and 30 years and income between Rs. 10,000 and 15,000

tend to buy a mobile phone.

Association rules are evaluated by the measures such as support count, confidence,

interestingness, etc. So, it can be viewed as multi-objective problem. However,

it is viewed as single-objective problem in most of the applications. As far as

applications are concerned, association rules have got numerous applications in

various domains. The important applications are highlighted in the following

subsection.

1. 7.1 Some Applications

Association r.ules originated from market basket data. However, it is also widely

being used in other databases and different problem domains. Some of the prob

lem domains, where association rules have been used successfully, are business,

engineering, medicine, telecommunication, etc. Association rules are also used

for other data mining tasks such as prediction, modeling, decision support, etc.

Some of the important applications of association rules are given below.

CHAPTER 1. INTRODUCTION 16

• Market Basket Analys~s: Nowadays, it is very essential for the retailers

to know the buying preferences and buying patterns of the customers.

If a retailer knows the buying patterns of the customers of a region, he

can formulate strategies t.o attract t.he cust.omers by giving appropriat.e

gifts with different products. Buying patterns also help a retailer organize

the products in the shelves so that customers find the related products

together. Thus, association rules can help retailers get the buying patterns,

preferences of the customers, which in turn will increase sales.

• Financial Se1"Vices: Association rule mining plays a big role in financial sec

tor. Financial experts use association rules to develop investment models,

risk models in stock markets, etc. Associating rule mining systems have

been used successfully in stock selection, claims processing by insurance

companies, currency trading, etc.

• Fraud Detection: With the increase of the use of electronic money like debit

cards, credit cards, etc., fraud detection has been one of the prime tasks

of the crime branches. Association rule mining can find using patterns of

cards by card holders, and crime branches can use these patterns to detect

the frauds.

• Partial Classification: Conventional classifiers may not be effective in a

database, where most of the values of the attributes are missing. Associ

ation rules can be used to solve these kind of problems. Association rules

can be used to see if one set of attributes are related to another set of at

tributes. In that case, one set of attributes can be replaced by another set

of attributes with most of values are present. As for example, if result of

one complex and costly medical test can be predicted from a set of simple

and cheap medical tests, doctors can prescribe the simple medical tests . ,

instead of complex medical tests.

1.8 Motivation

Huge amount of data are collected by regional sale system, telecommunication

system, World Wide Web and other data collecting tools. These databases con-

CHAPTER 1. INTRODUCTION 17

tain many useful patterns and knowledge, which can be used by decision makers

and analysts to take appropriate decisions. There exists some data analyzing

tools. These tools generally use statistical approaches and cannot deal with

large data. Data mining techniques overcome these disadvantages because data

mining techniques are meant to deal with large amount of data. There are differ

ent data mining techniques meant to find different patterns from large databases.

All the techniques are useful in their respective domains. However, association

rule mining is more interesting and challenging because of its wide areas of ap

plications.

Generally, association rule mining is two step process [AMS+96]. First step

finds frequent (or large) itemsets and second step finds association rules among

the frequent itemsets. Between them, the first step is more challenging and

interesting. That is why, most of the research works concentrate on the first

step i.e. finding frequent itemsets from a large databases. For these reasons:

mostly frequent itemsets .finding techniques have been studied and analyzed in

this thesis.

Finciing,Jrequent itemsets is even more complex in dynamic databases. An item

set which is frequent in the existing database, may not be frequent when some

more records are added to the database, some records are deleted from. the

database or some records are updated. So, special algorithms are required to

deal with such situations. The situation becomes more complex in distributed

environment, where data is distributed in different geographic locations/sites.

Here also special algorithms are required to deal with distributed environment.

The thesis has reported a distributed algorithm to find frequent itemsets in dis

tributed dynamic database.

Most of the databases contain lots of unnecessary or redundant features. These

redundant features degrade the performance of machine learning algorithms. So.

removing redundant features from a database is considered to be a major pre

processing step in many machine learning algorithms. The concept of frequent

itemsets can help to remove redundant features to a great extent. This idea has

been explored to remove redundant features from a database.

There exists some algorithms to deal with the above problems. However, the

algorithms are not efficient and scalable. This has motivated us to enhance some

CHAPTER 1. INTRODUCTION 18

existing algorithms and to develop some new algorithms to address the above

issues. Main motivations are listed below.

• Unnecessary candidates: It has been found that algorithms generates too

many unnecessary candidate sets, which is the main reason for exponential

execution time. It has been tried to reduce the unnecessary candidates.

Contribution: Apriori and BiLAssocRule algorithms have been modified

and probability has been used to reduce candidate sets and execution time.

• Existing horizontal partition based algorithms aTe not effective: Partition

algorithm partitions a large database horizontally and then find the fre

quent itemsets. It has been observed that this technique is not effective

in databases with larger dimensions and execution time increases with the

increase in the number of partitions.

Contribution: An algorithm has been developed by using vertical partition.

It has been found that this technique is more effective for databases with

larger dimensions and execution time decreases with the increase of number

of partitions. Vertical Rartitioning technique also has been used with FP

gTOwth [HPYOO] algorithm to increase the performance of FP-gTOwth for

databases with large dimensions .

• Feature selection is an important step in KDD and machine learning tech

niques: KDD process and machine learning techniques take too much time

when applied on databases with irrelevant features. So, relevant feature

selection is one of the important tasks in machine learning techniques.

There exists some algorithms to select relevant features and they use dif

ferent criteria to decide whether a feature is relevant. However I the existing

algorithms are not good enough in terms of both feature selection and ex

ecution time. In addition to that, it has been found that there was very

little work done to select relevant features using frequency count (support

count) of the features.

Contributions: One algorithm has been developed to select relevant features

by using frequency counts (support count) of the features.

• Lack of efficient algorithm to find ft-equent itemsets in dynamic database:

Finding frequent itemsets in dynamic database is a challenging task. There

CHAPTER 1. INTRODUCTION 19

exist some algorithms to find frequent itemsets in dynamic databases. How

ever, they suffer from the drawback of having to scan the whole database

repeatedly, which in turn, increases the execution time of the algorithms.

So an economic solution is required to solve this problem.

Contribution: One algorithm has been proposed, which uses two levels of

border sets. The main advantage of the algorithm is that it does not have

to scan the whole database repeatedly.

• Lack of algorithm to find frequent itemsets in distributed dynamic databases:

Nowadays, most of the databases are distributed. However, there has been

a little work to find frequent itemsets in distributed dynamic databases.

Again, existing algorithms to find frequent itemsets in dynamic databases

cannot be used directly in distributed environment. So, some algorithms

are required, which can find frequent itemsets from distributed dynamic

databases.

Contribution: A distributed algorithm has been developed to find frequent

itemsets for distributed dynamic database.

• Selection of useful cuboids/views to be materialized in data warehouse

systems in minimum possible time is very important. However, there are

some algorithms to select views to be materialized. These algorithms have

used very complex techniques to select the views. So, these algorithms take

too much time to select the views.

Contribution: A very simple algorithm has been proposed to select the

views. The algorithm selects views based on the concept of density. The

algorithm also uses the frequency(support) of the sub-views to calculate

the benefits of the views.

1.9 Scope of The Thesis

The thesis embodies an exhaustive experimental study on some of the popular

existing frequent item sets finding algorithms and feature selection algorithms in

the light of real and artificial datasets. It also includes some of the enhanced ver

sions of the algorithms such as Apriori, BiLAssocRule, Borders, etc. A detailed

CHAPTER 1. INTRODUCTION 20

comparative study of those enhanced versions with their respective counterparts

are also included to establish the superiority of the algorithms. Concentration

has been given on the following areas.

• Partitioning is one of the important techniques used in data mining. A

vertical partition based frequent itemset generation algorithm has been

developed and a detailed comparative-study of both- these approaches are

given.

• Feature selection is one of the important aspects in machine learning tech

niques. It has been shown how frequency count (support) of the attributes

can be used to select relevant features in a database.

• Nowadays, most of the databases are distributed and dynamic. So, dis

tributed algorithms also have been analyzed and studied in detail. One dis

tributed algorithm has been proposed for distributed dynamic database~.

1.10 Organization of The Thesis

The thesis is organized as follows. Chapter 2 reports the related works. Chapter

3 reports some of the popular existing association mining algorithms. It also

reports a modified and faster version of an existing robust association mining

algorithm. Chapter 4 discusses the partitioning approach in the frequent item

set generation. It also introduces a vertical partitioning approach for frequent

itemset generation. A comparative study between both these approaches is also

reported in this chapter. Chapter' 5 covers a crucial issue of association rule min

~ng i.e .. rule mining in dynamic databases. It reports experin~e~tal analysis of a

popular dynamic association mining algorithm and also it reports an enhanced

and distributed version of the algorithm. Chapter 6 is an attempt to report

some useful and popular algorithms for feature selection. It also reports a novel

feature selection algorithm. A detailed comparative study is also reported in the

chapter. Chapter 7 is dedicated to a potential application of association mining

techniques. In ChapteT 8, concluding remarks and future works are given.

Chapter 2

Review

Today, association rule mining has been considered to be one of the important

data mining techniques. It was introduced by Agarwal et al. in 1993. This is

also referred to as market-basket problem because originally it was formulated

for sales data. In simple term, association rule finds the measure of influence of

one set of items-on another"'set'oeitems. The meaning of items varies from appli

cation to application. As for example, one association rule may be of the form

"80% of the customers who buy bread also buy butter". Here, the rule finds the

influence of bread on butter. Association rules have got numerous applications

such as decision support, telecommunication alarm diagnosis, prediction, cata

logue design, add-on sales, store layout, customer segmentation based on buying

pattern, etc.

The problem of association rule mining can be divided into two subproblems.

1. Find all the frequent (or large) itemsets in a given database.

2. Find the association rules using the large itemsets found in the first step.

Out of these two steps, the first step is important and difficult one. That's why,

most of the algorithms concentrate on finding the large itemsets from a large

database in minimum possible time and using minimum resources. Once the

large itemsets are known, finding association rules are straightforward. There are

21

CHAPTER 2. REVIEW 22

many algorithms to find frequent itemsets. All these algorithms target different

types of database.

Concept of data mining can be traced back to induction of classification approach

[BFO+83, FWD93, HCC92]. The closest work in the machine learning literature

is the KID3 algorithm presented in [Pia9I]. Related work in the database

literature is the work on inferring functional dependencies from data [Bit92,

MR871. Frequent itemset finding algorithms can be basically divided into two

categories: for static databases and for dynamic databases. Next successive

sections discuss some well known algorithms to find frequent itemsets in different

domains.

2.1 Finding Frequent Itemsets in Static

Databases

This section discusses some well known frequent itemsets finding algorithms for

static databases:- Static dat-a:ba.'les-meaR-' that· databases do not grow., Its size,

number of attributes remain static.

One of the earliest algorithms is BETM [HS93], which was proposed by M

Houtsma and A Swami. The algorithm uses SQL to compute large itemsets. It

generates candidates on-the-fly based on transactions and remembers the TIDs

for generating transactions with the candidate itemsets.

Another popular and robust frequent itemset finding algorithm is Apriori [AMS+94],

proposed by Agarwal et a1. This algorithm is based on the fact that all the sub

sets of a large itemset are also large. The algorithm consists of multiple passes

over the 'database. The first pass counts the number of occurrences of each item

in the database to find the large I-item sets. These I-itemsets are used to gener

ate the candidate 2-itemsets. Then, large 2-itemset are found by making a pass

over the whole database. This process continues till there is at least one candi

date itemset. This algorithm is simple and easy to implement. The algorithm is

robust enough to find all the large itemsets in a database. The algorithm uses

bottom-up and breadth-first approach. Another point to be observed is that

number of database passes is equal to the length of the longest frequent itemset.

CHAPTER 2. REVIEW 23

The main disadvantage of the algorithm is that it passes over the database several

times which is responsible to increase the execution time for a large database.

The same paper also proposed Apr1,OriT'ld and AprioriHybrid. AprioriTid is a

little improvement. over t.he AP1"i01"i. This algorithm uses TID, a unique number

used to represent a transaction, and a different data structure . So, each trans

action is identified by a TID. The main advantage of this algorithm is that the

database is used to count the support of the candidate 'set only once - for the

l-itemsets. 2-itemsets onward, a different data structure is used to count the

support of the itemsets. The size of this data structure gets reduced with the

increase of number of iterations. Thus, it takes much less time than that of

Apriori. AprioriHybrid is just a combination of Apriori and AprioriTid. It uses

Apriori in the initial passes and switches to AprioriTid for the remaining passes.

Thus, it gets benefits from both the algorithms and can be found to be better

than the other two in terms of execution time.

Another important algorithm is Pincer-Search [LK98]. This algorithm uses bi

directional approach i.e. top-down and bottom-up. It finds frequent itemsets in

bottom-up manner ami-at.the,same,time.it maintains a list of maximal frequent

itemsets. Maximum benefit is obtained when maximum frequent itemsets is

found in the very early passes of the algorithm.

Park et al. proposed DHP (Direct Hashing and Pruning) [PCY95a]. It has

two major features such as efficient generation of large itemsets using hashing

technique and effective reduction on transaction database size. DHP is useful for

generation of candidate large itemsets, particularly large 2-itemsets. However.

this algorithm does not work properly for dense databases.

Some important algorithms can be found in [ZakOO, ZPO+97, ZH99]. Among

them, CHARM [ZH99] is an important algorithm. The algorithm introduced the

concept of closed frequent itemsets, which is much smaller than the set of all

frequent iteII}sets. With this concept, it is not necessary to generate all possible

frequent itemsets and rules. The paper has shown that any rule is equivalent to

some rules between closed frequent itemsets, resulting in reduction in redundant

frequent itemsets and association rules.

Most of the algorithms mentioned above and other algorithms of its kind generate

candidate sets and pass over the whole database to count the support of the

CHAPTER 2. REVIEW 24

candidate sets. Generating the candidate sets and repeated passing over the

database is a time consuming and tedious task. Moreover, it takes lot of space in

the memory to store the candidate sets. To overcome these problems there are

some algorithms which find the frequent itemsets without generating candidate

sets. One such algorithm is FP-growth algorithm [HPYOO, PujOl]. The algorithm

consists of two phases. In the first phase, it constructs the FP-tree with respect

to a given minimum support and in_ the second phase, it finds the frequent

itemsets from the FP-tree. The algorithm first makes one pass over the database

to find the frequent l-itemsets. Then it removes the non-frequent items from

the transactions and rearrange the items in the transactions in the descending

order of their frequency. Then the algorithm makes one pass over the whole

database to construct the FP-tree. In order to find the frequency of different

combinations, the algorithm computes the conditional FP-tree. Obviously the

FP-growth algorithm has the advantage of not having to generate the candidate

sets. The algorithm finds all the frequent itemsets and works very fast. However,

this algorithm also has shortcomings [HPYOO, Bor] such as i) it takes lot' of

time to construct the FP-tree for high dimensional dense large databases ii) its

performance degrades with increase of minimurr:t support.

There have been some attempts to develop frequent itemsets finding algorithms

using bitmap techniques [BAG99, Gra94, JD099, Joh98, MZ98, NG95]. The

latest one being the BiLAssocRule [HLL03]. This algorithm uses bitmaps of the

items and applies the ba..,ic bit operations like AND, OR, etc. to find the support

of the candidates. So, the algorithm does not require to scan the database more

than once and works much faster than the other algorithms mentioned above.

Other approaches such a.., sequential patterns [AS95], generalized a..,sociation

rules [SA95], multilevel association rules [HF95], quantitative association [SA96]

rules are- worth mentioning.

Partitional, parallel and distributed methods also have been studied to find the

frequent itemsets. In the partitioning approach [SON95], database is partitioned

and the rule mining is carried out for each partition. Finally, frequent itemsets

computed for each partition are merged to generate the frequent itemsets for

the whole databa..,e. The main shortcoming of the algorithm is the choosing of

number of partitions. Two aspects are taken into consideration while choosing

CHAPTER 2. REVIEW 25

the number of partitions- available buffer space and available memory. In this

approach, the number of candidate sets and execution time are reduced to a great

extent. Further, it provides scope for parallelization of the rule mining task.

2.1.1 Distributed and Parallel Algorithms

There have been some works on parallel and distributed algorithms. Main mo

tivations behind parallel and distributed algorithms are as follows

• Mining databases containing huge amount of data needs more processing

power.

• Most of the databases are distributed in nature.

• The algorithms also can be used in centralized databases by partitioning

the database and placing the portions in different sites.

[AMS+94] proposed two parallel versions of Apriori called Count Distribution(CD)

and Data Distribittion(DD). CD algorithm scales linearly and speedup of the al

gorithm is also good with respect to the number of transactions. The drawback

of the algorithm is that it does not parallelize building of the hash tree. DD

algorithm partitions the candidate sets and assigns each partition to a proces

sor. However, the algorithm takes maximum time in data movement among the

processors and most of the time processors remain idle due to poor interaction

scheme among the processors. Parallel version of DHP algorithm, called PDM,

was proposed in [PCY95b]. The main disadvantage of the algorithm is that

0(11,2) messages are required for support count exchange for each candidate set.

Cheung et al. [CHN+96a] proposed one efficient distributed algorithm called Fast

Distributed Mining of association rules(FDM). The algorithm is advantageous

due to following reasons .

• It uses some relationships between locally large and globally large itemsets

to reduce the candidate sets and in turn number of messages to be pa."lsed

is reduced.

CHAPTER 2. REVIEW 26

• It uses local and global pruning techniques to prune away the candidates

in the sites .

• It requires only O(n) messages for support count exchange, where'n is the

number of sites.

[CHN+96a] introduced three versions of FDM i.e. FDM-LP, FDM-LUP and

FDM-LPP. In [CNF+96J, distributed version is proposed called DMA (Dis

tributed Mining Association Rules). This algorithm also needs O(n2) messages

for support count for each candidate set, where n is the number of sites.

In [HKKOO), two new parallel algorithms called Intelligent Data Dist1ibution

(IDD) and Hybrid Distribution (HD) can be found. IDD is improvement over

DD. It reduces communication time and processor idle time. HD combines the

.adv~ntages of CD and IDD. It groups the processors and partitions the candidate

sets to maintain load balance.

2.1.2 Multilevel Association Rules Mining

In many real-life scenario, data items exist in the hierarchy of concept level. So,

it is difficult to find strong association rules among data items at low levels of

abstraction due to the sparsity of data in multi-dimensional space. Association

rules at high concept level generally represent a common pattern. As for example,

"bread and butter are bought together" may not be an interesting pattern, but

"honey, bread and butter are bought together" may be an interesting pattern.

Therefore, data mining systems should provide capabilities to mine association

rules at multiple levels of abstraction (concept hierarchies) and traverse easily

among different abstraction spaces. Concept hierarchies may be specified by the

users familiar with the data or may be specified implicitly in the data itself. As for

example, there may not exist any association rule between IBM laptop computer

and Philips b/w printer, but there may exist one association rule between IBM

computer and Philips printer. Rules generated from association rule mining

with concept hierarchies are called multiple-level or multi-level association rules.

[HF95, SA95] have discussed some issues of multiple-level association rule mining.

CHAPTER 2. REVIEW 27

Different approaches may be used for multilevel association rule mining. In gen

eral a top-down approach is used. To find frequent itemsets at each level, general

algorithms like Apriori can be used. One main difficulty in multilevel association

rule mining wit.h reduced support is applying the search st.rat.egy thorough the

concept hierarchy. Some of the widely used search strategies are Level-by-level in

dependent, Level-cross filtering by single item, Level-cross filtering by k-itemsets,

etc. As far as algorithms are concerned, some algorithms to find association rules

in multi-level databases can be found in [HF95, SA95}.

2.1.3 Multidimensional Association Rule Mining

Multidimensional association rule mining refers to the mining of rules involving

more than one predicate or dimension. One rule "bread => butter" can be writ

ten as "buys(X, bread) => buys(X, butter)". Here, t.he rule consist.s of only one

predicate buys. So, this is an example of single-dimensional or intra-dimensional

association rule. In reality, the databases and warehouses store many other re

fated information in addition to only transactional information. As for example,

one datafiase may store the sales transactIons of a supermarket along with the

customers' age, address, income,occupation, etc. So, in this case, it may be inter-
, '

esting to find the association rules containing more than one predicate/dimension

such as age(X, "20 ... 25") /\ occupation (X, researcher) => buys(X, laptop). This

association rule contains three predicates - age, occupation and buys. This kind

of multidimensional association rule without any repetition of predicates is called

inter-dimensional association rule, otherwise it is called intra-dimensional asso

ciation rule.

Techniques for mining multidimensional association rules are categorized depend

ing on the treatment of the quantitative attributes.

• The first category is called multidimensional association rules using static

discretizdtion of quantitative attributes, where a predefined concept hier

archy is used to replace the original numeric values of the quantitative

attribute.

• In the second approach, quantitative attributes are discretized into beans

based on the distribution of the data. These beans may be further merged

CHAPTER 2. REVIEW 28

during mining process. This process is dynamic and established so as to

satisfy some mining criteria such as the maximizing the confidence of the

rules mined. This method is also called quantitative association rules .

• The third approach discretize the quantitative attributes to capture the

semantic meaning of the interval data. It considers the distance between

two points. So, it is also called distance-based association rules.

Mining Multidimensional Association Rules Using Static Discretiza

tion of Quantitative Attributes

[KHC97] has given the detail account of the discretization of quantitative at

tributes and data cubes. In this technique, quantitative attributes are discretized

prior to mining using predicate concept hierarchies and categorical attributes

may also be generalized to the higher conceptual level. Classical algorithm like

Aprzorz may be modified to find the frequent predicate sets instead of frequent

itemsets. Other techniques such as sampling, hashing, partitioning may also be

applied. Data cubes will be suitable for mining multidimensional association rule

mining. Data cubes are the lat~ice of cuboids which are multidimensional. If the

warehouse under study already contains some data cube, then it can be used to

find the frequent predicates. Otherwise, some data cube will be required to be

created.

Quantitative Association Rules Mining

This is the type of association rules in which the numeric attributes are dy

namically discretized during mining process to satisfy some mining criteria. A

quantitative association rule with n quantitative attributes in the antecedent is

called n-dimensional quantitative association rule. As for example, the asso

ciation rule income (X , "10000 ... 30000") l\age(X, "20 ... 30") :::} buys (X , ::high

resolution monitor") is a 2-D quantitative association rules.

Reference [LCK98] has given an approach to find the quantitative association

rules called ARCS (Association Rule Clustering System). This approach finds the

association rules for two quantitative attributes - one in the antecedent and one

CHAPTER 2. REVIEW 29

categorical attribute in the consequent. In this approach, the pair of quantitative

attributes are mapped onto a 2-D grid for tuples satisfying a given categorical

attribute condition. Then the grid is searched for clusters of points from which

the association rules are generated.

Srikant and Agarwal [SA96] proposed a non-grid based technique for mining

quantitative association rules which uses a measure of partial completeness.

Other techniques such as mining quantitative rules based on rectilinear regions

wa.., proposed by Fukuda et al. [FMM+96] and Yoda et al. [YFM+97].

Distance-Based Association Rules Mining

If the quantitative attributes are discretized with the previous two methods, it

may not capture the semantics of intervals since they do not consider relative

distance between'the points>or intervals-. As for'example, equidepth part it-ion' may

find interval 20000 .. 50000, which is quite wide. The distance based partitioning

seems to be most intuitive, since it groups values that are close together within

the same interval. So, the distance based intervals produce more meaningful

discretization. Intervals for each quantitative attribute can be established by

clustering the values for the attributes. Another advantage of the distance-based

association rule is the that it gives the scope of closeness or approximation in

the predicates. As for example, in the association rule "1.s(X, cosmetics) /\

make(X ,foreign) => price (X , 300)", the pnce predicate is fixed at 300. The

distance-based association rules allows the scope to give the range of values

instead of a fixed value such as this.

The algorithms for distance-based association rule mining can employ two phase

technique. The first phase finds the intervals or clusters using some cluster

ing algorithm and the second phase finds the distance-based association rule by

searching for groups of clusters that occur frequently together. (MY97] has pro

posed an approach to find the distance-ba..,ed a..,sociation rules by employing th('

above two phase techniques.

CHAPTER 2. REVIEW 30

2.1.4 Spatial Association Rule Mining

With the wide application of remote sensing technology and automatic data

collection tools, huge amount of spatial data have been collected in the large

spatial databases. In other words, a spatial database stores a large amount of

space-related data, such as maps, pre-processed remote sensing or medical imag

ing data. The extraction of the knowledge discovery in the large spatial pose

great challenges to the currently available spatial database technologies. Spatial

databases have many features that distinguishes them from relational databases.

They carry the topological or distance information, usually organized by sophis

ticated, multidimensional spatial indexing structures that are accessed by spatial

data access method and often require spatial reasoning, geometric computation

and spatial knowledge representation techniques. Spatial data mining refers to

the extraction of implicit knowledge, spatial relations or other patterns not ex

plicitly stored in the spatial databases [KAH96].

Spatial data mining can be categorized based on the kinds of rules to be discov

ered in spatial databases. A spatial characteristic rule is a general description of

a set of spatial-related data. For example, the description of a general weather

pattern in set of geographic regions is a spatial characteristic rule. A spatial

discriminant rule is the general description of the contrasting or discriminating

features of class of spatial-related data from other classes. For example, the

comparison of weather patterns in two geographic regions is spatial discriminant

rule. There have been some interesting studies in spatial characteristic rules and

spatial discriminant rules [NH94].

Statistical spatial analysis tools have been used extensively for analyzing spa

tial data [FR94]. Statistical tools are good for numerical data, but statistical

techniques usually require the assumptions regarding to statistical independence

and of spatially distributed data. Such assumptions do not apply in the real

world situation because spatial objects are often influenced by the neighbor

ing objects/regions. Again, predicate rules cannot be described using standard

methods of statistical spatial analysis. It requires a lot of domain and statisti

cal knowledge. So, only the persons who are experts in statistics can handle it.

These arguments suggest that statistical techniques alone can not be used for

spatial data mining. Another major approach in data mining is to apply gener-

CHAPTER 2. REVIEW 31

alization techniques to spatial and non-spatial data to generalize detailed spatial

data to certain level and study the general characteristics and data distribution

at this level.

Although the concept of spatial association rule is same as that of association

rules in a relational database, the definitions are required to be redefined to meet

the requirement of spatial a.')sociation rules. As for example, a spatial a.')sociation

rule may look like

is_a(A, large_town), intersects(A, B), adjacenLto(A, C) ~ is_a(B, motorway),

is_a(C, sea). (30%,SO%).

This rule states that "30% of large towns intersects a motorway and are adjacent

to the sea". This rule also states that "If a large towns intersects a spatial object

B and is adjacent to C then B is a motorway and C is a sea in SO% cases".

Mining spatial association rules is more complex task than mining transactional

association rules. The d~gree of complexity are due to the implicit definition of

association relations and the granularity of spatial objects. The spatial relations

may be topoIogical [Ege91] such a.~ interl§'ect~ overlap; disjoint; distance such a.')

close_to, faLway, etc. and direction such as left, right, etc. Therefore, complex

data transformation processes are required to make spatial relations explicit.

Reference [KH95] has proposed a new algorithm for mining association rules in

Geographic Information Databases. The algorithm specifies an SQL-like spatial

data mining query interface, which is based on Spatial-SQL [EH94]' for an ex

perimental spatial data mining system protocol GeoMiner. Many variations of

the above algorithm can be explored to enhance the power and performance of

spatial association rule mining.

ILP methoa.s also have been extensively used in spatial data mining. Most of

the mining algorithm requires the reduction of multi-relational database to the

single format. The strength of ILP method is the common background with

deductive relational database (DDB) which can be exploited to implement the

notion of inductive database [Man97] as pointed out by Flach [Fla9S]. In recent

times, a database(DB) approach to multi-relational data mining has been pre

sented [KB.J+99]. It explodes the semantic information in the databa.')e schema

to prune the search space and define the database primitives to ensure efficiency.

CHAPTER 2. REVIEW 32

Some more works can be found in [Pop98j. The paper has presented a gen

eral purpose ILP system: IN GENS [MEL +00], which is an inductive graphic

information system with learning capabilities that currently support the clas

sification task. There is another ILP system called SPADA (Spatial Pattern

Discovery Algorithm) [MLOlj which operates on DDB set up by an initial step of

feature extraction from a spatial database. The basic idea in this ILP approach

is that a spatial database can be boiled down to a DDB once that reference

objects and task- relevant objects, their spatial properties and the spatial re

lationship among them have been extracted according to predefined semantics.

As for topological relations, the algorithm has adopted the 9-intersection [EH94]

model. The SPADA can tackle applications which cannot be handled by either

Geo-Associator [HKS97j or WARMR [DT99j.

2.1.5 Constraint-based Association Rule Mining

As the name suggests, constraint-based association rule mining allows [SMO+94]

users to specify some constraints. Thus, association rules become more useful

and interesting. to the users. A simple way is to find all the association rules and

then filter out the rules which do not satisfy the users' constraints. However,

it may generate a lot of redundant rules. So, it is required to incorporate the

constraints into the steps of rule generations. Constraints may be of different

types.

1. Knowledge type constraints: This refers to the type of knowledge to be

mined such as association rules.

2. Data constraints: This specify set of task-relevant data.

3. Dimension/level constraint: This refers to the number of dimension and

levels of concept hierarchy to be used.

4. Interestingness constraints: This refers to the interestingness measurement

such as support, confidence, etc.

5. Rule constraints: This refer to the form of rules to be mined. As for

example, user may specify number of predicates in the antecedent and

consequents of the rules, attributes values, aggregate values, etc.

CHAPTER 2. REVIEW 33

Ng. et al. [NLH+98] carried out some work on constraint-based association rule

mining. They proposed CAP algorithm for constraint-based association rule

mining. Some works on meta-rule guided constraint-based mining can be found

in [KHC97]. Meta-rules are generally based on users' experience, expectation,

intuition, etc. Again, rule constraints can be classified into five categories with

respect to frequent itemset mining.

1. Anti-monotone: These constraints are generally applied to iterative algo

rithms like Apriori so that number of iterations are reduced and at the same

time preserves the completeness. One example may be "sum(price)~500".

So, any itemsets whose total price is greater than Rs. 500 can be rejected

because all of its supersets will be having price more than Rs. 500.

2. Monotone: 'f.hese cOQ,straints-are opposite to anti-monotone. One example

is "sum (price) > 500". Here, superset of any itemset, which satisfies this

constraint, will also satisfy the constraint. So, it is not required to check

the constraint for the supersets.

3. Succinct: By this constraint, one can find all the itemsets which are guar

anteed to satisfy the constraint. One example may be "max(prie) 2:500" .

This constraint can be tested before the support count starts, which in

turn reduces the execution time.

4. Convertible: These constraints can be converted to anti-monotone or mono

tone by rearranging the items in the itemset and transactions. One example

may be ::avg(prices) ~ 1000". Here, if the items in a transaction are added

to an itemset in the ascending order of process, superset of an itemset,

which violates this constraint, will also violate the constraint.

5. Inconvertible: These constraints are tough and cannot be converted to

previous constraints. One example may be "sum(itemset) < 1000 and

value of each item in the itemsets is any real number".

Some useful concepts of the predicate constraints can be found in [AK93, LHC97,

SVA97]. [AMS+94] also gives an efficient method for mining constrained corre

lated sets.

CHAPTER 2. REVIEW

2.2 Finding Frequent Itemset in Dynamic

Databases

34

One general assumption in all the above algorithms is that database is static.

However, in practice, no database is static. The itemsets which are frequent

may not be frequent when the database is updated and the itemsets which are

not frequent may become frequent when the database is updated. So, some

algorithms are required to update the set of frequent itemsets when the database

is updated. Moreover, new database may contain some new interesting rules

which were not present in the old database.

One obvious technique to find frequent itemsets in dynamic databases is re

running the algorithms for the updated database, which is not desirable. The

main thrust is to use the already existing frequent itemsets. (CHN+96b] has

given FUP (Fast Update Algorithm). This algorithm has been found to be

superior to re-running of the Ap1'io1'i algorithm over the updated database by a

factor of 2 to 16. The algorithm works in the similar way as the Apriori. It also .
generates the: candidate-sets based-on the lru:ge itemsets in the previous pass.

Followings are the main features of the algorithm, which distinguishes it from

Apriori:

• In each iteration, the support of large itemsets are updated against the

incremental database to filter out itemsets that are no longer large in the

updated database. Only the incremental database is scanned to do the

filtering.

• While scanning the increment, a set of candidate sets is extracted from the

transactions in the incremental database, together ~ith their supports. The

support of these itemsets are then updated against the the old database to

find the new large itemsets.

• Many itemsets are pruned by a simple check on their supports in the in

cremental database.

• the size of the updated databa.'le is reduced at each iteration by pruning

some items from some transactions in the updated database.

CHAPTER 2. REVIEW 35

Another version of FUP is FUP2 [CLK97], which addresses the maintenance

problem for association rule mining. The algorithm has taken care of the deletion

of transactions also. The algorithm works like ApTioTi. The difference is that it

divideH the candidate itemHetH into two HubHetH - one HubHetH keepH the candidate

sets which were large in the old database and the other keeps the new candidate

sets. The algorithm scans the old database, if there are some new itemsets in

the updated database.

Thomas et al. [TBA +97] has discussed one very efficient algorithm for the in

cremental updating of association rules. This algorithm has used the concept of

negative border sets. The negative border consists of all itemsets that were can

didates of level-wise method which did not have enough support i.e. an itemset

which iH not large, but all itH HubHetH are large. ThiH algorithm has been found to

be superior to the FUP algorithm both in terms of execution time and number

of candidate generation.

Incremental algorithms were also considered in [FAA +97]. The algorithm DELI

[LCK98] has used a sampling technique to find the amount of changes of new

association rules. It has used the concept of upper and lower bound to determine

if the maintenance is required or not.

Feldman et al. [FAL +99, PujOl] proposed one very efficient algorithm which

uses the concept of border set and promoted border set. The algorithm is called

Borders algorithm. An itemset X is called a border set if X is not frequent,

but all its subsets are frequent. An itemset that was a border set before update

and has become frequent set after update is called a promoted border set. The

Borders algorithm maintaillH Hupport countH for all the frequent HetH as well a.'>

for all the border sets. The main advantage of the algorithm is that it uses

the existing frequent itemsets to find the new frequent itemsets in the updated

database. However, the disadvantage of the algorithm is that it has to scan the

whole databa.,>e frequently if there iH even one promoted border Het.

The algorithm MAAP [ZE01] also efficiently generates the incremental associa

tion rules in the updated database by applying the ApTioTi property. The algo

rithm first computes the high level large itemsets. Then it starts by generating

all lower level large itemHetH. ThiH algorithm takeH care of the Hmall itemHetH in

the old database also. Incremental algorithms were also considered in [FAA +97].

CHAPTER 2. REVIEW 36

Another algorithm can be found in [ES02], which has used FP-tree to update

the association rules in an incremental database.

2.3 Interestingness of Association Rules

It is obvious that all the strong rules are not interesting. To support this idea

some work on quantifying the usefulness and interestingness of the gener

ated rules can be found in [PM94]. Several metrics such as confidence and

support [AIS93], variance and chi-squared value [NM, Mor9S], gain [FMM+96],

entropy gain [MFM+9S], gini [MFM+9S], laplace [CB91, Web95], conviction

[BMU+Y7), etc. are used to measure interestingness of a rule. There are sev

eral algorithms that efficiently find best rule according to some of these met

rics [FMM+96, NM, RS02, BA99). Among them, the technique given in [BA99]

is worth mentioning. [BA99] has defined an optimized rule mining problem

using partial order. It has also shown that solving the optimized problem with

respect to a particular partial order is guaranteed to identify most interesting

rule according to other interesting metrics mentioned' above. Ultimately, it is the

users who decide if a rule is interesting or not.

Sometimes, the rules of the form X => Y may be misleading because algorithms

may find strong rules among the items/ attributes which are negatively correlated.

So, some alternative framework is required to measure the interestingness of a

rule. [BMS97] has given one such framework of correlation between the itemsets,

which can be used to find if a rule is interesting or not. One strong rule can be

interesting, if the itemsets in the rule is positively correlated. In addition to that,

X2 statistic can be used to see if the correlation is statistically significant or not.

2.4 M~lti-Objective Rule Mining

Association rules are evaluated by metrics such as support, comprehensibility,

interestingness, etc. These metrics can be thought of as different objectives of

a..,sociation rule mining. So, a..,sociation rule mining is a multi-objective prob

lem instead of single-objective problem. Multi-objective rule mining has been

CHAPTER 2. REVIEW 37

discussed in [GN04], which has used Pareto based genetic algorithm to extract

useful and interesting rules.

2.5 Feature Selection

Relevant feature selection is important in all kinds of databa.<;es including static

and dynamic databases, because of the fact that all the attributes/features

in a database are not important. So, it is required to find the relevant fea

tures/attributes in a database to better represent the domain. There have been

some works in the field of relevant feature selection in a data.<;et. One of the

earliest works is Branch and Bound [NF77]. The algorithm attempts to find the

best set of features according to some monotonic function. Relief [KR92] is a

weight-based algorithm. It uses random sample and is based on the concept of

NearHit and NearMiss. The algorithm calculates weights of the features in each

iteration and selects the features with highest weights. However, The algorithm

is suitable for noisy, correlated features and binary classes. Another algorithm

Focus [ADY1] selects features ba.'led on consistency mea.<;ures. It works well with

noise-free data. [LS96] also uses consistency measures to select subset of fea

tures. It first selects a random sample of features and then applies consistency

measures on the sample. The algorithm uses one inconsistency threshold, which

can be tuned according to requirement. The good things about the algorithm

are that it is very simple to implement and guaranteed to find optimal subset.

The algorithm MDLM [SDN90] is based on the concept that if the features in a

subset X can be expressed as a fixed non-class-dependent function of the features

in another subset Y, then once the values in the features in the subset X are

known, the features in the subset Yare useless. Minimum Description Length

Criterion(MDLCj is used for this purpose. The algorithm exclusively searches

all the possible subsets and returns the subset satisfying MDLC. This method

can find all the useful features for Gaussian cases.

CHAPTER 2. REVIEW 38

2.6 Discussion

As can be experienced from the related works reported so far that substantial

works have been carried out in various dimensions of association rule mining

techniques. Based on the survey, it can be observed that

1. Generation of unnecessary candidate itemsets by most of the algorithms

such as ApTioTi is the main reason behind the degraded performance in

terms of execution time. Even the performance of efficient algorithm with

reduced candidate sets such as FP-growth also can be found to degrade

with the increase of minimum support.

2. Partitioning is an effective approach of finding frequent itemsets over large

databases. However, with the increase of dimensionality, performance of

horizontal partitioning also degrades.

3. Borders algorithm suffers from the drawback of having to scan the entire

database frequently.

4. There does not exist, to the best of our knowledge, any distributed version

of Borders algorithm for distributed dynamic databases.

Feature selection plays an important role in machine learning problems. Based

on the existing survey, it has been found that

• The existing algorithms cannot select relevant features in all kind of databa.'ies

and they are very much time consuming .

• The drawbacks can be overcome by the use of frequent features.

Both static and dynamic association rule mining techniques, mostly fundamental

a.'isociation mining problems such a.'i frequent itemsets generation problems, have

been studied and analyzed thoroughly in this thesis.

Chapter 3

Frequent Itemsets in Static

Databases

Association rule was introduced by Agarwal et al. in 1993 [AIS93]. Basically,

association rule finds influence of one set of items/objects on another set of

items/objects. One example of association rule may be of the form "80% of

the customers who buy bread also buy butter". Association rules have found

numerous applications in real world such as decision support, understanding

customer behavior, telecommunication alarm diagnosis, prediction, etc. Depart

mental stores also can use association rules in many fields such as catalog design.

add-on sales, store layout, etc. The terms used in connection with association

rule mining are itemset, frequent/large itemset, support, confidence, etc.

This chapter reports some of the existing popular frequent itemsets finding al

gorithms . and. presents a detailed analysis of these algorithms in terms of their

efficiency in execution time and storage utilization. It also presents t.wo enhanced

versions of Apriori [AMS+94] , which overcomes (i) too many candidate genera

tions and (ii) execution time bottleneck due to huge repository of market-basket

databases. The following section gives some basic concepts of association rule

mining techniques.

39

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 40

3.1 Basic Concepts

Basic concept of association rule is best explained in [AMS+96]. Let I be a set of

items in a super market and D be a database of customers' transactions, where

each transaction t is a set of items such that tel. I also can be considered as

a set of attributes over the binary domain {1,0}. In that case, one transaction

will be a string of O's and 1 's, where. 1 represents that corresponding item has

been bought and 0 represents that corresponding item has not been bought. A

set of items X C I is called an itemset. Suppor-t of an itemset X, denoted by

Sup(X), is defined as the percentage of transactions in D, that contain X. An

itemset with support greater than a pre-defined value (called minimum support)

is called frequent or large itemset. An association rule between two frequent

itemsets X, Y (denoted by X :::} Y) may exist with support s and confidence

conj, if X n Y = ¢. Support of X :::} Y is the Sup(X U V). The confidence of

X :::} Y is defined as the percentage of transactions in D that contain X, also

contain Y, and is calculated as Sup(X U Y)jSup(X).

Example 3.1

Let us consider a database D (Table 3.1) with 5 items (A, B, Q, R, S) and 5

transactions. There are 31 possible itemsets. Some of them are {A}, {B},
{Q}, {AB}, {ABQ}, etc. Support of {A} is 60% because it has occured in 3

transactions. Similarly, support of {B}, {Q}, {AB}, {ABQ} are 80%, 60%,

60%, and 40% respectively.

TID A B Q R S

100 1 1 1 0 1

200 1 1 1 0 1

300 0 0 1 1 0

400 1 1 0 0 1

500 0 1 0 0 1

Table 3.1: A Sample Database - I

Suppose, minimum support is 30%. Then, all the above mentioned itemsets will

be frequent, because support of all of them are at least 30%. It can be observed

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 41

that AB has occured in 3 transactions and Q has occured in 2 transactions out of

those 3 transactions. So, association rule AB :;. Q exists with confidence 66.6%

and support 40%. Similarly, A :;. B exists with support 60% and confidence

100%.

Given a database D, the problem of mining association rules is to generate the

association rules that have certain pre-defined minimum support and confidence.

The problem of association rule mining can be divided into two subproblems.

1. Find all the frequent itemsets in the given database.

2. Find the association rules using the large item sets found in the first step.

As for example, suppose ABQ Rand AB are large itemsets. Then the confi

denceofthe rule AB :;. QRiscalculatedasconf = Sup(ABQR)/Sup(AB).

If con! 2: minconf, then the rule AB :;. QR is said to exist with confi

dence conf.

Out of these two steps, the first step is important and difficult one. That's why,

most of the algorithms concentrate on finding the frequent itemsets from a large

database in minimum possible time and using minimum resources. Once large

itemsets are known, finding association rules are straightforward. Next section

discusses some popular algorithms to find frequent itemsets.

3.2 Some Existing Algorithms

There are many algorithms to find frequent itemsets. However, different algo

rithms target different types of database. Here, three basic algorithms for fre

quent itemset generations i.e. Apriori, Aprio,riTid and AprioriHybrid [AMS+94]

have been chosen and their performance have been analyzed.

3.2.1 Apriori

Among the popular algorithms to find the large itemsets, this algorithm stands

at the top because of its simplicity and effectiveness. The algorithm is based on

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 42

the fact that all subsets of a frequent itemset are also frequent. The algorithm

first makes one pass over the database and finds the large items. Then, the

algorithm makes many passes over the data. Each pass starts with the seed set

of large itemsets which are used to generate new potentially large itemsets called

candidate itemsets. Then, support of each candidate itemset is found during the

pass over the data and the actual large itemsets are determined. These large

itemsets become' the seed for the next pass. This process continues till large

itemsets can be found.

Let e[l], e[2], e[3], ... e[k] be a k-itemset stored in the lexicographic order i.e. eli] <
e[i + 1] (i=l, .. , k-l). Let Lk be a set of large k-itemsets with two fields: item

set and the support count; Ck be a set of candidate k-itemsets with two fields

: itemset and the support count; D be the database of transactions; minsup

and mineonf be the minimum support and minimum confidence. With these

symbols, the algorithm is given in Algorithm 3.1.

Input : D, minsup

Output: All frequent/large itemsets

1. L1 = {Large l-itemsets};

2. For(k=2; L k- 1 =I <P; k++) do {

3. Ck =Apriori-gen(Lk_1); / / New candidates generation

4. For all transactions tED do {

5. C(t) = Subset(Ck, t); / / Candidates contained in t

6. For all candidates e in C(t) do

7. . c.count++; }

8. Lk = {e E Ck\e.eount ~ minsup};}

9. Return all large itemsets = U L k ;

Algorithm 3.1: Apriori

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 43

Candidate Generation and Pruning

The algorithm uses the function Apriori-gen to generate candidate sets. The

function takes set of all large k-l itemsets (Lk - 1) as input and produces the

candidate k-itemsets (Ck). The function generates a candidate k-itemset from

two k-l frequent itemsets with the same first k-2 items. If a and b are two large

k-l itemsets such that first k-2 items of the itemsets are same, then the algorithm

of the function can be described as follows.

1. Insert aU b into Ck.

2. Select a[l], a[2], ... a[k - 1], b[k - 1] from a and b where ali] = b[i](i = 1, .. ,

k-2) and a[k - 1] < b[k - 1] i.e., aU b will be inserted into Ck if a and b

have first k-2 items in common and a[k - 1] < b[k - 1].

As for example, let {ABQR} and {ABQS} be two frequent 4-itemsets such that

first 3 items of the itemsets are same. These two itemsets can be combined to

form a candidate 5-itemset {ABQRS} (i.e. {ABQ} U {R} U {S}). However,

{ABQ} and {ARS} cannot be combined, because only first items are same.

Pruning is one important step in the algorithm because the algorithm may gener

ate a lot of redundant candidate sets. The basic principle of Apriori is that if an

itemset is frequent, then all the subsets will also be frequent. So, any candidate

itemset, with a subset which is not frequent, is pruned away. Thus, it reduces

number of candidate itemsets to a great extent.

Example 3.2

Let us again consider the Table 3.1 on page 40 and take minimum support as

60% (3 transactions). If Apriori is run, results are obtained as given in Figure 3.1

on the next page. The item R is not included in L1 because Sup(R) is less than

minimum support(3).

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 44

Itemset Support

A 3

B 4

Q 3

S 4

Itemset Support

AB 3

AQ 2

AS 3

Itemset Support

AB 3

BQ 2

BS 4

AS 3

BS 4

QS 2

Itemset Support Itemset Support

ABS 3 ABS 3

Figure 3.1: Example of Apriori Algorithm

3.2.2 AprioriTid

This algorithm is a modification of the AprloTi algorithm. This algorithm also

generates the candidates using the same generating function Apriori-gen as in

the Apriori. The main feature of the algorithm is that the original database is

not used after the first pass. Instead of that, a data structure C~ is used. Each

member of the set C~ is of the form < TID, {Xk } >, where X k is a potentially

large k-itemset present in the transaction with the identifier TID. For k=l, C~

is the database itself with each item i is replaced by itemset {i}. For k > 1) the

member of C~ corresponding to a transaction tis < t.TID, {c E Ckic contained

in t > }. If a t~ansaction does not contain any candidate set, then C~ will not have

any entry for that transaction. So, number of entries in C~ gets reduced in the

successive passes resulting in fewer transactions to be scanned in each subsequent

passes. One shortcoming of the algorithm is the creation and updating of C~,

which takes considerable amount of execution time. The algorithm is given in

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 45

Algorithm 3.2.

Example 3.3

Let us apply the algorithm on the same sample database of Table 3.1 on page 40

with minimum support 60%(3 transactions). The result is given in Figure 3.2.

Input: D, minsup

Output: All frequent/large itemsets.

1. Ll = {large 1-itemsets };

2. C~= database D;

3. For (k = 2; Lk - 1 =I- 4;; k + +) do begin

4. Ck=Apriori - gen(Lk_d; / /New candidates

6. For all entries t E Ck - 1, do begin

7. / /determine candidates contained in the transaction t.T I D

C(t) = {c E Ckl(c[1].c[2] ... c[k - 1]) E t.seLo! _itemsets/\ (c[1].c[2] ... c[k -

2].c[k]) E t.seLo! _itemsets};

8. For all candidates C E C(t) do

9. c.count++;

10. If (C(t) =I- 4;) then Ck ,+ =< t.T I D, C(t) >;

11. End

13. End

14. Answer=Uk L k ;

Algorithm 3.2: AprioriTid

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 46

Transaction with TID 300 has been dropped from C~ on-wards because the trans

action does not contain any more frequent itemset. Thus, number of transactions

are reduced which results in reduction in execution time.

TID

100

200

300

400

500

C' 1

Set of itemsets

{{A}, {B}, {Q}, {S}}

{{A}, {B}, {Q}, {S}}

{{Q}, {R}}

{{A}, {B}, {S}}

{{B}, {S}}

Itemset Support

{A} 3

{B} 4

{Q} 3

{S} 4

Itemset Support C' 2

{AB}

{AQ}

{AS}

{BQ}

{BS}

{QS}

3

2

3

2

4

2

TID Set of itemsets

100 {{AB}, {AQ}, {AS}, {BQ}, {BS}, {QS}}

200 {{AB}, {AQ}, {AS}, {BQ}, {BS}, {QS}}

400

500

Itemset

{AB}

{AS}

{BS}

{{AB}, {AS}, {BS}}

Support

3

3

4

TID

{{BS}}

C' 3

Set of itemsets

Itemset Support 100 {{ABS}}

{ABS} 3 200 {{ABS} }

400 {{ABS}}

Itemset Support

{ABS} 3

Figure 3.2: Example of AprioriTid Algorithm

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 47

3.2.3 AprioriHybrid

The algorithm is basically a fusion of Apriori and AprioriTid. It uses Apriori

for the first few passes and AprioriTid for the remaining passes based on some

threshold values i.e. when it is found that candidates can be stored in memory, it

uses AprioriTid. It uses good characteristics of both the algorithms and superior

to both the algorithms. It has been found that AprioriHybrid is better than

Apriori by 30% and AprioriTid by 60% [AMS+96].

3.2.4 Experimental Results

Experiments were carried out to compare the performance of Apriori, AprioriTid

and AprioriHybrid. Experiments were carried out on a Pentium IV PC with 256

MB RAM. The exper~mental results are given in Figures 3.3 on the following

page and 3.4 on page 49.

Data Sources: Two synthetic databases (T20.l4.DlOOK and T20.l6.DlOOK) and

one real database Connect4, publicly available in DCI machine learning reposi

tory (http://www.ics. uci.edu / mlearn/mlrepository.html) have been chosen for

the experiments. The synthetic databases were generated using the technique

given in [AMS+96] with the value of parameters as given in Table 3.2 on the

following page and with dimensionality 500. Here, jTj, jM Lj and jDj repre

sent the average size of a transaction, mean size of a potentially large itemset

and database size (number of transactions) respectively. Each of the synthetic

datasets contains lOOK records. Connect-4 database contains around 65K in

stances with 43 attributes. Each attribute can have one of three values. Each

distinct value of the attributes has been considered as one item, resulting in total

129 items.

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 48

Name ITI IMLI IDI
T20.I4.DlOOK 20 4 lOOK

T20.I6.DlOOK 20 6 lOOK

Table 3.2: Parameters for Synthetic Databases - I

Ctltaset: 120 14100 K -- PoP- AT
-+- AH

70

60
'0'
~ 50
'-'
GI

.E 40
l-
e:

30 0 ·s
()

20 <II

di
10

0
0.5 0 .7 5 1 1 .5 2 2.5 3

Mnimum Support(")

Figure 3.3: Experimental Results of Aprio1"i,AprioriTid & AprioriHybrid - I

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 49

Dataset: no ~ 1 00 K --AP
+AH

460

400 .. , ,.... 350 0
GI
(n 300 '-"

~ 250 i=
c: 200 0
'§

150 0
GI

III 100

.<IL

~

\
J
\\

o .

50

0

.... . -- .. . • :4-'-= .

0.5 0.75 1 1.5 2 2.5 3
MinimJm Support(",)

• AT

D atas et Conn e0t4 -- AP AT
-- AH

4)

35
r>.
() 3J GI

(J)

¥ :;as
E
F 20
c:
0 15 :p
::;,
()
CII 10
ill

:5

0

0.0 0.70 1 15 2 2.0 3

Mnim um S upp ort(%)

Figure 3.4: Experimental Results of Apriori,AprioriTid & AprioriHybrid - II

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 50

3.2.5 Discussion

The algorithm Aprian is very ea..,y to implement and finds all possible frequent

itemsets. However, it suffers from some serious drawbacks, which increase the

execution time.

• It makes several passes over the databases, which can be found to be very

expensive for large databases .

• Though it prunes away some candidates, yet it generates a lot of unneces

sary candidates. So, for a database with large number of items, it can be

found too expensive from storage a.'> well a.., execution time point of view.

AprioriTid is also robust enough to find all the frequent itemsets. It differs

from Apriori in the sense that it scans the database once and uses a better data

structure for the rest of iterations. The size of the data structure is smaller

than that of original databa.'>e, which is the main advantage of the algorithm.

However, it also suffers from the problems of Apriori. In addition to that, some

e:>...-tra memory and extra disk space are required for the data structure. Some

extra time also spent to maintain the data structure.

AprioriHybrid uses the benefits of both the algorithms. That is why, it is the

best algorithm among all the three algorithms. However, it also suffers from the

problems of both the algorithms.

The basic problem of all these algorithms is the ratio of number of candidate

sets to frequent sets. Based on exhaustive experiments in the light of several real

and synthetic datasets, it has been observed that, on the average, this ratio is as

high as 50: 1. So, some new techniques are required to address this problem to

bring down this ratio to as low as possible.

It can be observed from the experimental results that AprioriHybrid is the best

algorithm in terms of execution time among the three algorithms. Poor per

formance of AprioriTid can be attributed to two possible reasons: one is that

it could not reduce the database size and the other is that it took maximum

time to maintain the data structure. Apriori performed better than AprioriTid

and worse than AprioriHybrid. The reason is that it has to make a pass over

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 51

the database in every iteration and it does not employ any database reduction

technique.

As mentioned above, main disadvantage of all these algorithms is the generation

of too many candidate sets. Some possible solutions of this problem are given

below.

• Using hash based techniques: Hash based techniques has been found to

be useful in reducing the redundant candidate sets. Some hash-based al

gorithms can be found in [PCY95a}. These techniques work well, when

the hash tables are small and can be kept in memory. However, these

algorithms suffer from the drawbacks of having to create hash tables and

maintaining them.

• Using sample: Sampling is also an useful technique to reduce the database

size and number of candidate sets. Use of sampling technique to find

frequent itemsets can be found in [LCK98j. The idea is to pick a random

sample, use it to determine all association rules in the sample. However,

there is a trade off between accuracy and efficiency.

• Using efficient data structure: Performance of the algorithms for frequent

itemsets generation can be improved to a great extent using efficient data

structures. One such efficient data structure is FP-tree [HPYOO], which

has been used in FP-growth algorithm [HPYOOj.

• Using probability: Probability is one useful technique, which can be used

to predict whether an itemset will be frequent or not. If the probability

of a candidate set is high enough, then it can be kept for calculating its

frequency count. Otherwise, it can be rejected with least risk.

Next section presents two enhanced versions of ApTiaTi to address the problem

of too many candidate generations and for faster implementation.

3.3 The Modified_Apriori Algorithm

It ha.., been observed that Apr-iorl algorithm is robust enough to find all frequent

itemsets from a database. However, it suffers from two major drawbacks.

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 52

1. It is not scalable.

2. It generates huge number of candidate sets, out of which only a few are

actually large.

In Modified_A priori, Boole's inequality [GK84] has been used to reduce the num

ber of candidate itemsets. The main part of the algorithm is same as Apriori.

The point by which it differs from the Apriori algorithm is the use of the Boole's

inequality in generating the candidate itemsets. The heart of the algorithm is

the function Comp_Apnor'7_gen, which computes the candidate sets reasonably

by exploiting the inequality (reported in the next subsection).

3.3.1 Background

The main objective of the Modified_Apriori is to reduce the number of unneces

sary candidate sets in the frequent itemset generation by exploiting the Boole's

inequality.

Boole's inequality: For k events A i (i=1,2,3, ... k),

k k

p(n Ai) ~ ~P(A~) - (k - 1)
~=1 i=l

The above inequality can be found very useful in the generation of candidate

sets reasonably. As for example, let us consider an itemset X = {A, B, Q}. The

support of X can be calculated as the probability of occurrence of the items in

X together in the database. So, support of X = (Number of records containing

X / Total number of records). Using Boole's inequality, minimum support of

X (in %) can be estimated as P(A)+P(B)+P(Q) - 2. Obviously, this is not

the actual support. It just gives an representative value of the support of the

itemset. Here, probabilities of individual items i.e. P(A), P(B) and P(Q) are

required, which can be calculated in the first pass of the Apr'ior'i.

Using Boole's inequality, representative values of minimum supports of the can

didate itemsets can be calculated easily. Candidate itemsets with representative

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 53

values greater than some threshold, will have high probability of being frequent

, which can be used as an additional pruning step. However, calculating the

threshold is not an easy task. The optimum threshold is the minimum sup

port itself. However, it. is t.oo high. Very few candidat.e itemset.s will cross that

threshold. So, the threshold is calculated as

k
· (k) (k - 1)(1 - minsup) * mmsup - - 1 + ~-~~fJ---"':"":"

where k is the size of the itemset and (J > 1.

3.3.2 The Algorithm

The algorithm is given in Algorithm 3.3 on the next page. Most of the symbols

used in the algorithm are same as those of Apriori. One additional symbol used

here is P A, which is an array to store the probabilities of occurrences of each

large item in a transaction. Although the algorithm is similar to Apriori, yet the

first line needs a little explanation. The first line of the algorithm finds the large

1-itemsets and calculates tlie probaoility of occurrences of each large item i, i.e.

PA[i], which is calculated as

PA[i]=(Number of records containing i) IIDI

3.3.3 Candidate Generation

Candidates are generated by the function Comp_Aprion_gen, which uses the

Boole's inequality to generate candidate sets. The function Comp~priorLgen

is given in Function 3.1 on page 55, which takes in Lk - 1 and returns Ck . The

union of item sets a,D E Lk - 1 (i.e. aU6) is inserted in Ck if they share their first

k-2 items and the value of the Boole's inequality of the items in aU b is at least

k
· (k) (k - 1)(1 - minsup) * m'lnsup - - 1 + ~--"":"'~{J---"':"":"

The rationale behind calculating the Boole's inequality is that if the value is very

low, there is little chance that the itemset will be frequent. So, these itemsets can

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 54

Input: D, minsup, {3

Output: Frequent/large itemsets

1. Ll = Large I-item sets and calculate P A[i];

2. For (k = 2; Lk - 1 =1= <p ; k++) do {

4. For all transaction tED do {

5. C(t) =subset(Ck , t);

6. For all candidates c E C(t) do

7. c.count++; }

8. Lk = {c E Ck/c.count ~ minsup};}

9. Return the set of all large itemsets = Uk L k ;

Algorithm 3.3: Modijied_Apriori

easily be rejected without much overhead, resulting in smaller size of candidate

itemsets. The algorithm generates candidate itemsets with the probability of

being frequent very high. Thus, it reduces the difference between number of

candidate itemsets and that of actual large itemsets to a great extent, resulting

in significant reduction of the I/O overhead.

Selecting {3: Here is a very simple technique to choose the value of {3. The

algorithm is ru.n with a small random sample of the database and an initial value

of {3. If the result is not satisfactory, {3 is tuned according to requirement and the

algorithm is rerun . The process is continued several times to obtain optimum

results. When optimum results are obtained, the corresponding value of f3 can

be used for the entire database. As a guideline to choose the values of /3, it ha.'l

been observed that values of {3 within the range of 3 to 6 give better result.

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 55

Function Comp..ApriorLgen(Lk _ 1)

k · (k 1) (k - 1)(1 - minsup)
x = * mwsup - - + (3

3. For all a, bE L k - 1

4. Set Temp to 0;

5. For (i =1 ; i=k-2; i++) do

6. Temp = Temp + P A[a[i]) ;

7. Temp = Temp + P A[a[k - 1]) + PA[b[k - 1]);

8. Insert aU b into-Ck, if ali] = b[i] (i=1,2, ... k-2) and ark - 1] < b[k - 1] and

Temp ~ x;

Q. End for

Function 3.1: Comp_ApriorLgen

3.3.4 Experimental Evaluation

Experiments were carried out for performance comparison of the proposed Modi

fied_Apriori with Apriori, AprioriTid and AprioriHybrid. Experiments were car

ried out on a Pentium IV PC with 256MB RAM. The method discussed above

has been used to find value of (3. Average results ofthe experiments are reported

in Figures 3.5 through 3.13.

Data set: Two synthetic databases (T20.I4.DlOOK and T20.I6.DlOOK) and one

real database Connect4 (http://www.ics. uci.edu/ mlearn/mlrepository.html)

were used for the experiments. The synthetic databases were generated using

the technique given in [AMS+96J with the parameters given in Table 3.3 on

the next page and with dimensionality 500. Here, ITI, 1M LI and IDI repre8ent

the average size of a transaction, mean size of a potentially large itemset and

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 56

number of transactions respectively. Each of the synthetic datasets contains lOOK

records. Connect-4 database contains around 65K instances with 43 attributes.

Each attribute can have one of three values. Here also, each distinct value of the

attributes has been considered as one item, resulting in total 129 items.

Observations: It can be seen from the results (Figur-es 3.G on the following

page, 3.9 on page 59 and 3.12 on page 60) that Apriori, AprioriTid and Apri

oriHybrid generate huge volume of candidate sets, which increases the I/O over

head and execution time. On the other hand, Modified_Apriori, as can be seen

in the results, generates much less number of candidates. As far as frequent sets

(Figures 3.7 on page 58, 3.10 on page 59 and 3.13 on page 61) are concerned,

Modified_Apriori finds almost same number of frequent itemsets as that of other

algorithms. Figures 3.5 on the following page, 3.8 on page 58 and 3.11 on page 60

show the execution time comparison of the four algorithms. It can be observed

that Modified-Apriori has taken much less time than that of other algorithms.

This can be attributed to the fact that Modified-Apriori generates and has to

process less number of candidates than that of other algorithms. Another point

to be observed is that frequent itemsets in Modified-Apriori is a subset of those

of Apriori, AprioriTid and AprioriHybrid.

Name ITI IMLI IDI
T20.I4.DIOOK 20 4 lOOK

T20.I6.DIOOK 20 6 lOOK

Table 3.3: Parameters for Synthetic Databases - II

CHAPTER. 3. FREQUENT ITEMSETS IN STATIC DATABASES 57

D alas et 12014100K --AP- AT
-+-AH --MA

70

60
,.....

50 ()

~
'-'

.~ 40
l-
e 30 ,Q
~
()
~ 20 tl:i

10

0
0.5 0.75 1 1.5 2 2~ 3

Mnimum Supp ort("')

Figure 3.5: Experimental Results of Modifie,(LApriori - I

D alas et 12014100K -- Dthers(AJg)
...... tIM,

~ .. 2(I) -+-._----...---~-....:.--I

~
t= 1&l+-~~----------l
'-'

J
~ 100+-tr-..... ~---------l
'0 e

~ &l+---~~~~--~--~

0.5 0 .75 1 1.5 2 2.5 3

Mnirn urn :s uppo 11(%)

Figure 3.6: Experimental Results of ModifietLApriori - II

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 58

D alas et 1'20141 OOK

45
,..... 40 "0
c::
CI 35
::::I

30 0
.t:.
t::. 25
J!l
GI 20 (/)

",
~
~

'--
~

1: 15 GI
::::I

10 o:r
2!

U- 5

0
0.5 0.75 1 1.5 2 2.5 3

Mn irrum Supp ort(")

Figure 3.7: Experimental Results of Modified_Apriori - III

D atas et: 120ti100K

460

400 10. .~. "J <'

'()' 350
GI

300 (f)

'-'
..

GI

E 250
i=
c:: 200
0

'p

~ 150

Jf 100

50

" \ -
~

\:
~

L.. __
0 . .

0.5 0 .75 1 1.5 2 2.5 3

Mnirru m 9J ppo rt(")

Figure 3.8: Experimental Results of Modifit~d..Apriori - IV

CHAPTER. 3. FREQUENT ITEMSETS IN STATIC DATABASES 59

D alas et T205100K -- OihelS (Afg)
......- ~

600~------------------~

~ 500 -+--1 ---------�
c
'II

~ ~+-~-----------------I .c
~

2oo+-~~-----------~

1oo+---~~D.~~-----~

0.5 0.75 1 15 2 2.5 3

Minimu m sup port(%)

Figure 3.9: Experimental Results of ModifietLApriori - V

D alas et T205100K

100

-e- 00
c: ro ..
~ 70 0 .c
I- I:(J
'-'

i &l en
1: 4J
G/
:::1 3J I:f'
G/

I.L :it!
10

a

".
'J ,

\
\
\.
"\. . ': ,I

"I •• 'tI,.
~ - .'

0.5 0 .75 1 1.5 2 2.5 3

Mnimum Support(%)

Figure 3.10: Experimental Results of Modified...Apriori - VI

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 60

D alas et C onne ct4 --- PoP
--AH

40

35 ,.....
0 30 GI
00
)sf 25
.~
I- 20
c
0 15 :g
0
GI 10
J)

5

0
0.5 0.75 1 1.5 2 2.5 3

Mnirn urn Sup port(%)

Figure 3.11: Experimental Results of ModifierLApriori - VII

Dataset Connecl4 -- Others(Aig)

45

'6' 4J
c ~ IV
VI
J 3) 0
~
I- 25 '-'
VI

20 -Fd
"0 15 '6 c

10 III
U

~

0

-6- ~

~,
'\\

'\...
~

,

~ -
"

0.5 0.75 1 1.5 2 2.5 3

Mn imum Su pport: %)

Figure 3.12: Experimental Results of Modified_ApTiori - VIII

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 61

lliIt3Set : Connect4 -- Others(lWg)

4J

9 l5
c:
~

3) !9
0
~ 25 I-.....
JI) 2)
41

(J)
15 ..

c:
41 ;:, 10 tT
41 ..

5
D

-..- MA

_".

\ \
"\\

~~'\.
.

".-.,
-

DB 0.75 1 1 B 2 2.5 3

Minimu m Su pport: %)

Figure 3.13: Experimental Results of Modified..Apriori ~ IX

3.3.5 Using Multiplication Law of Probability to Gener

ate Candidate Sets

Multiplication law of pmbability was also used to reduce unnecessary candidate

itemsets in Apriori [DB04]. The multiplication law of probability states that

the probability of occurring independent events together is equal to the product

of the probabilities of occurring of the events individually [GK84J. Support of

an itemset is the probability of occurrence of the item set in the database. If

it is assumed that items are independent in the database, estimated support

of a candidate itemset can be calculated 8.<; the product of the probabilities

(supports) of the items in the item...:;et. If this probability(support) is greater

than some threshold , the candidate can be kept for further processing, otherwise

it can be pruned away. Thus, unnecessary candidates are reduced to a great

extent in ApriOTi. However, this approach can be found to be suitable in those

cases, where faster frequent itemsets is essential and all the frequent itemsets

may not be required to be generated.

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 62

3.4 Using Bitmaps to Find Frequent Itemsets

Bitmap techniques have been applied in various application domains [BAG99,

Gra94, JD099, Joh98, MZ98, NG95]. Bitmap indexing method is popular in

OLAP products because it allows quick searching in data cubes. In the bitmap

index for a given attribute, there is a distinct bit vector for each value in the

domain of the attribute. If the domain of the attribute consist of n values, then

n bits are needed for each entry in the bitmap index. If the attribute ha."l the

value V for a given row in the table, then the bit representing the value is set

to 1 in the corresponding row of the bitmap index. All the other bits for that

row are set to o. As for example, let us consider the database (Table 3.4). The

corresponding bitmap entries of the table are shown in Table 3.5.

Item City

A V

B V

A V

B V

Table 3.4: A Sample Database - II

A B

1 0

0 1

1 0

0 1

Table 3.5: Bitmaps for The Item Attribute Values

Bitmap indexing is very useful because bit arithmetic is very fast. Bitmap in

dexing leads to significant reduction in space and I/O since a string character

can be represented by a single bit. However, a problem with using bitmap index

for a column with high cardinality is its high storage cost and potentially high

expression evaluation cost. That is why compression of bitmap is required. The

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 63

form of compression is most crucial aspect since it must be designed to save disk

space and perform the basic operations AND, OR, NOT, etc. A considerable

amount of work has been done in the study of bitmap index compression. The

use of bitmap compression has several pot.ential performance advantages such as

less storage requirement, faster accession as well as easy caching in the memory,

etc. There are several good representation and compressions techniques such as

Verbatim, Run Length Encoding, Gzip, Expgol ,BBC, etc. [AYJ001. Bitmap tech

nique also has been successfully utilized in association rule mining[LLOO, MZ981.

BiLAssocRule [HLL031 is one of the promising association rule mining techniques

designed using similar concept. Next section reports the algorithm.

3.4.1 BiLAssocRule Algorithm

A detailed discussion of the algorithm can be found in [HLL03]. The algorithm

uses bitmaps of the attribute values to find the frequent itemsets. The algo

rithm works as follows. The algorithm starts with the list L 1 , which contains the

large attribute values and bitmap of large 1-itemset. The k-candidates consist

of k attribute values from k attributes. The candidate is large itemset if the

bit count(i.e. the number of l's) of the intersection of all the bitmaps in the

candidate is equal to or greater than the minimum count. During each cycle.

combination of length k i.e. k-candidates are generated. At the end of the cycle

if any k-candidate becomes large, new candidate of length k + 1 is generated in

the next cycle, The cycle stops when no k candidates are found to be large item

sets or if no new k+ 1 candidates can be generated. k- candidate is generated by

joining a k - 1 itemset with 1-itemset in L1 that has an attribute index greater

than all attribute index of elements in that k -1 itemset. The algorithm is given

in Algorithm 3.4 on the next page.

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 64

Input: D, minsup, bitmaps of the items

Output: All frequent/large itemsets

1. L1 = large 1-itemsets with their bitmaps;

2. For (k=2; Lk - 1 :::J ¢;k++)

3. Remove those 1-itemsets in L1 which are not included in any itemset

of L k - 1 ;

4. Ck = { Join the 1-itemset in Ll that is larger than any element in the

k-1 large itemsets with the itemsets in Lk - 1};

5. Lk= {c E Ck \ bitmap count of c ~ minsup};

6. End for

7. Answer= U L k ;

Algorithm 3.4: BiLAssocRule

Example 3.4

Let us consider the database D (Table 3.1 on page 40) and take minimum

support as 60% (3 transactions). If BiLAssocRule is run in the database, the

result is obtained as given in Figure 3.14 on the next page.

Discussion

The algorithm works much faster than Apriori, AprioriTid and AprioriHybrid

to find the frequent itemsets because it finds the support count of the candidate

sets by interse,ction of the bitmaps of the items. However, experiments show

that it generates a huge number of unnecessary candidate sets. The number of

candidate sets can be reduced to a great extent by using Boole's inequality in

the same way as has been used in Modified_ApTioTi. The following algorithm

is a modification of BiLAssocRule algorithm, which uses Boole's inequality to

generate the candidate sets.

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 65

A B Q S AB AQ AS BQ BS QS
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 0 0 0 0 0

1 1 0 1 1 0 1 0 1 0

0 1 0 1 0 0 0 0 1 0

AB AS BS

1 1 1

1 1 1

0 0 0

1 1 1

0 0 1

C3 L3

A B S ABS ABS

1 1 1 1 1

1 1 1 1 1

0 0 0 0 0

1 1 1 1 1

0 1 1 0 0

Answer= {A, B, Q, S, AB, AS, BS, ABS}

Figure 3.14: Example of BiLAssocRule Algorithm

.
3.4.2 Modified_BiLAssocRule Algorithm

The main purpose of Modified_BiLAssocRule is to reduce the number of can

didate sets by using Boole\; inequality in the same way as has been used in

Modified_Apriori algorithm. The algorithm uses an additional array P A to store

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 66

the probability of each attribute value. P A[i] is calculated as (bitmap count of

ith item)/IDI. The algorithm is given in Algorithm 3.5. Candidates are generated

by the function Bit-gen, which takes L 1, L k - 1 as input and returns Ck as output.

Input: D, minsup, bitmaps.

Output: Frequent/large itemsets.

1. L1= Large l-itemsets with their bitmaps;

2. Calculate P A[i](i=1,2,3 ... m);

3. For (k=2; L k - 1 =1= ¢;k++)

4. Remove those l-itemsets in L1 which are not included in any itemset

of Lk - 1 ;

6. Lk= {c E Ckl bitmap count of c ~ minsup };

7. Endfor

8. Answer= U L k ;

Algorithm 3.5: Modified_BiLAssocRule

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 67

Function Bit-gen(Lk _ 1 , L 1)

1. Select a E L k - 1 and bELl such that b is larger than all the elements in a.;

2.

k · (k 1) (k - 1)(1 - minsup)
x = * m1,nsup - - + -'---....:.....:..-{3------::....;..

3. Temp = 0;

4. for (i =1 ; i=k-1; i++)

5. Temp = Temp + P A[a[illj

6. Temp=Temp+ P A[b];

7. Insert aU b into Ck if Temp 2: Xj

8. Return Ck;

Function 3.2: Bit-gen

Experimental Results

To evaluate the performance of Modijied_BiLAssocRule over BiLAssocRule, ex

periments were carried out on the same environment as Modijied.-Apriori algo

rithm. Here also, same datasets (T20.I4.Dl00K, T20.16.Dl00K and Connect4)

were used. Other parameters were also kept same as those of M odijied.-A priori.

The experimental results are given in Figures 3.15 through 3.19.

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 6

D alas et T2014100K BA -+- M

~ 200-....... --------1 ra

!9
o
~ 1ro+-~---------I

0.5 0.75 1 1.5 2 2.5 3

Minimum Support(%)

DalasetT2014100K -- BA -&-

~
'6'

4J c:
ra
!9 35
0

.J; 3) I-
'-"
VI 25
E

aJ ~ 15 c:
ell
::J 10 r:T
~

5

0

:'
~

..........
~

~~

I

0.5 0.75 1 1.5 2 2.5 3

Mn imum Sup port(%)

Figure 3.15: Experimental Results of ModijiefLBiLAssocRule - I

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 69

Datas et TalI4100K --- SA -.- MBA

35

30
"...,
()
(1/ 25 IJ)

'if
E 20
i=
c

15 .~
~
()

10 (1/

~

5

0
0.5 0.75 1 1.6 2 Uj 3

Minirrum Sup port("')

Dataset TalB100K --- BA -.- M3A

'6'
fii
~
0

s::.
~
'oJ

J!
IQ
~

'6 c
IQ
(.)

ffl)

5l)

q:o

3D

3D

100

0
0.5 0.75 1 1.5 2 2.5 3

Minimum Support(%)

Figure 3.16: Experimental Results of Modified_BiLAssocRule - II

CHAPTER. 3. FREQUENT ITEMSETS IN STATIC DATABASES 70

Dataset 1205100K -- SA -.- II.EIA

100 ,....
"0
c: .. g)
III
:J
0

.s::.
I- fO '-'
III
E
G/ 41 ~

~
::J 20 cr
!

0
0.0 0.70 1 1.0 2 2.0 3

Mnimum Support(%)

D atas et 1205100K --SA -.- tuIlA

2~~------~~----------~

'0' 200 +--+----........ -------~----t
G/
(f)
'-'
G/
E 1~ +-~----------t
i=
c:
o
~ 100 -+---\O -~-------I
()

G/

~ ~+---~~------~~~~

0.5 0.70 1 1.0 2 2.0 3

Minimu m S up po rt(%)

Figure 3.17: Experimental Results of ModifielLBiLAssocRule - III

CHAPTER. 3. FREQUENT ITEMSETS IN STATIC DATABASES 71

D atas @tC on n@cl4 -- SA ~M

46,-------------~~--~
4O~P-~~----~~~--~

.......
~ 354-~--~~~----~----~
rq

~ 304-~~--------~~----~
o

.&:.
~ 254---~~------~~----~

$ 204-----~~~----------~
rq

~ 15i-~~------~~~~=r;
c
rq 104---------------------~
u

54-------------------~

04-~--~--~~--~~--~

0.5 0.75 1 1.5 2 2.5 3
Minimu m Su ppor(%)

Datas@t Conn@cl4 --- SA -...- M

4J
.......

35 -,:,
c
rq
VI 3J :::J
0

.&:.
2:S

'-"

~ 20
(I)

C 15
GI
:::J

10 r::T
GI ...
"- 5

0
0.5 0 .75 1 1.5 2 2.5 3

Minimu m Su ppo rt: %)

Figure 3.18: Experimental Results of Modijit'.fLBiLAssocRule - IV

CHAPTER. 3. FREQUENT ITEMSETS IN STATIC DATABASES 72

D alas et C on necl4 -- SA -..- M

30~----~--~----------~

...... 25 +-I!-~-~-~-~--~
()
41

~ 20 -f-I1IIrr-I!~!""-----------""
E

~ 15 +--o\olr---------~
~
~ 10 +---~("'-"-~ ---~ 41
X

W

0.5 0.75 1 1.5 2 2.75 3

Mnirn urn S uppo rt(%)

Figl1re 3.19: Experimental Results of ModifielLBiLAssocRule - V

Observations: It can be observed from the results that BiLAssocRule generates

large number of candidate sets, which increases the I/O overhead and execution

tinle. On the other hand, ModifietLBiLAssocRule generates less candidate sets

and almost same frequent sets.

3.5 Discussion

Ba..'*Xi on the possible solutions as reported in the subsection 3.2.5, this chapter

has reported two modified versions of Apri01'i algorithm for fast frequent itemset

generation. The performance of the algorithm were evaluated by comparing

with its other counterparts from [AMS+94] based on two synthetic data sets

and one real dataset. The algorithm outperformed Ap1io1·i, Apri01iTid and

AP1ioriHybrid in terms of both execution tinle and memory utilization.

FP-gmwth [HPYOO) is one of the efficient algorithms to find frequent itemsets

from databases without candidate generations. However, it suffers from two ma

jor problems: the algorithm takes much tinle to construct the FP-tree, specially

CHAPTER 3. FREQUENT ITEMSETS IN STATIC DATABASES 73

for higher dimensions and the performance of the algorithm degrades with the

increase of minimum support [HPYOOj. These problems can be solved to a great

extent by using vertical partitioning approach, which is discussed in the ne:>.."t

chapter.

Partitioning is another useful approach used in frequent itemset generation prob

lem. Next chapter reports an existing partitioning approach and analyzed its

performance in the light of several real and synthetic datasets. It also reports an

enhanced partitioning algorithm for faster frequent itemset generation.

Chapter 4

Frequent Itemsets Using

Partitioning Approach

Most of the algorithms to find frequent itemsets need multiple passes over the

databases. This means that the disk-resident database has to be read several

times. So, these algorithms spend a lot of time to perform disk I/O, resulting

in maximum burden on the I/O subsystem. Moreover, running these algorithms

on OLTP systems, where thousands of transactions are made per second, will

increase the query response time to a great extent. If the algorithms are run

on network, it may cause network congestion also. One feasible solution is to

partition the database and apply the algorithms in the partitions individually.

Another advantage of partitioning the database is that it helps parallelize the

algorithms.

This chapter presents a useful frequent itemsets finding algorithm using vertical

partitioning approach. It also includes an experimental analysis of the horizon

tal partitioning based frequent itemset finding approach. Then, it has made a

comparison between both the approaches : horizontal partitioning and vertical

partitioning ..

4.1 Partition Algorithm

Partition algorithm [SON95] overcomes difficulties mentioned above to a great

74

;

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING... 75

extent for the following reasons.

1. It reads the database only twice to generate the itemsets.

2. CPU overhead is much lower than the other algorithms.

3. The algorithm can generate results with no false negative.

4. The algorithm can be parallelized with minimal communication and syn

chronization among the processing nodes.

The algorithm uses the concept of partition, local support, local large itemsets,

global support and global large itemsets. A partition is defined as any subset

of transactions contained in the database D and partitions are non-overlapping.

Local support of an itemset X in a partition is defined as the fraction of trans

actions in the partition, which contains the itemset. If the local support of an

itemset X is at least the user-defined minimum support, the itemset is called

local large itemset: Global support, global large itemsets, etc. also are defined

in the same way, but in the context of global database.

Partition algorithm works in two phases. In phase I, it logically divides the

. database into some non-overlapping partitions. Next, each partition is considered

individually and the large itemsets for each partition are generated. At the end

of phase I, large itemsets found in each partition are merged to generate global

candidate sets. In phase II, the actual support for these itemsets are computed

by scanning the whole database and large itemsets- are found.

4.1.1 The Algorithm

The algorithm is reported in Algorithm 4.1 on page 77. The algorithm assumes
•

that transact!ons are in the form (TID,ij,ik , ...) and items are kept in lexico-

graphic order. TID, called transaction id, is an unique number associated with

each transaction. The algorithm first partitions the database into some non

overlapping logical partitions. Then it reads one partition at a time and finds

the local large itemsets of the partition using one function Gen_larye_itemsets

(Function 4.1 on page 78). These local large itemsets are potential global large

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 76

itemsets. At the end of first phase, these local large itemsets of all the partitions
•

are merged together to form global candIdate sets. In the second phase, the

algorithm scans the database once to find the actual support of global candidate

sets. Global candidate sets whose support is greater t.han the minimum support.

becomes global large itemsets. The main strength of the algorithm can be sum

marized as follows.

• A global large itemset must be locally large in at least one partition.

• It finds all the global large itemsets because global candidate set is the

union of all local large itemsets.

4.1.2 Generation of Local Large Itemsets and Global Large

Itemsets

Local large itemsets of a partition p are generated by the function Gen_large_itemsets

(Function 4.1 on page 78). The function takes one part.ition p and returns largp

itemsets in the partitions. The function works in the same way as Apnori works.

The function maintains tidlist of the items. tidlist of an item set X is nothing,

but an array of transaction ids (TID) of the transactions in the database contain

ing X. Support count of an itemset is found by intersection of the tidlists of

the items in the itemset. One important step in the function is the pruning step

(line 8). A candidate c is pruned away if one of its subsets is not large because

any superset of it also cannot be large.

Union of all local large itemsets form the global candidate sets. This global

candidate set is the superset of the set of all possible global large itemsets

because any global large itemset must be locally large in at least one parti

tion. Then, the algorithm reads one partition at a time and calls the procedure

Gen-finaLcount(ProceduTe 4.1 on page 79) to find support count of all the global

candidate sets in the partition. Support count of all the partitions are added to

find global support count of the itemsets. Itemsets with support count greater

than minimum support are the global large itemsets.

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING... 77

Input: D, minsup, np

Output: All large itemsets LC .

1. P = PartitiorLdatabase(D);

I/Phase I

2. For i= 1 to np do begin

5. End

1/ Merge phase

6. For (i=l; L, =14>; j=1,2 11p; i++) do begin

7. C9 =U· v· J]=1.2 np"

8. End

9. CC = uC~ J

; IIPhase 11..

10. For i= 1 to np do begin

13. End

14. LC = {c E CGlc.count ~ minsup};

Algorithm 4.1: Partition

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 7B

Function Gen_large_itemsets(p : a partition)

1. Lf=large l-itemsets along with their tidlists;

2. For (k = 2; LLI =/: ¢>; k + +)

3. For all item sets 11 E L~_l

4. Lt = 4>;

5. For all itemsets 12 E L1-1;

6. If 11 [i) = I2[i](i=l,2,3 ... k-2) and 11 [k - 1] < l2[k - 1] then

7. c= IdlJ.lI[2] .. .ldkd.l2[k - 1];

B. If c cannot be pruned then

9. c.tidZist = l}.tidlist nI2 .tidlist;

10. If Ic.tidlistl ~ min sup then

11. L~= L~ U {c};

12. Endif

13. Endif

14. Endif

15. Endfor

16. Endfor

17. Endfor

lB. Return UkLt

Function 4.1: Gerdarge_itemsets

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 79

Procedure Gen_finaLcount(C G
: Set of all global candidate sets, P : database

partition)

1. For (k=l; Cp =1= ¢; k++)

2. Forall k-itemset c E Cf

3. templist = c[I).tidlist Uc[2).tidlist Uc[3).tidlist ... Uc[k).tidlist;
..

4. c.count=c.count+ltemplistl;

5. Endfor

6. Endfor

Procedure 4.1: Gen_finaLcount

4.1.3 An Example

Let us consider a sample database with five items(A, B, Q, R, S) and ten trans

actions as given in Table 4.1 on the ne>.."t page. Two logical partitions Pl and

P2 are created with five transactions in each partition. Partition Pl contains

first five transactions and partition 1>2 contains ne)..i; five transactions. Mini

mum support is assumed to be 40%. Now, partition Pl is read and the function

Gen_large_itemset is called to find the local large itemsets in Pl. Local large item

sets for PI is'LI={A, B, Q, S, AB, AQ, AS, BQ, BS, ABQ, ABS}. Similarly, local

large itemsets for P2 are obtained as L2={A, B, Q, S, AB, AQ, AS, BQ, ABQ}.

After merging. global candidate set is obtained as GG = {A, B, Q, S, AB,

AQ,AS,BQ, BS, ABQ, ABS}. Now, PI is read and support count of all the

itemsets c E CG in PI are calculated, which are 5, 5, 2, 4, 5, 2, 4, 2 , 4, 2 and 4

respectively. Similarly, P2 is read and support count of all the itemsets c E CG

in P2 are calculated, which are 4, 3, 3, 2, 3, 2: 2, 2, 1, 2 and 1 respectively.

Global support count of the itemsets c E CG are 9, 8, 5: 6, 8, 4, 6, 4, 5 ,4 and

5 respectively. The itemsets c E CG with support count greater than minimum

support count(i.e. 4 transactions) constitute LG, set of global large itemsets.

So, LG = {A, B, Q, S, AB, AQ, AS, BQ, BS, ABQ, ABS}.

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 80

A B Q R S

1 1 0 0 1

1 1 1 0 1

1 1 0 0 1

1 1 1 0 0

1 1 0 0 1

1 1 1 0 0

1 1 1 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

Table 4.1: A Sample Databa.'ie - III

4.1.4 Experimental Results

Experiments were carried out to show the execution time of Partition algorithm

. All the experiments were carried out using Pentium IV machine with 256

:\'IB RAM and 40GB disk space. Minimum support was taken as 1% for all the

eA-periments.

Data set: Two synthetic data sets and one real data set were used for the exper

iments. Synthetic data were generated based on the method given in [AMS+96]

and the real database (Connect-4) was downloaded from VCI machine learn

ing repository (http://www.ics.uci.edu). The Table 4.2 on the following page

shows the parameters used in the synthetic data generation, where \DI.\T\ and

[M LJ denote the number of transactions. the average size of transactions and

the mean size of a potentially large itemset. For synthetic datasets, number of

items, potential large itemsets and number of records were taken as 500, 500 and

lOOK respectively. Connect-4 database contains around 65K instances with 43

attributes. Each attribute can have one of three values. Here also, each distinct

value of the attributes was considered as one item, resulting in total 129 items.

E>.:periments were carried out to find execution time for different number of

partitions. In case of ~-ynthetic data sets, number of partitions was increased

from 1 to 15 and in case of Connect 4 number of partitions was increased from

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 81

1 to 10. Experimental results are given in FigUTe8 4.1 and 4.2 on the following

page.

Data Set ITI IMLI IDI
T20I4100K 20 4 lOOK

T20I6100K 20 6 lOOK

Table 4.2: Parameters for Synthetic Databases - III

D ata5 et 120141 (OK (lie ms=5(0)

.-..
0
41 15 U)

~
.f
I-

10 c
0

~
0
41

5 x
w

0
2 5 10 15

Partition;

Figure 4.1: Experimental Results of Horizontal Partition - I

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. .. 82

D atas et T20B100K (lems=&lO)

3J

r... 2:5
()
G.I

(J)

'If 20
E
i=
c: 15

. j;!

~
() 10 G.I
X
w

5

0

P.illltilions

D atas et Conn eat 4 (!!ems= 129)

14

'""'- 12
()
G.I

(J) 10
'If
E 8 i=

, ~

~
.,r'"

c:
0 6 :p
J
() I a " G.I 4 x
w

"

2
0

0

2 10

Partitions

Figure 4.2: Experimental Results of Horizontal Partition - II

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 83

4.1.5 Discussion

The partition algorithm, which has been discussed above, is basically a hori

zontal partition algorithm because the database is partitioned horizontally. The

algorithm is robust enough to find all the' large itemsets in the whole database. It

works much faster than APTioTi, as has been demonstrated in [SON95j because

it needs only two scans of the database. Proper choice of the number 0/ partitions

and the partition sizes are crucial for the success of the algorithm. Partition sizes

are so chosen that each partition can be accommodated in the main memory and

the partitions are read only once in each phase. However ~ the algorithm is not

scalable with number of dimensions and number of partitions as has been shown

by the experimental results.

4.2 Vertical Partition Algorithm

As mentioned above, one major factor which greatly affects the performance of

the partition algorithm, is the size of the global candidate sets. As the size of the

global candidate sets increases, the execution time also increases. Although there

are many factors, which affect the size of the global candidate set, one of the main

factors is the dimensionality of the records/transactions. It has been observed

that with the increase in dimensionality, the size of the global candidate set

as well as the execution time also increases. Vertical Partition algorithm, which

partitions the database vertically instead of horizontally, overcomes this problem

to a great extent.

4.2.1 The Algorithm

Let us consider a customer transaction database D, which contains transactions

of items. It is assumed that each transaction/record is of the form < TID,l,O,l,l,O ... >
and the items are in lexicographic order. Here~ TID is unique transaction iden

tification number; 1 represents that the corresponding item is bought and 0

represents that the item is not bought in the transaction. It is also assumed

that the T 1 Ds are kept in monotonically ascending order and the database is

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING... 84

kept in secondary storage. Considering the assumptions, the algorithm works

as follows. The' algorithm works in two phases. In the first phase, the database

is partitioned vertically into some logical partitions and large itemsets for each

partit.ion are det.ermined. In t.he second phase, large itemsets found in each of

the partitions are combined to form the global candidate sets. Then, supports of

the candidates are also calculated. It should be noted that local large iternsets

of a partition are also global large itemsets. The support of the global candi

date sets are calculated oy intersecting the tidlists of the items of the itemsets.

Obviously, the global candidate set is the superset of the actual large iternsets.

So, the algorithm is sure to find all possible large itemsets in the database. The

algorit.hm is presented in Algorithm 4.2 on the next page.

4.2.2 Generating Large Iternsets in a Partition

Large itemsets in a partition are generated using the function Gen_Iarge_item.sets

(Function 4.2 on page 86). The function takes a partition as input and returns

the set of large itemsets in that partition. The function works in the same way

as Apriori works. It finds the support count of an itemset by intersection of the

tidlisf!:; of the items in the itemset.

4.2.3 Combining Local Large Iternsets

The algorithm uses the function Combine_locaLlarge (Function 4.3 on page 87)

to find the global candidate itemsets. The function takes two sets of large item

sets; concatenates a large itemset of one set with a large itemset of another set

and returns the concatenated sets. Combining the large item.'iets in all the par

titions at a time will generate too many candidate sets. So, they are combined

incrementally. At first, sets of large itemsets of first two partitions are combined

to find candidate itemsets. Then, support count of the candidates are found by

intersections of tidlisfs of the items. The itemsets with support count weater

than minimum support becomes actual large itemsets . Then, the set of resulting

large itemsets is combined with the set of large itemsets of the next partition

and the process continues so on. As for example, let the large itemsets in three

partitions be { AB, A, B }; { Q, R } and { S }. At first, partitions 1 and 2 will

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 85

Input: D, minsup, np

Output: All large itemsets LG.

1. P= VerticaLpartition_database(D);

2. For i= 1 to np do begin

3. Read_in_partition(pi E P). create the tidlists for each of the items;

5. End

7. For i = 2 to np do begin

8. CG = Combine_locaUarge(LG, V);

9. For all candidate c E CG gen_count(c);

11. End

12. Answer= LG;

Algorithm 4.2: Vertical Partition

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 86

..
function Gen_large_itemsets(p : a partition}

1. Lf = large 1-itemsets from the tidZist,

2. For (k = 2;LLI =I ¢;k+ +)

3. L~ = ¢;

4. For all itemsets 11 E LLI

5. For all item sets 12 E LLI

6. If ldi] = 12 [i](i=1,2,3 ... k-2} and ldk - 1] < 12[k - 1] then

7. C= 11[1].ld2] ... ldkl].l2[k - 1];

8. If c cannot be pruned then

9. c.tidlist = ll.tidlist nI2.tidlist;

10. If Ic.tidlistl 2: minsup then

11. L~= Lt u {c};

12. Endif

13. Endif

14. Endif

15. Endfor

16. Endfor

17. Endfor

18. Return UkL~;

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 87

be combined to find the potential large itemsets { ABQ, ABR, AQ, AR, BQ,

BR}. Suppose AQ and BQ are large amoilg them. Then {AQ, BQ} will be

combined with the partition 3 i.e. {S} to generate {AQS,BQS }.

Function Combine_locaUarge(X, Y: Sets of large itemsets)

1. Z=<!>;

2. For all a E X

3. For all-b E Y

4. C=COllcatenate a and b ;

5. Z=ZUc;

6. Endfor

7. Endfor

8. Return Z ;

Function 4.3: Combine_locaUarge

4.2.4' Support Count

The supports of the global candidate sets are obtained by the procedure Gen_count

(Procedure 4.2). The procedure takes one candidate itemset as input and calcu

lates support count of the itemsets as output. The support count is calculated

by intersecting the tidlisfs of the items.

Procedure Gen_count(c : itemset)

1. k=lcl;

2. templist= c[lJ.tidlist n c[2J.tidlist n ... nc[kJ.tidlist;

3. c.count=ltemplistl;

Procedure 4.2: GeTLcount

CHAPTER 4. FREQUENT ITEM SETS USING PARTITIONING. . . 88

4.2.5 An Example

Let us try to understand the Vertical Partition algorithm with an example. Let

us consider a Database D with three partitions as given in Table 4.3 and the

minimum support be 40%(i.e. 2 transactions)

TID Partition I Partition -II Partition-III

A B E G H J K R

1 1 1 0 0 0 0 0 1
-

2 0 1 1 0 0 1 0 1

3 0 0 0 0 1 0 1 0

4 1 1 0 1 0 0 0 1

5 0 0 0 0 1 0 0 0

Table 4.3: A Sample Database - IV

The Frequent itemsets in the partition I: Ll= {A, B, AB}

The Frequent itemsets in the partition II : L2= {H}

The Frequent itemset in the partition III: L3 = {R. S}

S

0

0

1

0

1

Candidate sets generated by combining Ll and L2 are C= { AH, BH, ABH}.

The Frequent itemsets in C are L' = 4>

L' is recalculated as L' = L' U Ll U L2 = {A, B, AB, H}

Candidate s~ts generated. by combining L' and L3 are C = { AR, AS, BR, BS.

ABR, ABS, HR. HS }

The Frequent sets in C are L" = { AR, BR, ABR, HS }

Therefore LG = L" u L' U L3 = {A, B, AB, H, R, S, AR, BR, ABR, HS}.

4.2.6 Discussion

The Vertical Partition algorithm finds all possible large iternsets and needs one

scan of the database. Another advantage is that it generates less number of

global candidate set8 because of the fact that an itemset, which is large in a

vertical partition, is also large in the whole database. So, it is not required.

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 89

to test the itemset again for whole database. However, the algorithm requires

to maintain tIle t'ldlist of the items. If they cannot be kept in memory, they

can be kept in secondary storage and accessed whenever required. As in the

H011zontal Pa1tttwn algorithm, det.ermining number of part.it.ions poses a major

consideration. Generally, the size of partition should be chosen in such a way

that it fits in the main memory. However, other factors such as the type of

database. minimum support, etc. should also be taken care of accordingly.

4.2.7 Experimental Results

Experiments were carried out to show comparison of execution time between

Honzontal Partition(HP) algorithm and Verti~ Partltion(VP) algorithm for

different number of partitions and dimensions. Horizontal Partition algorithm

was implemented using the same approach as it was discussed in [SON95] and

Vertical Partlt1.0Tl was implemented using the same approach as was discussed

above. All the experiments were carried out using Pe~tmm IV machine with 256

MB RAM and 40GB disk space.

Data set: Two synthetic databases and one real database were used for the

experiments. Synthetic databases were generated based on the method given in

[AMS+96] and the real database(Connect-4) was downloaded from VCI machine

learning repository(http://www.ics.uci.edu). The Table 4.4 on the following page

shows the parameters used in the synthetic data generation, where IDI, ITI and

[M L] denot~ the number of transactions, the average size of transactions and the

mean size of a potentiaily large itemset respectively. For all datasets, number of

items, potential large itemsets and number of records were taken as 500, 500 and

lOOK respectively. Connect-4- database contains around 65K instances with 43

attributes; Each attribute can have one of three values. Here also, each distinct

value of the attributes has been considered as one item, resulting in total 129

items. For all the eA-periments minimum support was taken as 1%.

Experiments were carried out to compare execution times for different number

of items and different number of partitions. For synthetic data sets, numbers of

items were 100, 300 and 500; for Connect 4- numbe~ of items were 50. 100 and

129. In case of synthetic data sets, number of partitions was increased from 1

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 90

to 15 and in ca..<;e of Connect 4 number of partitions was incre.8..<;ed from 1 to 10.

Experimental results are given in FiquT'C8 4.3 through 4.7.

Data Set ITI IMLI IDI
T20I4100K 20 4 lOOK

T20I6l00K 20 6 lOOK

Table 4.4: Parameters for Synthetic Databases - IV

D atas et 12014100K (ltems= 100) -- HP -+-VP

15 ~----:---------,

'()'
G/

~ 10 +-------~---I
E
i=
c
o :g
~ 5+-------------~
Iii

0+----...---,....--,-----1
2 5 10 15

Partitions

Figure 4.3: Experimental Results of Horizontal Partition and Ve1tical Partition

- I

CHAPTER. 4. FREQUENT ITEM SETS USING PAR.TITIONING. .. 91

D alas et Ta:J14100K (/tems =:nJ) -- H P vp

20~--~~--~----~--~

'0'
15 GI

(J)

'fII
E
j::
c:: 10
0

~
()
<II
X 5 w

0

2 10 15

Partitions

D alas et Ta:J14100K (Ite ms=50J) --HP -..- vp

20 -y-------------....,.,.,,........

'0'
~ 15 +--....,.....-:;;~-...;.------I
'-'
C/

E

~ 10 +-----------~
o
~
()

GI .n 5 +-------..... --..---'--I

0+---........ -------'--1
2 10 15

Partitions

Figure 4.4: Experimental Results of Horizontal Partition and Vertical Partition

- II

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING... 92

D alas et 1'201:11 OOK(ltems= 100) --+- H P - VP

20

'0"
(1/

15 00
'If
E
i=
c: 10
0

=s
0
(1/

x 5 w

0

2 5 10 15

Partitions

D alas et 1'201:1100K (Items =3X)) -- H P -.- VP

3)

,-., 25 0
(1/

(J)

20 'If
E
i= 15 c:
0
:p
:::1 10 0
(1/

x
w

5

0
2 5 10 15

Partitions

Figure 4.5: Experimental Results of Horizontal Partition and Vertical Partition

- III

CHAPTER. 4. FREQUENT ITEMSETS USING PAR.TITIONING.. . 93

D alas et T2Ofl100 K (ltems=5D)

3J

........ 25
0
ell

U)
2) ¥

E
i=

15 c
0
:p

::::I
10 2

x
w

5

0

2 5 10 15

Partitions

D alas et Conn ect 4(1Ie ms ~O) -.r HP --VP

10

'8'- 8
Q/

U)

¥
6 E

i=
c
0

=§ 4
0
Q/

tiS
2

0

2 5 10

Partitions

Figure 4.6: Experimental Results of Horizontal Partition and Vertical Partition

- IV

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 94

D atas et Conn eel 4(Jtems = 1(0) -+- HP -- VP

12

10
'0'
41

(J)
8 ¥

E
i=

6 c
.Q
~
() 4 ..,
x
w

2

0

2 5

Partitions

D atas et C on nect 4::ltems= 129)

14

12
r..
() 10
~
WI

8 E
i=
c 6 0

~
0 4 ..,
x
w

2

0

2 5

Partitions

10

-- HP -- VP

10

Figure 4.7: Experimental Results of Horizontal Pm-tition and Vertical Partition

-V

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 95

4.3 FP-growth and Vertical Partition ...

FP-growth algorithm [HPYOO) finds frequent itemsets without candidate gener

ation. The algorithm is based on a special data structure called FP-tree, which

is basically a prefix tree of the transactions of the database such that each path

represents a set of transactions that share the same prefix. The algorithm works

as follows. The algorithm first scans the database once to find the frequent items

in the database. Infrequent items are removed from the database and items in the

transactions are rearranged in the descending order of the frequencies of items.

Then; all the transactions containing the least frequent item are selected and the

item is removed from the transactions, resulting a reduced (projected) database.

This projected database is processed to find frequent itemsets. Obviously, the

removed item will be a prefix of all the frequent itemsets. Then the item is re

moved from the database and the above process is repeated with the next least

frequent item. It is to be noted that FP-tree contains all the information about

the transactions and the frequent itemsets. So, to find any information about

the transactions and frequent itemsets, just the tree is to be searched.

FP-growth algorithm is one of the efficient algorithms to find frequent iternsets

from large databases. However, it suffers from following two problems.

• The algorithm takes much time to construct the FP -tree, specially for

higher dimensions.

• The performance of the algorithm degrades with the increase of minimum

support [HPYOO).

Vertical partitioning approach helps solve these problems to a great extent by

using FP-growth in each partition to find local frequent itemsets. The steps can

be summarized as follows.

1. Partition the database into some vertical partitions;

2. For each partition do

3. Use FP-growth to find frequent itemsets;

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING... 96

4. Generate global candidate sets from frequent itemsets;

5. Find support of the global candidate sets;

6. Return global frequent itemsets.

4.3.1 Experimental Results

Experiments were carried out to evaluate the performance of original FP-growth

and, that of FP-growth with vertical partitions. The FP-growth program was

downloaded from http://fuzzy.cs.uni.:-magdeburg.de/ borgelt/software.html. Ex

periments were carried out on a Pentium IV PC with 256 ME RAM and two

synthetic databases (T20.I4.DlOOK and T20.I6.DlOOK) were taken for the ex

periments. The synthetic data were generated using the technique given in

[AMS+96] with the values of parameters as given in Table 4.5 and with dimen

sionality 500. Here, ITI, 1M LI and IDI represent the average size of a transaction.

mean size of a potentially large itemset and database size (number of transac

tions) respectively. Each of the datasets contained lOOK records. For FP-growth

with vertical partitions, each database was divided into five logical vertical par

titions with 100 items in each partitions. Experimental results are given in the

Figures 4.8 on the following page & 4.9 on the next page.

Name ITI IMLI IDI
T20.I4.DlOOK 20 4 lOOK

T20.I6.DlOOK 20 6 lOOK

Table 4.5: Parameters for Synthetic Databases - V

4.4 Discussion

This chapter presents a novel association rule mining algorithm based on vertical

partitioning. It also reports a comparative study of the proposed algorithm with

the Partition algorithm [SON95].

It has been observed from the experimental results that

CHAPTER, 4. FREQUENT ITEMSETS USING PARTITIONING.. . 97

D atas et: 1"20 14100 -+- F p. growth
-- FP· growtt(VP)

35

30
'()'
41 e 25
GI

.~ 20 ...
c
0 :g 15
(,)
41 x 10 w
iii
1) 5 t-

O

05 0.75 1 15 2 25 3

Mnimum Support(%)

Figure 4.8: Experimental Results of FP-gmwth(Database: T20I4DlOOK)

D m5et:120B100

120 .,.--.,.--,-.-----."...,...---.

i1DD~~----------------~
(I)

l 80+-~----~~--------~
i=
c
~ 60+-~~----~--------~
(,)
GI

iii 40 +---"------....... -------1

~ 20+---~~----------~

0.5 0.75 1 1.5 2 2.5 3

MnimJ m Suppo n(")

Figure 4.9: Experimental Results of FP-gmwth(Database: T20I6DlOOK)

CHAPTER 4. FREQUENT ITEMSETS USING PARTITIONING. . . 98

• In both the algorithms, the execution time increases with the increase in

number ()f items. It can be seen from the Pzgures that HOT1.zontal ParhtlOns

(HP) performs better when number of items is small. However, with the

iner(:,8se in number of it.ems, the performance of the Ve1tu~l Parttttons(VP)

improves over Horizontal Part'tttons .

• In case of HOT1.zontal Part'ltwns , the execution time increases with the

increase of number of partitions. Whereas, in case of Verlzcal Pariitzons .

the execution time decreases with the increase of number of partitions and

becomes almost const ant at the end.

Chapter 5

Frequent Itemsets in Dynamic

Databases

Most of the databases are dynamic and are updated frequently i.e. new records

are added , old records are deleted and existing records are modified very fre

quently. So, the itemsets which are frequent (or large) may not be frequent when

the database is updated and the itemsets which are not frequent may become

frequent when the database is updated. So, some algorithms are required to

update the set of frequent itemsets when the database is updated. Moreover.

new database may contain some new interesting rules which were not present in

the old database. One obvious technique is re-running association rule mining

algorithms in the updated database to find the frequent item sets in the updated

database. However, this is not optimal solution because of the following reasons.

1. It will require to run the algorithms on adding, deleting or updating a small

number of records.

2. It will take too much time because it will scan the same database every

time.

3. It will generate most of the itemsets repeatedly .

Some of the popular algorithms to find frequent itemsets in dynamic databases

are FUP [CHN+96b], FUP2 [CLK97], DELI [LCK98] and MAAP [ES02]. Some

99

CHAPTER 5. FREQUENT ITEMSETS IN DYNAAIIC DATABASES 100

more algorithms can be found in [TBA +97, FAA +97J. The main requirements

of a dynamic ftSsociation rule mining algorithm are:

1. It should be able to use the already discovered frequent itemsets to discover

new frequent itemsets.

2. It should not have to scan the old records/transactions.

3. It should scan the new records/transactions as few number of times as

possible.

The most popular and important algorithm, which follows the above criteria. to

find frequent itemsets in dynamic database is the Borders algorithm [FAL +99.

PujOl]. This algorithm has used the concept of border and promoted border set

to update the frequent itemsets. However, the algorithm suffers from scalability

problem and cannot be used in distributed environment.

As mentioned above, Borders algorithm suffers from scalability problem and can

not be used in distributed environment directly. To address these problems, this

chapter presents one modified version of Borders algorithm, which takes less time

than that of Borders algorithm. This chapter also presents Distnbute(LBorders

algorithm, which is meant for distributed dynamic databases.

5.1 Borders Algorithm

As mentioned above, it is not efficient to rerun frequent itemsets finding algo

rithms reported so far to find frequent itemsets ill dynamic/incremental databases.

So, it is desirable to have incremental algorithms, which can generate frequent

itemsets in incremental manner by processing only the new transactions/records.

Borders is one such algorithm, which satisfies this requirement by using the con

cept of border set and promoted border set.

CHAPTER 5. FREQUENT ITEMSETS IN DYNA!.fIC DATABASES 101

Figure 5.1: Border Set

Initially the concept of border set wa.'i given by Manila and Toivonenn [Man97].

An itemset X is called a border set if X is not frequent, but all its proper subsets

are frequent. Collection of border sets forms the border line between the frequent

sets and non-frequent sets. An itemset that was a border set before the database

was updated and has become frequent after the database has been updated is

called a promoted bor¢er set.

Borders algorithm uses the same concept of border and promoted border, and

maintains support counts for all the frequent sets as well as for all the bor

der sets. There are three variations of Borders algorithm : addition of trans

actions/records. addition and deletion of transactions/records and changing of

minimum support threshold. The main characteristics of the algorithm are as

follows.

1. Entire dat abase is scanned only when new candidate sets are generated.

CHAPTER 5. FREQUENT ITEMSETS IN DYNAAfIC DATABASES 102

2. There are only few candidates for which support is counted even if entire

database is scanned.

The algorithm is based on the observation that a set is required to be considered

as a candidate set only if it has a subset that is a promoted border. The following

lemma proves this observation. In addition to Lemma 5.1, the proof of correctness

of Borders algorithm also can be found in [FAL +99].

Lemma 5.1

If X is an itemset which is frequent in Twlw1e and not frequent in Told, then there

exists a subset Y ~ X such that Y is promoted border.

Proof: Let Y be a minimal cardinality subset of X which is frequent in Twhole •

but not in Told. So, all proper subsets of Y are frequent in T who1e' However, by

minimality of Y. none of these subsets is a new frequent set in Twlwle . So, Y is

a promoted border. 0

Given Lold and Bold, the task of the Borders algorithm is to find Lwhole and B whole .

The algorithm(addition) is presented in Algonthm 5.1 on the next page. The

algorithm assumes that Lold and Bold are known with their respective supports.

Lold and Bold can be found by any association rule mining algorithms like Apriori.

etc. The algorithm starts by making one pass over the new database T new and

eounts the supports of the item sets of Lold U Bold for T new . During this pass the

algorithm calculates P B and Lwlw!e. If P B is null then Lwhole contains all the

frequent sets of Twhole • However, ifthere is at least one promoted border (i.e. PB

is not null), then the algorithm generates new candidate sets(steps 8-10) and

scans over the entire database to count the support of them (steps 11-13). Then

it finds the large itemsets L1+1 based on the support count and updates Lwhole

and Bwhole . This process continues as long as new candidates can be generated.

So, the algorithm scans the whole database, if there is some promoted border

set. Otherwise, it does not require to scan the whole database.

GHAPTER 5. FREQUENT ITEMSETS IN DYNA~fIG DATABASES 103

Input: Tnew, Told, minsup, LOld and Bold

Output : Lurhole and Burhole

1. Scan T new and increment the support count of X E (Lold U Bold);

2. PB:= {XIX E Bold and Sup(X)T ... hole ~ minsup};

3. Lwhole := P B U {XIX E LOld and SUP(X)Twhole ~ minsup};

4. B whole = {XI'v'x E X, X - {x} E Lwhole };

5. m= max{ ilP B(i) -=I 4>};

Steps for Candidate-generation:

6. Lo = ¢, i=l;

7. While (L, i= ¢ or i ~ m) do

8. GH1 = {X = S1 U S21 (i) IXI = i + 1,

9. (ii) 3x E S}, S1 - {x} E PBCi) U L i ,

10. (iii) Vx E S2, S2 - {x} E Lw1wle{i} U L i }

11. Scan Twhole and obtain SUP(X)TtrhOle for all X E CHI;

14. Bwhole = Bwhole U (CH 1 - LH 1);

15. i=i+l;

16. Enddo
Algorithm 5.1: Borders (Addition)

CHAPTER 5. FREQUENT ITEMSETS IN DYNA~!IC DATABASES 104

5.1.1 An Example

Let us take Told and Tnew as given in Table 5.1 and Table 5.2 respectively and

the minimum support be 40%.

Al A2 A3 A4 A5

1 0 1 0 1

1 0 0 0 1

1 0 1 0 1

0 1 0 0 0

0 1 0 1 0

Table 5.1: Told - I

Al A2 A3 A4 A5

0 0 1 1 1

0 0 0 1 0

1 0 0 0 1

0 0 0 0 0

0 1 0 1 0

Table 5.2: T new - I

Then Laid is {(Al,A2,A3,A5),(AlA3).(AlA5),{A3A5),(AlA3A5) }

Bold is {(A4).,(A1A2).(A2A3),(A2A5) }

Ne:x-t, Tnew is added with Told· Kow, Tnew is scanned, and PB, Lwlwle and Bwhole

are calculated as follows.

PB = {(A4)}

Lwho1e= {(A4),(Al),(AS),(AlAS)}

Bwlwle = {(AIA4), (A4A5), (A1A5)}

Here, only one promoted border {(A4)} has been found. So, new candidate item

sets are to be generated. New Candidates are generated in level-wise fas9-ion.

Candidate 2-itemsets are C2= {(AIA4), (A4A5) }

Now, Twlwle is to be scanned to update Lwlwle and Bwhole .

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMIC DATABASES 105

5.1.2 Deletion

In some situations, records/transactions may have to be deleted from the database.

So, it will affect th(' already discovered frequent itemsets. Deletion will have fol

lowing effects.

1. Some frequent sets may not be frequent any more.

2. Some new frequent sets may emerge because absolute frequency count will

decrease.

Borders algorithm has been modified to handle the deletion of records. The

algorithm is given in Algorithm 5.2 on the following page.

5.1.3 Changing of Threshold

In some situations, users may have to change the threshold of minimum support.

If the new minimum support is greater than the pre'V;ous minimum support, then

new frequent sets and border sets can be found easily by excluding the frequent

sets with minimum support less than the new minimum support. However. if

the new minimum support is less than the previous minimum support, then new

frequent sets may emerge. Borders handles this as a case of deletion.

5.1.4 Discussion

The Borde1·s algorithm is robust enough to find the frequent itemsets in a dy

namic database. However. from the experimental study it has been observed that

• with the increase in the volume of Told and Tnew, the cost of scanning of

Twhcle in the every iteration becomes too expensive .

• it suffers from scalability problem.

CHAPTER 5. FREQUENT ITEMSETS IN DYNAA1IC DATABASES 106

Input: T new, Told, Tdel, 1ninsup, Lold and Bold

Output : LtL'h~~ and Bw~e

1. $can Tnew and update the support count of X E L old. U Bold;

2. Scan T del and update the support count of X E LOld U Bold;

3. PB:= {XIX E Bold and SUP(X)T"."ole ~ minsup};

4. L whole := PB U {XIX E Lold and SUP(X)T",hole ~ minsup};

5. Bwlwle = {XIVx E X, X - {X} E Lw1wl;;};

6. m= max{iIPB(i) =I- 4>};
Steps for Candidate-generation:

7. Lo = ¢, i=l;

8. While (Li =1= ¢ or i ~ m) do

9. GH1 = {X = SI U S21 (i) IXI = i + 1,

10. (ii) 3x E S 1 , S 1 - {x} E P B (i) U Li ,

11. (iii) Vx E S2. S2 - {x} E Lwliole(i) U L i };

12. Scan Twhole and obtain SUP(XhtrhOIe for all X E GHl ;

16. i=i+l;

17. Enddo
Algorithm 5.2: Borders (Addition and Deletion)

Some possible solutions to these problems are

• Some other data structure like FP-tree can be used to find the frequent

CHAPTER 5. FREQUENT ITEMSETS IN DYNAAlIC DATABASES 107

i temsets faster.
e'

• Probability can be used to predict whether itemsets will be frequent on

adding new transactions. The itemsets whose probabilities are very less,

can be removed from border sets and itemsets with higher probability can

be retained.

• New candidate itemsets CHI can be generated from Ci instead of from Li

because ICil is generally very small. After the candidates are generated,

Twhole can be scanned to find the large and border sets. So, maximum of

one scan of entire database will be required. However, if C i is large, then

this method will not give optimum result.

• New candidate itemsets Ci+l can be generated from Ci instead of from Li

as long as I U C j I is less than some threshold value. When I U C j I becomes

greater than the threshold value, Twlwle can be scanned to find frequent

and border sets. Then, the ne:x.i; iteration begins.

• More than one border sets can be u~ed.

• Distributed approach also can be used to improve the scalability perfor

mance of the algorithm. In case of distributed approach, data will be

processed in different sites/nodes resulting in improvement in execution

time.

This chapter proposes two enhanced versions of the present Borders (addition)

algorithm: ModifiedJ3orders and DistributetLBomers. Modified..Borders has used

two border sets to reduce scanning of entire database. On the other hand, Dis

tributedJ30rders is the extension of Borders in distributed environment.

5.2 Modified_Borders Algorithm

As it is mentioned above, Borders has to scan entire database when there are

some promoted borders. However, scanning entire database is very expensive,

particularly, when the database is very large. Scanning entire database can

be avoided if new candidates are not generated frequently. New candidates are

CHAPTER 5. FREQUENT ITEMSETS IN DYNAAfIC DATABASES 108

generated, if there is even one promoted borders because borders are not included

to generate callHidate' in the old database. So, if borders are included to generate

candidates in the old database, then there will be no new candidates. However,

it will be infeasible t.o include all t.he borders to generate candidates in the old

database. This concept led us to include some of the borders, which are likely to

become promoted border, to generate candidate sets in the old database so that

if those borders become promoted, no new candidates will be generated. New

candidates will be generated only when some borders, which were not included

to generate candidates ill the old database, become promoted.

Based on the above discussion, Border~'-has been modified by including two

border sets. The first border set is B~ld and the second border set is B:;'d'

B~ld is calculated as {XIVx E X, X - {x} E Laid U B~d; SUP(X)Told ~ f3' and

SUP(X)Tol d < minsup}. B~d is calculated as {XIYx E X,X - {x} E Laid UB~d;

Sup(Xholtl < f3'}. B~d and Laid take part in candidate generation, whereas

the elements of B~d are not used in candidate generation. Another requirement

in the algorithm is that all the subsets of an itemset X E B~d U B~d must be

E LoldUB~. Obviously, B:Xd contains the itemsets with higher probability of be

coming promoted when new transactions are added. New candidate sets will be

generated only when any of the elements of the B~d becomes promoted. If new

candidate itemsets are generated, one scan over 'the whole database is required

to find supports of the new candidate itemsets.

5.2.1 The Algorithm

The algorithm works as follows. L old, B~d and B~d are assumed to be known

with their respective support counts. The algorithm starts by making one pass

over the new database T nell: and updates supports of the elements of Lold U B~d U

B~d' During the pass, the algorithm generates four categories of itemsets - PB',
P B", Bill and B'III. If P B" is null, then no' new candidate set is required to

be generated. If P B" contains at least one itemset, then new candidate sets

are required to be generated. If new candidate sets are generated, the algorithm

makes one pa.~ over the entire data.base to count the support of the new candidate

sets. At the end, the algorithm generateS Lwhole , B~holeand B:holer which are

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMIC DATABASES 109

1. S<.an Tneu~ and increment the support <."Olmt of X E L~ld U B~'d u B:,d;

2 PB' = {XIX E B:'ld and SUP(X)Twhl. ? minsup}; PB" = {XIX E B:ld and SUP(X)Tuhol. ?
min..'<Up} ,

3 Loohol. = PB' u PE" U {XIX E LOld and SUP(X)T •. ho'. ? m.nsup};

4. Bill = {XIX E B::u' V.L E X,X - {x} E L"".ole, Sup(Xh .. hol < ? 13' and Sup(Xhwh,,'. < mmsup};

5. B"" = {XIX E B:,dULold, 'Ix E X,X -{xl E L ... hol •• SUp(X)T , ? {J'. SUP(X)T"ho', < minsup};

6. B~hol. = B'" u B""; B~hoL. ={X/Vx E X.X - {x} E Loohol •• SUP(X)T .. holc < {J' };

7. If PB" # <J> then

8. m= max{t\PB"(i) '" c/>};

Steps fOT Candtd4te·generatwn:

9. Lo = <1>. Bo = d>. k=2.

10 While (L"'_1 '" <p or B"_1 # <:> or k 5 m + 1) do

11.

12.

13. For all .teInSets in 11 E L do begin

14. For all iLernSets ill 12 E M do begin

15.

16. C={h [IJ.ll(2) ... · h[k - 2J.ldk - l).h[k - In;

17.

18 End for

19. End for

20. Prune C", : All the subsets of C" of size k-l must be present in M ;

21. Scan TV:holt and obtain support Sup(Xh .. ho.< for all X E C,,;

22. L t = {XIX E C~ and Sup(Xh , ? minsup};

23.

2t.
mifl$Up);

25.

26.

27. k=k+l ;

28. Enddo

29. endif

Algorithm 5.3: ModifieO._Borders

CHAPTER 5. FREQUENT ITEMSETS IN DYNAl"nC DATABASES 110

counterparts of the Lold , B~ld and B~d respectively, for the whole database Twhole·

The algorithm"is presented in the Algorithm 5.3 on the previous page.

5.2.2 An Example

Let us consider Told as given in Table 5.3 and assume minsup = 40% & {3' = 30%;

Al -A2 A3 A4 A5
1 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 1 a
a 1 a 1 a
1 1 1 a a
1 a a a a
0 0 0 0 0

1 1 0 1 0

1 1 1 1 1

Table 5.3: Told - II

Now, Lold , B~, B::U are obtained as given in Table 5.4.

Lold - {(Al,A2,~),(AlA2)}

B~d - {(A3)}
B

n
old - {(As), {A}A4,A2Ji4, A1A3,A2A3 , A3Ji4)}

Table 5.4: Results - I

Now, suppose Tneu.{Table 5.5 on the following page) added to the Told{Table 5.3).

CHAPTER 5. FREQUENT ITEMSETS IN DYNAlifIC DATABASES III

Al A2 A3 A4 As

0 0 1 1 1

1 1 0 0 1

1 1 1 0 1

0 0 1 0 1

Table 5.5: T new - II

When Tnew is scanned, P B' ,P B", Bill and B "" , Lwhole,B~hole and B~hole are

obtained as given in Table 5.6.

PB' - {A3}

PB" - {A5}

B'" - fjJ

B"" - cjJ

Lwhole - {(J1I ,i12 ,A4), (113), (As), (Ji 1Ji2)}

Table 5.6: Results - II

Since P B" is not nulL new candidate itemsets will be generated. The new

candidate itemsets after pruning will be {(Ji}As, J12Jis, Ji3Jis, AtAS),(J11Ji2JiS)}'

Then, entire database is scanned to find the support count of the new candidates.

5.2.3 Experimental Results

Modified_Borders was compared with Borders algorithm using two synthetic

databases and one real database. Both the algorithms were implemented on

a Intel PIV based WS (with 256 MB RAM). Lo1d , Bold , B~ld and B~d had been

computed separately.

Test Data : Two synthetic databases, which were generated using the technique

given in [AMS+96], and the Connect-4 dataset, which was downloaded from

UCI machine learning repository (www.ics.uci.edu), were used for the experi

ments. All the synthetic datasets contain lOOK records and dimensionality of

CHAPTER 5. FREQUENT ITEMSETS IN DYNAAlIC DATABASES 112

each record is 500. Other parameters for synthetic databases are shown in the

Table 5.7. For"all the experiments, initial sizes of the synthetic databases and

Connect-4 were taken as SOK records and 47557 records respectively.

Data Set ITI [ML] IDI
T20I4lO0K 20 4 lOOK

T20I6lO0K 20 6 lOOK

Table 5.7: Parameters for Synthetic Databases - VI

Each of the experiments were executed several times. Tables 5.S through

[1.10 show average number of full database scan required in Border's ancl Modi

fied_Borders as the value of /3' increased from 3.5% to 4.5% and size of incremental

database is increased from SK records to 20K records. The value of mmsup was

taken as 5% for all the e>..-periments. Average execuiton times over all increments

are given in F1gU1-eS 5.2 on the following page and S.3 on page 114.

Increment Borders M odtfie(LBorders Mod1fied_Borders Modified_Borders

(/3'=3.5%) (.6'=4%) (/3'=4.[;%)

5K 1 0 0 1

10K 3 0 1 2

15K 2 0 0 2

20K 3 1 1 3

Table 5.8: Comparison on Whole Database Scan for Database T2014100K

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMIC DATABASES 113

Increment B01'de1's M odified_Bo1r1e1'S M odified_Borne1's M odified_Bo1'de1's

(,6'=3.5%) (,6'=4%) (,6'= 4.5%)

5K 0 0 0 0

10K 3 0 0 2

15K 2 1 1 1

20K 3 0 1 2

Table 5.9: Comparison on Whole Database Scan for Database T2016100K

Increment BOrneTS M odifierLBrmieTs M odifierLB oTdeTs M odifierLBoTdeTs

({j'=3.5%) (,6'= 4%) (,6'=4.5%)

5K 0 0 0 0

10K 1 0 1 1

15K 1 0 1 1

20K 2 1 1 1

Table 5.10: Comparison on Whole Database Scan for Database Connect4

Dataut: T20141CXl< -- Borders
• tv'o dified B or ders

'0'
'" ~ 4 +--------.~~-I
~
i=
g 3 +-.....-.-...-,.~ ---O:--~~~
'§
()

'" Ji 2 +--------"'-'!!"'--!
&
'" i»
~

3.5 4 4.5

fJ" (%)

Figure 5.2: Average Execution Time for BonicTs & Modified_BoTder's (For Various

Values of ,6') - I

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMIC DATABASES 114

-- Borders
~ ~ied_80rders

5
'0'-
GI

00 4 • .S
- " ~

:,? j/
l-
e: 3 0

~

~'i' .. Ii.~

()

• 2 ill
GI
t» . .. 1
GI

<l
0 ,

3.5 4 4:5
~(OJ.)

Dataset COMect4 -- Borders
.. Modifi~d_8oTders

4
~u' • • .!J,
tt 3 E

i=
c
0

=§ 2
0
tt

as
41 1 c
IV
«;
of

0

3.0 4 4.6
pr(~)

Figure 5 .3: Average EXf'...cution Time for Bonte1'S & ModifUxLBorders (For Various

Values of (J') - II

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMIC DATABASES 115

Observations ..
Followings are some observations made from the experimental results.

• Tables 5.8 on page 112, 5.9 on page 113 & 5.10 on page 113 clearly show

that Borders requires whole scan of the database several number of times,

whereas Modified_Borders requires whole scan of database a few number of

times. Thus, Modified_Borders saves the execution time.

• The valu~ of fj' has a great effect on the performance of Modified_Borders

algorithm. As the value of [3' increases, number of whole scan ~iSo increases.

In the experiments, it was found that when .8'=4.5%, number of full scan

of the database is almost same in both the algorithms.

• As far as execution time is concerned, M odifie!LBorders takes much less

time than that of BordeT"S when {3' is small (Figures 5.2 on page 113 & 5.3

on the preceding page). As the value of {3' increases, Modified_Borders

tend to take little more time. This is because number of full scan tends to

increase wi t h the increase in value of {3'.

Selection of [3'

Value of fj' plays an important role in the algorithm. When {3' tends to minsup,

the algorithm tends to become Borders algorithm. With the decrease in value

of {3', performance of ModifiedJJorders becomes better than Borders algorithm

in terms of execution time. However, with the decrease in fj' value the memory

requirement increases due to the additional candidate sets. So, value of {3' cannot

be decreased too much. This cost of additional memory requirement is quite

negligible in comparison to the requirement of full database scanning, particularly

when database is very large. So, there should be some trade off in choosing the

value of {3'. If there is not enough memory and the database is dense, the value

of {3' can be set to a higher value. For sparse databases, {3' can be set to a lower

value.
/

Here is a very simple technique to cho08e value of {3'. The algorithm is run with

small random sample of the database, incremental database, and an initial lower

CHAPTER 5. FREQUENT ITEMSETS IN DYNAAfIC DATABASES 116

value of {3'. If the result is not satisfactory, {3' is increased by a little amount

and the algori~hm is rerun . The process is continued several times until number

of candidates is manageable and gives desired results. When optimum results

are obtained, the corresponding value of {3' can be used for the entire database.

It has been found that the value of {3' in range of 80% - 90% of minsup gives

satisfactory results. As for example, if minsup is 5% then {3' will be in the range

of 4% - 4.5%.

5.3 Distributed_Borders

Basically, there are three approaches for distributed algorithms - fully distributed,

central machine based and self-organized. In case of fully distributed algorithm.

processing takes place in every node and every node can act as a merger ma

chine. Nodes also can exchange data among themselves. In case of central ma

chine based algorithm, most of the processing takes place in a central machine

(server). The disadvantage is that data replication is required in this environ

ment. Self-organized distributed algorithms are more intelligent. The algorithm

assigns tasks to different nodes according to requirement. These systems are

more robust and fault-tolerant.

This section presents a fully distributed version of the BOrneT'S algorithm. Th~

Borners algorithm discussed above is sequential in nature and is meant for cen

tralized database. However, nowadays. most of the databases are distributed in

nature. So, a distributed version of Borders algorithm called DistributetLBorders

has been proposed. It can also be used in a centralized database by partition

ing the database and placing the partitions in different nodes of a distributed

systems. This process reduces the number of candidate sets to a great extent re

sulting in high flexibility, scalability and low cost performance ratio [CHN+96aJ.

However, distributed algorithms posses some problems such as locally large or

border sets may not be globally large or border sets. Again, message passing

being a costly affair, processing should be confined in the local sites as much as

possible.

Let us consider a transactional database, where each record is a transaction

in a supermarket made by the customers. Each transaction is of the form

CHAPTER 5. FREQUENT ITEMSETS IN DYNAA.fIC DATABASES 117

< TID,l.l,O ..• O,l>. Here, TID is the transaction id, which is unique for each·

transaction. land ° represents the corresponding item has been bought and not

bought respectively in the transadion. It is also assumed that the database is

horizontally partitioned and allocated in n" sites S,(i=1,2,3 ... n s) in a fully dis

tributed system; incremental database also is partitioned and added to database

of each site. Now. the task is to maintain the global frequent itemsets and global

border sets in this distributed environment when the database is updated.

5.3.1 Distributed Algorithm For. _Maintaining Frequent

Itemsets in Dynamic Database

Here, Borders algorithm has been examined in a distributed environment. Let

TOld be the old transaction database distributed in ns sites. ~d is the old transac

tion database at the site i(i=1,2,3 ... ns). Tnew and T'new are the new transactions to

be added to the whole database and to the transactions at the site i respectively.

For a given minimum support threshold minsup, an itemset X is globally large

in the old database (updated database) if SUp(XhOld ~ minsup (SuP(X)TtLhOI. ~

minsup). Similarly, an itemset X is locally large in the old database (updated

database) at some site i, if Sup(X)'l" ~ minsup (Sup(X)'l" ~ minsup).
old ",hole

Like the Borders algorithm, this algorithm also uses the concept of border set

and promotffi border set. The only difference is that all the concepts have been

used in the conte>..1; of the distributed environment. An itemset X is a global bor

der, if X is not globally large, but all its subsets are globally large. An itemset

X becomes globally promoted border on adding the new transactions, if X is a

globally border in the old database and globally large in the updated database.

LOld is the global large itemsets in the old database and Bold is the global border

sets in the old database. Given Lold and Bold, the problem is to find the updated

large itemsets Lwlwle and border sets Bwlwle for the updated database Twhole . The

main purpose of the Distri.butecLBorders algorithm is to reduce the number of

candidate sets and in turn reduce the number of messages to be passed across

the network and execution time. To reduce the number of messages, polling

technique as discussed in DMA [CNF+96} was used.

Some interesting observations, which are listed below, can be made relating to

large, border and promoted border sets in distributed environment. Some of

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMIC DATABASES 118

SIte 1 SIle2 Slten

1

Figure 5.4: Dtstrzbmed...Borders AIchltecture

CHAPTER 5. FREQUENT ITEMSETS IN DYNAlIlIC DATABASES 119

these observatlOns were discussed in [CNF+96].

Observation 5.1 Eve7Y globalla7ye ltt'7nSet X 7ntJ.St be la7ge m at least one slte

St·

Observation 5.2 If an ltemset X lS locally large at some slte St, than all 'lts

subsets are also locally large m the S'lte St.

Observation 5.3 If an 'ltemset X 15 globally large at some szte S" then all 'tts

subsets are also globally large at the S'zte St.

Observation 5.4 If an 'ltemset X lS globally large or promoted borner, then X

must be la7ge m at least one slte i.

Proof This is obvious, because if an itemset X is small in all the sites, it can

not be large in the whole database. 0

Observation 5.5 If an ttemset X is a global promoted borner set, then X must

be large m T' new for some stte S,.

Proof Let an itemset X is a promoted border set in the updated database

T who1e · Then SUP(XhOld < minsup and SuP(Xh..."OI. ~ mmsup. Since T whole=

Told U T new. SUp(X)Tnew ~ minsup. So, Sup(X)~.", > minsup for at least one

~e~. 0

Observation 5.6 If X lS global borner set, then there enst Y c X so that Y lS

local borner m some slte St.

Proof If X is a global border set, then X must be small/infrequent in at least

one slte St . Therefore there exist at least one subset of X, which is a local

border set in the site. 0

Observation 5.1 If a new candtdate set C 'In Twhole has to be large or borner m

Tw1wle. then elther C or one of tis immedIate subsets mtJ.St be locally larye m one

T'new·

CHAPTER 5. FREQUENT ITEMSETS IN DYNAA.fIC DATABASES 120

Proof: If r. is a new candidate set there can be two possible cases:

1. c may be large in the updated database Twhole: In this case c must be large

in T new i.e. c must be large in Ti new for some i.

2. c may be a border set in the updated database Twhole: In this ca.-;e c will be

small and all of its subsets will be large in the updated database Twho1e . So:

there exists at least one c' C c, which was small in the old database Told.

Otherwise. c would have been generated in the old database Told. This d

will be large in the updated database Twho1e . So, c' must be large in the

T new i.e. d must be large in Ti new for some i. 0

Observation 5.8 If a candidate set X in the updated database is either large or

border· set, all of it.s immediate subsets must be either E F U P B or· large in at

least one site i.

Proof There can be two possible cases:

1. X is large in the updated database: If X is large then all the subsets of X

must also oe large in the updated dataoase. Let Y eX. Then Y is either

a candidate set or Y E FU PR. If Y is a candidate and Y is large, then Y

must be large in at least one site because if Y cannot be large if it is small

in all the sites.

2. X is barder in the updated database: In this case, all the subsets of X must

be large in the updated database. So, by first option, all the subsets are

either E F U P B or large in at least one site. 0

5.3.2 Local Pruning

Using the above observations many unnecessary candidates can be pruned locally.

If an itemset X is locally small in all the sites, then X can not be large globally.

That is why, itemsets are first checked if they are locally large or not. Their

global supports are found only when they are locally large in at least one site

Si. Similarly some promoted border sets also can be pruned away locally using

CHAPTER 5. FREQUENT ITEMSETS IN DYNAA.fIC DATABASES 121

Input: Lold ,Bold, T,;ew' T:nd and mmsup.
Output: Updated iwhole and Bwhole

Repeat the following steps at each site i distributively

1. Scan T~ew and count the support of all the itemsets X E {Lold U Bold} and find

(a) PB' = {XIX E Bold and Sup(X)y.:.~ ~ mmsup} ;

(b) L:"hole = PB' U {XIX E Loid and Sup(Xh·, ? minsup}; (by observation 5.4
_hoI ..

on page 119)

2. Broadcast X E L:"hole to other sites along with their supports;

3. Prune L:"hole and PB':

L:"hole = {XIX E L:"hole and Sup(X)r ol • ~ mmsup};
PB' = {XIX E PB' and Sup(X)r ole ~ minsup};

4. Compute PB = UPB' and Lwhole =UL:"hol,,;

5. Bwhole= {XIVx E X,X - {x} E Lwhoie};
Generate candtdates :

6. m = max{tIPB(i) i= </>}:

7. i=l;

8. While (L, i= ¢ or i ~ m) do

9. C.+ 1= {X = S1 U S'21 (i) IXI = I + 1,

10. (ii) 3x E X,X - {x} E PBCi) UL ..

11. (iii) Vx E X,X - {x} E LWhole(i) U L,};

12. Scan T,;etD and compute Sup(X)r:a for all X E C,+1; ... ""
13. Remove any candidate set X E C,+l, which is or at least one of its immediate

subsets is not large in ~ew; (by observation 5.7 on page 119)

14. Scan ~d and find the support Sup(Xh.. for all X E C,+l; (~ew has already
wholr

been scanned).

15. Gi+! = {X E Gi+lIVx E X, Y = X - {xl, Y E Lwhole or SUP(Y)T' >
".",,..1,

minsup}(by observation 5.8 on the previous page)

16. Collect all Sup(X)r:."OI. and find Sup(X)T ... nl" for all X E C.+ 1 ;

17. L.+1= {XIX E G'+l and Sup{X)r, Ol< ? minsup};

20. i=i+l;

21. Enddo

22. Return Lwhole and Bwhole;

Algorithm 5.4: DistributelLBoroers
--------------------------~--

CHAPTER 5. FREQUENT ITEMSETS IN DYNA/dIC DATABASES 122

Observation 5.4 on page 119. So, if a border set X is not large in any site, then ..
it is not tested for global promoted border. Observation 5.7 on page 119 is very

significant in the pruning away of the candidate sets locally. After the candidate

, sets are generated , support of the candidate sets are counted in the incremental

part J'lnew' If any candidate set or at least one of its immediate subsets is not

large in at least one Tnew, it can be pruned away because it can be neither large

set nor border set by Observation 5.7 on page 119. Observation 5.8 on page 120

is also helpful in pruning away unnecessary candidate sets.

5.3.3 Explanation of the Algorithm

It is assumed that Lold and Bold are available with the local support to all the

sites. The algorithm starts with scanning the incremental portion rneto and finds

local support for all X E Lold U Bold. This is because frequent and border sets.

which are locally large in at least one site, can only be large globally. Then

comes to the second step, which finds the global support for L~hole. This can be

done by simply broadcasting the local support of X E L~hole' If all the items

are broadcast to all the sites, then for each item X, O(n;) messages will be

required, where ns is the number of sites. Here, polling techniques as described

in [CHN+96a] can be used to reduce the number of messages to O(ns) for each

itemset. Third step prunes away the X E L~hole' which are not globally large.

The fourth step just broadcasts the L!vhole to other sites and receives the same

from other sites to compute Lwhole and P B. It can be noted that, all the sites

will be having the same set of Lwhole and PB. Steps 6-11 are responsible for

generating the candidate sets. The candidate sets are generated using methods

like Ap1ion. Some kind of pruning techniques are required to prune away some

unnecessary candidate sets. Observation 5.4 on page 119 helps prune away some

candidate sets. Steps 13-15 are basically pruning steps. It scans the rnew and

finds the Sup(X)T.! for all the candidate sets. According to Observation 5.4 on , .. ,,"
page 119, a candidate X can be neither large nor border if neither X is large nor

at least one of its immediate subsets is large in any T'new. So, the can9idates,

which do not conform to Observation 5.4 on page 119, can easily be removed

from the candidate sets. At last, step 16 finds the global support for all the

candidate sets. Polling technique as given in [CHN+96a] can be used here also.

CHAPTER 5. FREQUENT ITEMSETS IN DYNA~fIC DATABASES 123

5.3.4 Experimental Results

The algorithm was simulated on a share-nothing environment. A 10/100 Mb

LAN was used to connect six PIV machines running Windows NT. Each machine

had 20GB disk space and 256MB memory. The datasets used in the experiments

were T2014200K and T2016200K, which were generated using the technique given

in [AMS+94]. Each dataset contained 200K tuples(transactions}. Each dataset

was partitioned and corresponding partitions were loaded in the machines before

the experiments started.

Data Set ITI IMLI IDI
TI0I42000K 20 4 200K

T2016200K 20 6 200K

Table 5.11: Parameters for Synthetic Databases - VII

Three e:>..-periments were carried out. In the first experiment, three machines(sites)

were used. The purpose of the experiment was to find the execution time for

different minimum supports. Each machine initially contained 63K transactions

and 3K transactions were added to each machine as incremental database. The

results are given Figure 5.5 on the neA-t page.

The second e>..-perirnent was the scale up experiment. The testbed of the second

experiment was same as that of first e>.-periment. Here also, three machines(sites}

were used. The purpose of the second e>.-periment was to evaluate the scalability

performance of the algorithm. Three machines initially contained 30%. 30% and

25% transactions respectively. Size of incremental database was 5% for each of

the machines and minimum support was 1 %. The results are given in Figure 5.6

on page 125.

The third experiment was the speedup experiment. For n sites: speedup fac

tor is defined as Sen) = T(l}/T(n) and efficiency is defined as S(n)/n, where

T(n) is the execution time with n sites. Here, number of machines(sites) were

increased from 1 to 6. Sizes of initial database and incremental database were

taken as 80% and 20% respectively. Initial and incremental database were divided

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMI C DATABASES 124

equally among the machines and minimum support was taken as 1 %. When 1

machine(site) wa.'3 used, it was the sequential run time of the Borders algorithm.

The results are given in Figure 5.7 on the next page.

fO

"......
5)

Q
G/

t.rJ
4J ¥

E
j::

3J c
0 :g
Q 20 G/

~
10

0
0.5 0.75 1 1.5 1.75 2

Minimu m Su ppo It: %)

Figure 5.5: Execution Time of DistributelLBorders for different Minimum Sup

ports (minsup)

CHAPTER 5. FREQUENT ITEMSETS IN DYNAMIC DATABASES 125

-- 1206200K -.- m ~2JJK

3J

""" 0
25

G/
(J)

20 'rJf
E
i= 15 c
0

"" ;:I
10 0

G/
X
w

5

0
50 100 150 200

Data Siz e (Thous and)

Figure 5.6: Execution Time of Dist1'ibuted_Bor'ders for different Database Sizes

-- mfl2JJK T201<m0K

50~--------------------~

'0' 40 +---~--.................... - -----t
'II

(J)

t 30+-~'-----~~--------~
j::

.§
"'g 20
'II
X

w 10~------~------------~

O~--'---~-~-~-~
2 3 4

Sites

6

Figllre 5.7: Execution Time of DistTibuted_Bor'ders for different Number of Sites

CHAPTER 5. FREQUENT ITEMSETS IN DYNAAfIC DATABASES 126

Observations: The results of the first experiment was obvious and straight

forward. In s6me cases, execution time performance did not improve with the·

increase of minimum support. This was because whole scan of the database

might be required in some sites. It was evident from the second experiment. that

execution time increased with the increase of the, size of initial database and

incremental database. However, it increased linearly. Third experiment mea

sured speedup and efficiency of the algorithm. Average efficiency of 63% and

67% for T2016200K and T2014200K respectively were found, which showed that

the algorithm achieved sublinear speedup. This speedup is acceptable for any

distributed algorithm. However, like other distr~l:>Uted algorithms, performance

of this algorithm also depends on the factors such as database types, distribution

of data, skewness of data, network speed and other network related problems.

5.4 Discussion

The chapter has presented two enhanced versions of t he Borders algorithm: M od

ified_Borders and DistributeLBorders. ModifiedJ3orders has tried to reduce the

execution time by avoiding full scan of the database in most of the cases. On the

other hand, DistributedJiorners is the modification of the Borders algorithm to

make it suitable for distributed dynamic databases.

Based on the algorithms reported so far. it is quite evident that finding frequent

itemsets is a crucial phase in association rule mining. With the increase in di

mensionality of databases, the cost of frequent itemset finding also increa'ies.

Therefore, the frequent itemset finding task should be limited to those features

appropriate or relevant to the task, which increases the efficiency of the algo

rithms to a great eA1;ent. Next chapter attempts to highlight some of the pop

ular feature selection methods and presents a novel method for relevant feature

selectioIl.

Chapter 6

Feature Selection

Almost, all the databases contain some irrelevant/redundant features. That is

why, removing the redundant features from the databases has been an inter

esting research problem for some decades. In the real-world situations, relevant

features are unknown apriori. Therefore, many candidate features are introduced

to better represent the domain. It has been found from the experiments that

many of the features are either irrelevant or redundant to the target concept. An

irrelevant feature does not affect the target concept in any way, and a redundant

feature does not add anything new to the target concept (JKP94J. In many

applications, the size of the dataset is so large that learning algorithms might

not work as well before removing the unwanted features. Reducing the num

ber of irrelevant or redundant features drastically reduces the running time of a

learning algorithm and yields more general concept of a real-world classification

problem [KS95], [KS96].

There are basically two categories of feature selection methods - supervised, where

each instance is associated with a class label and unsupervised, where instances

are not related with any class label. In case of supervised feature selection.

the relevant features are selected to increase the accuracy of prediction of the

class label for a given instance. Unsupervised feature selection is used as a pre

processing of other machine learning techniques to reduce the dimensio.nality of

the domain space without much loss of information content.

Feature selection is defined by many authors in different ways. Some of them are

127

CHAPTER 6. FEATURE SELECTION 128

as follows.

Ideallzed: It finds th(' minimally sized feature subset, necessary and sufficient

for a target concept [KR92].

Classical: It selects a subset M features from a set of N features, M < N, such

that value of a criterion function is optimized over all subsets of size M.

Improving Prediction Accuracy: Here, aim of feature selection is to choose a

subset of features for improving prediction accuracy or decreasing the size

of the.~tructure without significantly decreasing predictiol1 !l-Ccuracy of the

classifier built using only selected features [KS96].

Approximating original class distribution: Here, goal of feature selection is to

select a small subset such that the resulting class distribution given only

the values for the selected features is as close as possible to the original

class distribution given all feature values.

Generally, feature selection attempts to select the minimally sized subset of fea

tures according to two basic criteria: (i) the classification accuracy does not sig

nificantly decrease and (ii) the resulting class distribution, given only the values

for the selected features, is as close as possible to the original class distribution.

given all the features. Some feature selection methods find the best feature subset

in terms of some evaluating function among the possible 2N subsets. Basically.

there are four steps in a typical feature selection algorithm.

1. A generation procedure to generate the next candidate subset.

2. An evaluation function to evaluate the subset under examination.

3. A stopping criterion to decide when to stop.

4. A validation procedure to check if the selected subset is valid or not.

A good number of algorithms have been developed for feature selection over the

years [Doa92]. Some of the prominent feature selection algorithms are Branch

£3 Bound [NF77J, Focus [AD91], Relief [KR92], LVF [LS96], etc. Next section

presents a brief discussion on some of these algorithms.

CHAPTER 6. FEATURE SELECTION 129

This chapter also introduces a new supervised feature selection algorithm for bi

nary classifica'ion based on frequent (or large) features of association rule mining

technique [AMS+94, AMS+96].

6.1 Some Existing Feature Selection Algorithms

In this section, some of the popular and prominent feature selection algorithms

are reproduced.

6.1.1 Branch and Bound

This is an exponential search algorithm and was proposed by N arendra and

Fukonaga in 1977. It follows tOJrdown approach with backtracking and based

on the assumption that the criterion function is monotonous. Suppose, it is re

quired to select 2 features out of four features (Jl, f2, p, f4) by using Branch

and Bound. Branch and Bound first constructs the search tree as given in Fig

ure 6.1 on the following page, where root denotes the set of all features and leaves

denotes the set of two features. Nodes of level k is constructed by removing k fea

tures from the root. Nodes in the kth level represents the subset of N -k features.

where N is the total number of features. The algorithm starts with searching

from the root and every time it reaches a leaf, it updates the bound (current

maximum) with the corresponding criterion value of the leaf. The advantage

of the algorithm over exhaustive search is that it is not required to construct a

branch of a node if the criterion value of the node is less than the current bound

. because of monotonous property of the criterion function.

CHAPTER 6. FEATURE SELECTION 130

Figure 6.1: Branch and Bound Search Tree

The algorithm i:; pre:;ented in Algorithm G.1 on the next page. The algorithm

needs inputs of required number of features (M) and it attempts to find out

the best subset. The algorithm uses two functions. The function isbetter(X, Y)

checks if the set X is better than the set Y and the function Card(X) finds

cardinality of the set X .

drawbacks.

However, the algorithm suffers from the following

1. It does not perform well. if the criterion function is of high computational

complexity.

2. It does not guarantee to remove enough sub-trees.

3. Criterion value computation is slower, nearer to the root.

4. Removal of sub-trees is less, nearer to the root.

6.1.2 Relief

Relief uses heuristic technique to generate candidate feature subset and distance

to evaluate a candidate subset. It is a feature weight-based algorithm and uses

statistical method to choose the relevant features. It also uses the concept of

NearHit and NearMiss. NearHit of an instance is defined as the instance' having

minimum Euclidean distance among all instances of the same class as that of the

instance. NearMiss of an instance is defined as the instance having minimum

CHAPTER 6. FEATURE SELECTION

Input: D, F, M.

Output: Sf.

B&B(D,F,M)

1. If Card(F) =J M then /*suoset generation* /

2. j=O;

3. Sf= F;

4. For all features f E F begin

5. Sj = F - f; /*remove one feature at a time *1

6. If (Sj is legitimate) then

7. If isbetter(Sj, Sf) then

8. S, = Sj;

j*recursion * /

9. B&B(Sj, M);

10. Endfor

11. j + +;

12. Endif

13. Return Sf;

Algorithm 6.1: Branch fj Bound

131

CHAPTER 6. FEATURE SELECTION 132

Euclidean distance among all instances of different class. The algorithm finds

the weights ot the features from a sample of instances and chooses the features

with weight greater than a threshold. The algorithm uses one function di/ /0 to

find difference of same features in two different. records. The algorithm is given

in Algonthm 6.2 on the following page. The advantage of the algorithm is that

it can work for noisy and correlated features. However, it suffers from following

drawbacks.

1: It cannot work with redundant features and hence generates non-optimal

features, if the database contains redundant features.

2. It works only with binary classes.

3. Another problem is the selection of optimum values of NoSample and

Threshold is not clear.

6.1.3 Focus

This is an inductive learning algorithm and it is based on the concept of Min

feature bias. According to Mm-feature bias, if two functions are consistent with

the training examples, the functions with minimum features will be preferred.

The algorithm first identifies p features that are required to define a binary func

tion over n boolean input features. Then, it applies some learning procedures

that focus on those p features. In other words, the algorithm generates all pos

sible feature subsets and uses consistency measure to evaluate the subsets. The

algorithm has been found to work well with noise-free data. However, the main

disadvantage is how to select correct inconsistency measure. The algorithm is

given in Algorithm 6.3 on the ne}.1; page.

CHAPTER 6. FEATURE SELECTION

Input: D, F, NoSample, Threshold.

Output: Sf;

1. Sf = ¢;

2. Initialize all weights, Wj to zero;

3. For i = 1 to NoSample

4. Randomly choose an instance t in D;

5. Find its NearHit and NearMiss;

6. For j = 1 to N .

133

7. Wj = Wi - diff(fi, NearHit(j))2 + diff(fi, NearMiss(j))2;

8. For j =1 to N

9. If Wj ~ Threshold

10. Append feature P to Sf;

Input: D, F.

Output: Sf.

Algorithm 6.2: Relief

2. For i=O to N /* N is number of features * /

3. For each subset X of size i

4. If no inconsistency in the training set D then

5. S, = X;

Algorithm 6.3: Focus

CHAPTER 6. FEATURE SELECTION 134

6.1.4 LVF

LVF generat(-'~~ the candidate subsets randomly and uses consistency measure

to evaluate a subset. It randomly searches the subset space and calculates an

inconsistency count for the subset. To search the optimal subset, the algorithm

uses Las Vegas algorithm [BB96]. The algorithm calculates the inconsistency

count based on the intuition that most frequent class label among those instances

matching this subset of features is the most probable class label. An inconsistency

threshold is assumed and any subset with inconsistency measure greater than

that value is rejected. The algorithm can find optimal subset even for datasets
• _ 4 .. _

with noise and user does not have to wait too long because it outputs any subsets

that is better than the previous best. The algorithm is given in Algorithm 6.4

on the following page. The algorithm has used two functions: Card(X) and

InConCal(X, V). Card(X) finds cardinality of the set X and inConCal(X, Y)

finds inconsistency between sets X and Y. This algorithm is efficient, as only

the subset having the number of features smaller than that of the current best

subset are checked for inconsistency. In addition to that, the algorithm is easy to

implement and is guaranteed to find the optimal subset. However, the algorithm

suffers from two major drawbacks.

1. Selection of optimum inconsistency threshold (ucon) is difficult.

2. Selection of number of samples (Maxtries) is also a difficult decision.

6.1.5 D"iscussion

In this section, ::;orne of the popular feature selection algorithms have been dis

cussed. It bas been observed that, different algorithms have used different con

cepts of relevant features to select the features. In addition to that, different

algorithms used different assumptions. As for example, Branch and Bound has

assumed that criterion function is monotonous; Relief is based on the concept

of Near Hit and Near Miss and so on. So, different algorithms give optimum re

sults in different environments and with different data sets. In other words, no

algorithm is suitable for all environments or can select relevant featun!) in all

types of data sets. As a matter of fact, it will be virtually impossible to design

CHAPTER 6. FEATURE SELECTION 135

Input: D,F,Maxtries,ucon.

Output :- Sf, £et of relevant features.

2. For i= 1 to M axtries;

3. Randomly choose a subset of features, X;

4. If Card(X) :::; Card(S,)

5. If InConCal(X, D) :::; ucon

u. S,=X;

7. Output X;

8. Else

9. Append X to Sf;

10. Output X as 'another solution';

11. Endfor

12. Return Sf;

Algorithm 6.4: L VF

an algorithm, which will find most relevant features in all environments and for

all types of dat.a sets.

Researchers are trying to use different concepts to design algorithms to select rel

evant features. One such useful concept is the frequency count(support count), as

can be found in association rule mining technique. To the best of our knowledge,

there has not been much attempt to find relevant features based on frequent fea

tures/items of association rule mining technique [AMS+94, AMS+96]. J Moore

used association rules to select features in a web page for web page clustering. V

Jovanoski and N Lavrac used association rules in inductive concept learning i.e.

to device a classifier. They also used association rules to measure the accuracy-

CHAPTER 6. FEATURE SELECTION 136

of other feature selection algorithms .
•

This chapter (next section) presents a supervised feature selection algorithm for

binary classification based on frequent items/features of association rule mining

technique [AMS+94, AMS+96]. In binary classification, instances of a database

are associated with only one class label. The class label is either 1, which repre

sents the instance belongs to the class, or 0, which represents the instance does

not belong to the class. So, the instances in the database may belong to the class

or may not belong to the class. The chapter also presents comparative results of

the proposed algorithm and some existing algorithms.

6.2 The FFC Algorithm

The proposed algorithm, FFC(Feature selection using Frequency/support Count),

is meant for relevant feature selection from binary classified data and is based on

frequent items/features of association rule mining technique IAMS+94~ AMS+96].

Here, frequency count refers to support count of association rule mining. Let us

consider a binary classified database of instances, where each instance either be

longs to a class or does not belong to the class. It is also assumed that each

instance is of the form < TID, II, P,fn , C1 >, where TID is the unique iden

tification number of the instance , P is the ith feature and C1 is the class of the

instance. Ii can be either 1, if the feat~e has occurred in the instance, or 0 , if

the feature has not occurred in the instance. Similarly, Cl can be either 1, if the

instance bel~ng to the class, or 0 , if the instance does not belong to the class. .

As for example, one instance may be (11, 1, 0, 1, ... ,1). The first number 11 is

the instance number. Among the rest, 1 represents that corresponding feature

has occurred and 0 represents that corresponding feature has not occurred. The

last value represents the occurrence of the class, where 1 represents that the

instance belongs to the class and 0 represents that the instance does not belong

to the class.

It has been observed that in binary classified data, where instances are associated

with only one class label, if a feature I is relevant or has some influence on the

occurrence of the class Cl then there may be two possible cases: One is that the

class C1 occurs when f occurs and the other is that class C1 occurs when f does

CHAPTER 6. FEATURE SELECTION 137

not occur in most of the instances. In association rule mining terminology, a

feature f will "'be relevant with respect to the class C
"

if either fC, or 1'c, is

frequent, where l' represents the non-occurrence of f. The algorithm e).."plores

these observations to find the relevant feature.').

The algorithm works as follows. The inputs to the algorithm are D: mmsup :

incr and minI The output is Sf. Initially, the algorithm assumes that all the

features are relevant. So, Sf contains all the features. Then it generates L1 and

L~ followed by generation of C. Each element of C consists of two elements and

is of the form fCI , where f is a feature and C, is the class such that either I or

l' is frequent. Then the algorithm finds the support count for all the elements

of C. The algorithm uses bitmaps [HLL03] of the features to find the support

count because it reduces the execution time to a great extent. At the end,

the relevant features are extracted. The relevant features are those which are

included in at least one frequent element of C. Then minsup is incremented by

in cr. The purpose of increasing the minimum support is to find the features

with maximum possible support. This process is repeated as long as number of

features in Sf is greater than the minimum number of required features. If the

number of selected features become less than the minimum number of required

features, the immediate previous set of selected features is returned. Otherwise.

Sf is returned. The algorithm is presented in Algorithm 6.5 on the ne>..'t page.

The algorithm uses the concept of frequent itemset. As a result, it may not be

able to remove the redundant/correlated features in small database. The value

of minsup , incr and mini plays a major role to determine the execution time

and how quickly the algorithm will converge. The larger value of minsup and

incr, the more quickly the algorithm will converge. However, larger value of incr

may miss some relevant features. As far as min} is concerned, the execution time

decreases as the value of minf increases for less number of iterations over the

database. In the experiments, it was found that the value of minsup between

0.01 and 0.05, and the value of incr between .005 and 0.01 give good reSults. For

dense database, minsup can be set to a higher value. So, there should be some

trade-off in choosing the values of the above mentioned parameters.

CHAPTER 6. FEATURE SELECTION

Input: D, miv-sup,incr, min!

Output: S, (set of relevant features).

1. S,= All features;

138

2. Scan the database and find the bitmaps of all the features and the class

label.

3. Do while(IS, 1 > min!)

4. C=¢;

5. Ll = {fISup(f) ~ minsup}; I*Features whose occurrence is large* I

6. L'}={fISup(f') ~ minsup}; /*Features whose non-occurrence is

large* /

7. C=C U {xCllx E Ll U LD; / / support count of C

8. For all c E C

9. Find support count (e.eount) of c using bitmaps;

10. Fl = Sf;

11. S, = {fie E C, c = fCd /,cI , c.count ~ min sup };

12. minsup=minsup+iner;

13. Enddo

14. If IS,I < minfthen

15. Sf= Fl;

16. Endif

Algorithm 6.5: FFC

CHAPTER 6. FEATURE SELECTION 139

6.3 Experimental Results ..
Feature selection methods can be validated either by using artificial datasets

or by real-world datasets. Artificial datasets are constructed with some known

relevant features and some noise features. Feature selection method!'> are run over

these datasets to check if they can find the known relevant features or not. In

case of real-world datasets, relevant features are unknown. Accuracy of a feature

selection method is determined with the help of a suitable classifier. However.

selecting suitable classifier is difficult because different classifiers support different

datasets. So, four artificial datasets were chosen to evaluate the performance of

the algorithms.

6.3.1 Datasets Used

The datasets, which are described below, have combinations of relevant, corre

lated, irrelevant and redundant features. These datasets are available in VCl

Machine Learning Repository (http://www.ics.uci.edu). Here, the attempt is to

evaluate the strengths and weaknesses of the proposed method along with the

other method!'>.

CorrAL Dataset [KAH96]

The dataset consists of 32 instances, binary classes and six boolean features (AD,

AI, Bo, B1. I, C), where I is irrelevant and C is the class level. Here, relevant

features are Ao. AI, Bo and B l .

Modified Par3+3 Dataset

The dataset contains 64 instances. It con!'>ists of binary cla.~ and twelve boolean

features. Among them, AI, A 2 , A3 are relevant and A 7 , As, A9 are redundant.

CHAPTER 6. FEATURE SELECTION 140

Monkl and MonkS Dataset [TBB+91] ..
Monkl consists of five discrete features(A}, A 2 , A3 , A4 and A5) and the binary

class, out of which AI, A2 and As are relevant to the target concept.

Monk3 consists of six discrete features(AI, A2 , A3 , A4 , As and A 6) and the binary

class, out of which A2 , A4 and As are relevant to the target concept.

-
6.3.2 Experimental Setup

The proposed algorithm was implemented using a Intel PIV machine. The value

of minsup and incr were taken as 0.05 and 0.005 respectively for all the datasets.

The value of minfwas taken as 4 for CorrAL and 3 for other datasets.

6.3.3 Results

Average e>."}>erimental results are presented in Table 6.1. All the algorithms took

very less amount of time and there was a little variation in the execution times.

Method CorrAL Monk3 Monkl Modified Par 3+3

(RA) (AO,AI,BO,BI) (A2,A4,A5) (AI,A2,A5) {{AI,A7}, {A2.A8}

,{A3,A9})

Relief AO,BO,BI,C A2,A5 always Al,A2,A5 Al:A2,A3:A 7:A8.A9

& one or

both of A3,A4

BBB AO,AI,BO,I Al,A3,A4 Al,A2,A4 AI,A2,A3

Focus AO,AI,BO,BI Al,A2,A5 A3,A4,A5 Al.A2,A3
\

LVF AO,AI,BO,BI A2,A4,A5 Al,A2,A5 A2,A3,A7

FPC AO,AI,BO,BI,I,C Al,A2,A4,A5 Al,A2,A5 AI,A2,A3

Table 6.1: Experimental Results of Relief, B f.1B, FoCtl.S, LVF and FFC

CHAPTER 6. FEATURE SELECTION 141

6.3.4 Observations

Followings are some observations from the experimental results.

1. The proposed algorithm could not remove the Correlated/Redundant fea

tures from CorrAL data which is evident in the result. However, it found

all the relevant features in Monkl and MonkS datasets.

2. In case of Monkl, it could select all relevant features. The discrepancy in

the results could be attributed to the inherent nature of frequent itemset,

type and size of the database.

6.4 Discussion

This chapter has presented an algorithm for relevant feature selection in binary

classified data using the concept of frequent itemset. Based on experimentation,

it has been found that the proposed algorithm is equally good when compared

with the other counterparts. One disadvantage of the algorithm is that it could

not find all the relevant features in all the datasets. However, this cannot be con

sidered as a major disadvantage, because no algorithm can find all the relevant

features in all kinds of data. The main advantage of the algorithm is the sim

plicity and easy implementation compared to its counterparts. So, the algorithm

can be very useful to find relevant features in binary classified data.

Chapter 7

Data Cube Materialization

OLAP(On-line Analytical Processing) operations deal with aggregate data. Hence,

materialization or pre-computation of summarized data are often required to

accelerate the DSS(Decision Support System) query processing and data ware

house design. Otherwise, DSS queries may take long time due to huge size of

data warehouse and complexity of the query, which is not acceptable in DSS

environment. Different techniques like query optimizers and query evaluation

techniques [CS94, GHQ95, YL95] are being used to reduce query execution time.

View materialization is also one very important technique, which is used in DSS

to reduce query response time. Therefore, researchers are always in search of bet

ter algorithms, which can select best views to be materialized. In this chapter

also, there has been attempt to develop a better view materialization technique

by exploitation of density concept and association rule mining technique. Dif

ferent indexing techniques like bit-map index, join index, etc. are also used to

reduce the query response time to a great extent.

Query response time largely depends on the data structure used to represent the

aggregates. One of the most efficient data structures is data cube [GCB+97] ,

which is used widely to represent multidimensional aggregates in data warehouse

systems. A data cube allows data to be modeled and viewed in multiple dimen

sions. In SQL terminology, data cube is nothing, but collection of grqup-bys.

Let us take an example. Suppose, an organization keeps sales data of a par

ticular product with respect to time{t), location(l) and branch(b) without any

hierarchy as has been shown in Figure 7.1 on the next page. Here, the data cube

142

CHAPTER 7. DATA CUBE MATERIALIZATION 143

consists of eight possible group-bys: tlb, tl, tb, bl, t,l,b and none. Each individ

ual group-by \,s called sub-cube or cuboid or view. In data warehouse systems,

query response time largely depends on the efficient computation of data cube.

However, creating data cube on t.he fiy is very much time and space consuming.

l..oc<lli ol'1s

(Cities)

So, one common technique used in data warehouse is to materialize{Le. pre

compute) cuboids of a data cube. To do this, there are three possibilities:

1. Materialize the whole data cube: This is the best solution in terms of query

response time. However, computing every cuboid and storing them will

take maximum space if data cube is very large, which will affect indexing

and the query response time.

2. No Materialization: Here, cuboids are computed as and when required. So,

the query response time fully depend" on database which stores the raw

data.

3. Partial materialization: This is the most feasible solution. In this approach,

some cuboids or cells of a cuboid are pre-computed. However, the problem

CHAPTER 7. DATA CUBE MATERIALIZATION 144

is how to select these cuboids and cells to be pre-computed. Generally.

cuboids and cells which can help in computing other cells or cuboids, are

pre-computed.

There exists some view materialization algorithms. However, most of them

work on some constraints such as space to store the views, time to update the

views, etc. Some well known algorithms are BPUS [HRU96], PBS [SDN98].

PVMA [URT99], A· [GYC+03]. etc. BPUS is a greedy algorithm, which se

lects the views with the highest benefit per unit space. The complexity of the

algorithm is O(k.n2
), where k is the number of views to be selected and n is

'--
the total number of views. The main disadvantage of the algorithm is that its

execution tlme incr~ases exponentially with the increase of number of views.

Otherwise, the algorithm selects better views in terms of benefits. PBS(Pick

By Size) algorithm selects the views on the basis of view size. However, PBS

is meant only for SR(Size Restricted)-Hypercube lattice. A" algorithm is one of

the recent algorithms. The algorithm is interactive, flexible and robust enough

to find the optimal solution under disk space constraint and the algorithm has

been found to be useful when disk-space constraint is small. The algorithm has

used two powerful pruning techniques (H-pruning and F-pruning) and two sliding

techniques(slidmg-left and sliding-right) to further improve the running efficiency

of the search. Above all. there is one algorithm called PVMA(Progressive View

Materialization Algorithm) [URT99J. The algorithm is based on the concept

of Neare:;t Materialized Parent Views (NMPV). To the best of our knowledge.

this is the first algorithm to have used access frequency of queries to select the

views. It also considers updates on views and view size to calculate benefits of

the views. So, this algorithm can be found to select better views than other

algorithms !URT99].

This chapter has discussed performance analysis of PVMA algorithm in detail

for the reasons given above and attempted to present a faster view materializa

tion algorithm(DVMAFC) based on the notion of density and frequency count

(support count) of the views. The algorithm basically forms clusters of views

and selects the core views for materialization. The concept of density has been

taken from the algorithm DBSCAN [EKS+96], which is a well-known clustering

algorithm. The algorithm DVMAFC also ha.-; applied the concept of cost/benefit

of PVMA to form the clusters of views. In addition to that, the algorithm has

CHAPTER 7. DATA CUBE MATERiALIZATION 145

used the supports of the frequent (or large) sub-views to calculate the benefits,

because it has'beell observed that supports of the frequent (or large) views plays

an important role to select better views to be materialized. At the end, the

chapter has compared the performance of DVMAFC wit.h PVMA. It. has been

observed that in most of the cases DVMAFC selects better views and works much

faster than PVMA.

7.1 Data Cube Lattice

All the view materialization algorithms are required to use some data struc

tures to represent the data cube. One useful data structure is data cube lat

tice [HRU96), which has been used by many algorithms to represent a data cube.

Let us consider the above example of sales data. The grou~bys(views) can be

organized in the form of a lattice as shown in Figure 7.2, which is a directed

acyclic graph. The top view tlb is known as fact table. An edge from a view u to

view v in the graph means that v can be calculated from u. [HRU96] also has

shown that this relationship is in partial order. DVMAFC has also used data

cube lattice to represent the views.

Figure 7.2: A Lattice

CHAPTER 7. DATA CUBE MATERIALIZATION 146

7.2 Progressive View Materialization Algorithm

(PVMA)

PVMA [URT99] assumes that dat.a cube is represented in the form of lattice as

discussed in [HRU96] and selects the appropriate views to be materialized. which

minimizes the query response time and maintenance cost. The feature, which

distinguishes the algorithm from other algorithms is the use of size of the views.

access frequency of queries (views). updates(insert, edit and delete) on each view

to select the views for materialization. The algorithm also uses number of rows
"-

affected by each of the update operations. These parameters information are

usually available and can be kept track easily in a data warehouse system by the

warehouse administrator, considering the fact that data warehouse is updated in

off peak period. Followings are some of the concepts used in the algorithm:

• Nearest Materialized Parent Views (NMPV): A view u is a parent view of

v, if v can be computed from u. NMPVof of vat iteration k, denoted by

N M PVk(v) is a materialized view u such that the difference between size

of view v and size of view u is minimum among all materialized views in

the iteration k of the algorithm, So, NMPVk(v) = min(R(u),R{v)'v'u E S

and u --+ v.

• Benefit If a view v is materialized then view v and its children receive

the benefits because children can be computed from t' whose size is smaller

than the fact table. The benefit of v in the iteration k is calculated as

be f ' () - (R(NMPV(V}) - R(v} " f) T. ne ttl. v - L,; u roo
bf uEdlUd(v)Uv

(7.1)

• Cost Each change{insert, delete and update) in the fact table results in

update to each corresponding view. So, cost calculation includes the num

ber of operations(insert, delete and update), their frequencies and time for

random block access. The cost is calculated as:

CHAPTER 7. DATA CUBE MATERIALIZATION 147

It is to be noted that the cost is same for all the views because the formula

does not. contain any information of the view .

• Pmjit: Profit of a view vat iteration k, denoted by projitk(V) , is calculated

as benelitk(v) - cost(v).

7.2.1 The Algorithm

The algorithm is very simple and works as follows. Base cuboid(fact table) is

always to be materialized because any cuboid can be calculated from the base

cuboid. The algorithm calculates cost, benefit and profit of all the views, which

are not included in N R, where N R is a set of views with negative profit. The

views with negative profit are discarded. Then, the algorithm selects the view

with maximum positive profit. The process continues until all the views are either

discarded or selected for materialization. The algorithm is given in Algorithm 7.1

on the next page.

Example 7.1

Let us consider the lattice given in F;gu.1Y~ 7.2 on page 145. Let size(number of

rows) of the cuboids t/b, tl, tb, Ib, t, I, b be 100, 70, 60, 50, 40, 30, 20 respectively.

Let access frequency of the cuboids be 10. 5. 5. 6, 5, 3, 1 respectively. Let us

also take bl. Trba and cost as 100, lOmsec and 5msec respectively. Based on the

above assumptions, three iterations of the algorithm are shown in Table 7.1 on

page 149, where s and nr represents the cuboid is selected and included in N R

respectively. In the first step tlb is selected because it is the fact table; in the

second step lb is selected; in the third step tb is selected and b is included in N R

because the profit is negative.

CHAPTER 7. DATA CUBE MATERIALIZATION

Input: Lattice of the views. V, Access frequency of the views. . .

Output: S.

1. 8=Vl; (VI is the base cuboid)

2. NR= </>;

3.

4. For k=1 to IVI

5. Begin

G. For all views v

7. Begin

8. If (v E S & v rt N R) then

9.

b j 't () - (R(NMPV(V)) - R(v) " f) T. ene 1. k V - ~ u roo
bj uEchild(v)Uv

10. prOJitk(V} = benejitk(v) - cost;

11. If prOjitk(V) ::s; 0 then add v into NR;

12. End

13. End

14. Find Pview from all the views v E S;

15. Add P view to S;

Algorithm 7.1: ,PVMA

148

CHAPTER 7. DATA CUBE MATERlALIZATION 149

Cuboid First step Second step Third step

• Benefit Profit. Benefit Profit Benefit Profit

tlb - 8 - - - -

tl - - 39 34 39 34

tb - - 44 39 44 39(8)
lb - - 50 45(8) - -

t - - 30 25 30 25

1 - - 21 16 6 1

b - - 8 3 3 -2{nr)

Table 7.1: PVMA Example

7.2.2 Analysis

The complexity of the algorithm is O(V2 + Sf + SD + SU). So, it is clear that

the complexity heavily depends on V. Complexity increases exponentially with

the increase of V. However, the algorithm has been found to be superior to

other algorithms and considers access frequency of the views, size of the views

and maintenance cost of the views to select the views [URT99]. The algorithm

performs better in situations which involve databa'les with more dimensions and

different access frequencies of views.

7.3 Density-based View Materialization Algo

rithm using Frequency Count (D VMAFC)

DVMAFC also assumes that data cube is represented in the form of lattice as

discussed in [HRU96} and selects the appropriate views to be materialized. which

minimizes the query response time and maintenance cost. Like PVMA, it also

uses size of the views, access frequency of queries (views), frequency of updates

(insert, edit and delete) on each view and number of rows affected by each of the

update operations to select the views for materialization.

CHAPTER 7. DATA CUBE MATERIALIZATION 150

The important concept used in DVMAFCis the use of concept of density [EKS+96]

to form clusters of views and then select the views to be materialized in a data

warehouse system. A cluster in D VMAFC consists of views. The main char

act.erist.ic of t.he clusters is that t.he benefit of t.he neighborhood of any view in

a cluster must be at least some pre-defined value. Another new concept is the

use of frequency/supports of the frequent sub-views to select the views because

it has been observed that supports of the sub-views help select better views for

materialization.

7.3.1 Definitions

Followings are some definitions [EKS+96j, which are of importance in the conte:x.i;

of the algorithm. For all these definitions, it is assumed that views are arranged

in the form of a lattice as explained in previous sections.

Definition 7.1

Neighborhood: Neighborhood of a view v with respect to MaxD, denoted by

N(v), is defined by N(v) = v U {wlw E child{v) and R(v) - R(w) :::; MaxD}.

Definition 7.2

Core View: A view v is said to be core view if bene/it{N(v)) ~ MinBen, where

MinBen is the minimum benefit.

Definition 7.3

D'trectly-Density-Reachable: A view v is directly-density-reachable from a view

w, if 'Ill is a core view and v is in the neighborhood of w.

Definition 7.4

DensIty-Reachable: A view Vi is density reachable from another view v] with

respect to MinBen. if there exist a chain of views V1, V2, •.. Vk such that VI = v]

and Vk = Vi and Ve is directly-density-reachable from Ve+l'

CHAPTER 7. DATA CUBE MATERIALIZATION 151

Definition 7.5

Denstty- Connected: Two views VI, V2 are density-connected if there exists an

other view 713 such that VI and V2 are density reachable from V3.

Definition 7.6

Cluster: A cluster CI of views with respect to MinBen and MaxD is a non

empty set of views with the following conditions

1. For two views VI, V2 E V, V2 E Cl if VI E Cl and ~ is density-reachable

from VI.

2. Two views VI, V2 E Cl are density connected.

1, I, fil, lb : Border pl ints.
tIh, tl: Core FOints.
tl is directlyd.ensity-reacbahle from tIb.
t is density- re ac bah I.e from tIb.
1, 1b are de nsity connected to tlb.

Figure 7.3: :\"eighborhood, Core Point~, Density-Reachable and Density

Connected

There are three categories of views - classified, unclassified and noise. Classi

fied views are already associated with a cluster; unclassified views are not yet

associated with any cluster; noise views do not belong to any cluster. So, it is un

derstood that neighborhoods of classified and noise views are already calculated.

Another category of views, called leader view, has been introduced. A leader

view is an unclassified view, of which all the parents are either classified(not

materialized) or declared noise.

CHAPTER 7. DATA CUBE MATERiALIZATION 152

7.3.2 Frequent Sub-views

Sub-views of a view(group-bys) are basically views consisting of the subsets of

the view. As for example, sub-views of a view (u, v. w) are (u, v), (v, w), etc. In

other words, sub-views of a view are the descendants of the view in the data cube

lattice(Fzgure 7.2 on page 145). It has been observed that frequent sub-views

play an important role in predicting future views. As an example, let us consider

five views: (VI, V2, V3), (Vl, V3), (VI, V2, tIJ), (VI, V2) and (Vb V2, vs). Here, the sub

view (VI! V2) is frequent and present in 60% views. So, it can be predicted that

future queries may be based on views which are s~~erset of the sub-view (VI, V2).

In other words, views which are superset of the frequent sub-views should be

materialized so that any query on those views can be answered instantly. So.

supports of the sub-views should also be considered to calculate benefits of the

views.

Finding frequent sub-views may be challenging task, particularly when the view

(query) database is very large. For this purpose, frequent itemset finding al

gorithms. as discussed in chapter 3, can be of great help. To calculate the

frequencies of the sub-views, view database can be represented easily in the form

of market-basket database. Let us consider the above example again. The equiv

alent market-basket database of the five views is given in the Table 7.2. Each

VI V2 V3 V4 Vs

1 1 1 0 0

1 0 1 0 0

1 1 0 1 0

0 1 0 1 0

1 1 0 0 1

Table 7.2: Representation of Views

transaction represents one view, where 1 represents that the corresponding at

tribute has occurred in the view and 0 represent that corresponding attribute has

not occurred in the view. Now. frequent itemset finding algorithms, as discussed

in Chapter 3, can he used to find frequent suh-views with the corresponding

supports and these supports will be used to calculate the benefits of the views.

CHAPTER 7. DATA CUBE MATERIALIZATION 153

7.3.3 Benefit of a Neighborhood

Benefit is an important concept and the views are selected for materialization

on the basis of benefits of the views. The more the benefit of a view, the more

likely the view will ,?e selected for materialization. However, benefits of the

neighborhoods of the views will be used, instead of the views themselves. Benefit

of N{v), denoted by benefit{N(v)) (Formula 7.3), is calculated in the same way

as benefit of a view v is calculated in P VM A [URT99], which is based on size of the

view and access frequencies of the children views. In addition to that, supports

of the frequent sub-views have been used, as discussed above, to calculate the

benefits of the views. However, only the sub-views of the neighborhoods have

been used, because it has been observed that lower level sub-views do not have

much effect on the view.

benefit(N(v)) = ((R(NMPV(V» - R(v)) L fU) + L Sup(u)
uEN(v)Uv uEN(v)nFv

(7.3)

7.3.4 The Algorithm(DVMAFC)

The algorithm centers around forming the clusters of views. While creating

clusters, the algorithm has to calculate benefits of neighborhoods. The benefit is

based on th~ view size(number of rows), access frequency of views and frequency

count of the sub-views. Frequencies of view access are easily available in any

data warehouse system and frequency of the sub-views can be easily calculated

using the algorithms discussed in Chapter 3 . View sizes can also be calculated

easily using the methods given in ISON98, LS96].

The algorithm assumes that views are selected independently, there is no space

constraint and OLAP uses relational database system. The algorithm also as

sumes that views are organized in the form of lattice as explained the previous

sections. The working principle of the algorithm is very simple. It first" finds all

the clusters of views and then selects the core views of the clusters for materi

alization. The algorithm always selects the fact table for materialization. So,

CHAPTER 7. DATA CUBE MATERIALIZATION 154

top view(fact table) is not included in the creation of the clusters; clusters are

created from tJ"le rest of the views.

The algorithm works as follows. The algorithm starts with finding the small

est leader view v among the leaders with highest dimensions because clusters

are created from the top of the lattice. Then it calculates the benefit of N (v)

. If the benefit is less than the minimum benefit(MinBen), it is marked as a

noise. Otherwise, a cluster starts at v, and all the unclassified child views are

put into a list of candidate views. Then, one view from the candidate views

is picked up and benefit is calculated. If it is a core view, all the unclassified

child views are induded in the list of canqidate views. Otherwise, it is marked

a.-; classified. The process continues until the list becomes empty. This way one

cluster is formed. Similarly, other clusters are formed. At the end, core views

of the clusters are selected for materialization. Here, each view will require to

compute the neighborhood only once. So, average run time complexity of the

algorithm is O(VlogV).

The algorithm needs two important parameters - MinBen and MaxD. MinBen

can be set to any arbitrary positive value according to requirement. However.

optimum value can be calculated in the same way as cost of a view is calculated

in PVMA. Similarly, optimum value for MaxD can be determined in the same

way as Eps has been determined in [EKS+96].

7.4 Experimental Results

Setup: Performance of DVMAFC and PVMA was compared with two synthetic

datasets (TDl and TD2) and a PIV machine with 256 MB RAM.

Test data :Two synthetic data sets(TD1 and TD2) were used for the experiments.

Each of them contained 8 dimensions without any hierarchy, one measure at

tribute and 2 lacs tuples. Each of 255 possible views was indexed from 1 to 255

. Values of each dimension and measure attribute were chosen randomly. It was

a.-;sumed that queri~ on any view were equally likely. The analytical formula pre

sented in {SDN98, LS96) was used to estimate the size of views. One view (query)

CHAPTER 7. DATA CUBE MATERIALIZATION 155

Input: Latticte of the views, V. Access frequency of the views, Fv. MaxD and

MmBen. Output· S.

Set. all view~ of V as It'ader;

S = { fact table }; Temp= "True";

clzd = Get a new cluster id;

Do while there 1S a leader view

Find leader view v with 8malle>t in ~ize (R(v» among leader views;

with maximum dimensions;

Temp= CreateCluster(V, v,did, MaxD, MmBen};

If Temp = "True" then

clid = Get a new cluster id;

Endif

End DO

CreateCluster(V, v,did, lvlaxD, MmBen)

(Form the cluster v.rith cluster id as did)

If benefit(N(v)) < MinBen Then

Else

Endif

v. noise= ·'True " :

Return "False'":

v.classified= "True"; S=S U v;

seeds= {wlw E N(v) and w.classified="False" };

For all s E seeds set s.classified= True;

While Empty(seeds)="False" Do

For each s E seeds

If benefd(N(s)) ~ MinBen then

S = SUs; Results = {wlw E N(s)};

For each r E Results

If r.classified = "False" then

seeds = seeds U r; r.classified= ';True'·;

Endif

EndFor

Endif

seeds = seeds-s;

Endfor

EndWhile

Return "True";

Algorithm 7.2: DVMAFC

CHAPTER 7. DATA CUBE MATERIALIZATION 156

database was created with about 1000 views to calculate access frequencies of

the views and 1tequent sub-views. Frequent sub-views and their frequency were

calculated using ModifielLBiLAssoc algorithm with minimum support as 5%. A

com;tant value for MinBen was t.aken, because this parameter also does not

change even if some views have been materialized. bf and Trba were also not

considered because these values are constant for all the views and do not affect

the selection of views.

Experimental results are shown in the figures 7.4 on the next page, 7.5 on

page IG8, 7.6 on page IG8 & 7.7 on page IG9. Figur-es 7.4 on the next page

& 7.5 on page 158 gives the average query cost(in '000 tuples). Figures 7:6 on

page 158 & 7.7 on page 159 reports the execution time.

Observatzons: Experimental results showed that both the algorithms selected

almost same views and average query costs were also almost same for botl~ the

algorithms. In case ofTDl(Figur"e 7.4 on the next page), PVMA selected slightly

better views than that of DVMFC, resulting in slightly better performance in

terms of average query cost. In case of TD2(Ftgure 7.5 on page 158), PVMA

outperformed DVMAFC marginally in the beginning, when number of material

ized views was small. However, as the number of materialized views increased.

DVMAFC outperformed PVMA in terms of average query cost. This could be

attributed to the selection of better views by DVMAFC. Another point to be

noted is that average query cost becomes almost constant with the increase of

number of materialized. views. This shows that materialization of too many views

does not reduce the query cost. As far as execution time (Ftgures 7.6 on page 158

& 7.7 on page 159) is concerned, DVMAFC takes much less time than that of

PVMA. This is the main advantage of the DVMAFC over PVMA. The gain in

execution time could be attributed to the difference in the time complexities of

the algorithms.

7.5 Discussion

This chapter has presented a view materialization algorithm called DVMAFC.

which has used density concept to select better views. The most important

feature of the algorithm is the use of frequency count of the views to select

CHAPTER 7. DATA CUBE MATERIALIZATION 157

better views. To find frequency count of the views, the frequent item sets finding

algorithms reported in the previous chapters (Chapter 3) may be of great help.

Followings are the other important features of the algorithm.

• Complexity of the algorithm is only o (nlogn) , where n is the number of

views.

• As far as view selection is concerned, it selects almost same views as that

of PVMA.

• The algorithm is scalable due to its low complexity.

Dataset TD 1 -- PVMA -.- D\NAf C

100

i 00
0

~ '6'
oQ.I c eo :::J IIJ
c-!9
oQ.I 0
a.J:. £[) 'III-- '-" oQ.I

< :aJ

0
2 4 6 8 1012 14 16 18

Mater ialized viEIM

Figure 7.4: Average Query Cost ('000 tuples) of DVMAFC & PVMA - I

CHAPTER 7. DATA CUBE MATERIALIZATION 158

o atas et: TO 2 -- p\.tu1A. -- D"VtIMF' C

1~~--------~~-------

~+-----------------~
O-+-..,...~--"'--r--...-.,..-..,.-..,...-I

2 4 6 8 10 12 14 16 18

Materializ ed vieUIIS

Figure 7.5: Average Query Cost ('000 t uples) of DVMAFC & PVMA - II

Datas et:TD1

i ~~----------------~
"5

~+---~~~~------~

15 1-601l!llCZ:::::r----r-r-----i

2 4 6 8 10 12 14 16 18

Maier ialized views

Figure 7.6: Execution Times of DVMAFC & PVMA - I

CHAPTER 7. DATA CUBE MATERIALIZATION

o atas et: T02 -- PVMA -.- OVMAFC

qo ,---------------------~

36~~r-----------------~

30~--------------------~
26~------~------------~
20~~----~~----------~
16~----~-.~~--------~

10r-~~--_;~);~~

5~--------------------~
01-~~--~~~~--~~~

2 4 6 8 10 12 14 16 18

Mater ialize d Views

Figure 7.7: Execution Time of DVMAFC & PVMA - II

159

Chapter 8

Conclusion and Future Works

Association rule mining in large databases is an important data mining technique

and it is used extensively in the field of knowledge discovery. Some of the uses of

association rules are understanding customers' buying patterns, detecting crime

patterns in a particular city, detecting frauds in credit card systems, etc.

8.1 Finding Frequent Itemsets Plays an Impor

tant Role in Association Rule Mining

Generally, association rule mining is a two step process - finding frequent itemsets

and finding association rules among the frequent itemsets. Out of these two steps.

finding frequent itemsets is more important, difficult and challenging because if

the frequent itemsets are available, finding association rules is a trivial ta."k.

There exist algorithms to find frequent itemsets from large databases. Among

them, Apnon is one of the earliest and important algorithms. The algorithm is

robust enough to find all frequent itemsets. The algorithm first finds candidate

itemsets and then finds frequent itemsets from those candidate sets. However.

it has been observed that the ratio of number of candidate itemsets to that

of frequent itemsets is very high. In other words, very few candidate itemsets

become actually frequent itemsets. There emi; algorithms such as BiLAssocRule.

which use bitmap technique to find frequent itemsets. There also exist algorithms

160

CHAPTER 8. CONCLUSION AND FUTURE WORKS 161

which find frequent itemsets without candidate generation. FP-growth is one such

algorithm. Hawever, it has been observed that performance of the algorithm

degrades with the increase of minimum support.

8.1.1 Solutions Provided

Following solutions are provided to address the above problems.

• A faster version of Apriori algorithm, which generates less number of can

didate sets has been proposed.

• A modified and faster version of Bit-AssocRule algorithm has also been

proposed.

• To improve the performance of FP-g1Vwth, a vertical partition based FP

growth has been proposed.

8.1.2 Partitioning is Another Good Approach

Horizontal partitioning of databases is a good approach to find frequent item

sets from large databases. However, it does not perform well for high dimen

sional databases. This problem has been addressed by vertical partitioning of

the databases. Vertical partitioning gives better results than horizontal parti

tioning in case of high dimensional databases.

8.2 Finding Frequent Itemsets for Dynamic

Databases

One important feature of most of the databases is that they are dynamic in nature

because records are added, updated, deleted very frequently. During the study

of the algorithms, it has been observed that existing algorithms are not' efficient

to find frequent itemsets in dynamic databases. Moreover, to the best of our

knowledge, no algorithm exists for distributed dynamic databases. Among the

CHAPTER 8. CONCLUSION AND FUTURE WORKS 162

existing algorithms for finding frequent itemsets in dynamic databases, Borders

is the most important one. However, the algorit-hm scans the old database very

frequently_ To address this problem, a modified version of the algorithm has been

proposed. The modified version does not require to scan the database frequently.

Another problem is that Borders cannot be used directly for distributed dynamic

databases. To solve this problem, a fully distributed version of Borders has been

proposed. This distributed version can also be used for centralized database by

partitioning the database and placing the partitions in different sites.

8.3 Feature Selection

Selecting relevant features is an important task in Decision Support Systems.

There exist algorithms to select relevant features. These algorithms work for

different types of databases and use different criteria to select relevant features.

Moreover, these algorithms are very complex to implement. The thesis has re

ported a very simple algorithm to select relevant features using support count of

the features. The algorithm is very simple and comparable to its counterparts

in terms of relevant feature selections.

8.4 View Materialization

View materialization is an important technique used in data warehouse systems

to reduce query response time. There exist algorithms for this purpose. All these

algorithms have to work under some constraints such as disk-space constraint.

Moreover, it has been observed that no algorithm has used support of th_e views

for view selection. So, an algorithm has been proposed to select views for ma

terialization. The important feature of the algorithm is that it has used density

concept and support count of the views.

CHAPTER 8. CONCLUSION AND FUTURE WORKS 163

8.5 Future Works

Association rule mining is a vast area of research. So, it is not possible to cover

every aspect of it in a stipulated period of time. Although it has been tried to

cover as many aspects as possible, yet there are ample scopes for future works.

Followings are some of the future works.

1. To develop a frequent itemset finding algorithm, which will generate the

frequent itemsets without candidate generations for any high dimensional

large. Plarket-basket databases and will also be capable.Of handling the

minimum support condition i.e. the performance of the algorithm will not

degrade even if value of minimum support count varies.

2. To e:>..."tend the existing developments reported so far in the preceding chap

ters, to enable to work over spatial data, temporal data and any high

dimensional categorical data.

3. To introduce soft-computing approach in the frequent itemset generation

as well as in rule generation to discover more comprehensive and interesting

patterns.

4. To develop better and robust dynamic rule mining algorithm over market

basket data as well as other huge data sources.

5. To incorporate data clustering technique or functional dependency ap

proach to enable association mining over categorical and mixed types of

data.

6. To analyze and develop quantItative association rule mining algorithms.

7. To develop a better feature selection technique using linear and non-linear

manifolding techniques.

8. To explore the possibility of developing deviation analyzer (association rule

mining based) for intrusion detection system.

List of Publications

1. A Das and D K Bhattacharyya. Efficient rule mining with modified Apn

on. In Proceedings of 1st National Workshop on Soft Data Mming and

Intelligent Systems (SDIS'Ol), pages 117-122, Tezpur. India, September

2001.

2. A Das and D K Bhattacharyya. An efficient algorithm for rule mining.

In Prvceedings of sth International Confer-ence on Info17nation Technology

(CIT 2002), pages 319-320; Bhubneswar, India, December 2002.

3. A Das and D K Bhattacharyya. Efficient rule mining for dynamic databases.

In Proceedings of International Conference on Information Technology (ITPC

2003), pages 25-30, Kathmandu, Nepal. May 2003.

4. A Das. D K Bhattacharyya and J Kalita. Horizontal V'S vertical partition

ing in association rule mining: a comparison. In Proceedmgs of CINC2003.

pages 30-36, USA, August 2003.

5. A Das and D K Bhattacharyya. Rule mining for dynamic databases. In

Proceedings of International Workshop on Distributed Computing (IWDC2004),

LNCS 3326, Springer, pages 46-51, Kolkata, India, December 2004.

6. A Das and D K Bhattacharyya. Feature selection using frequency count.

In Proceedings of 1f!h International Conference on Advanced Computing

and Cqmmunications(A DCOM2004). pages 620-624, Ahmedabad, India,

December 2004.

7. A Das and D K Bhattacharyya. Faster algorithms for association rule

mining. In Proceedings of 1f!h International Confer-ence on Advanced Com

puting and Communications (ADCOM2004), pages 629-635, Ahmedabad,

India, December 2004.

8. A Das and D K Bhattacharyya. Rule mining for dynamic databases. A tLS

tmlian Journal for Information Systems, 13{1}:19-39, September, 2005.

9. A Das and D K Bhattacharyya. Density-based view materialization. In

Proceedings of 1st International Conference on Pattern Recognition and

164

LIST OF PUBLICATIONS 165

Machine Intelligence (PReMI2005), LNCS 3776, Springer, pages 589-594,

Kolkata, ·India, December 2005.

10. A Das and D K Bhattacharyya. Finding frequent itemsets over high di

mensional data using partitioning FP-growth. In Pmceedings of National

Workshop on Trends in Advanced Computing (NWTAC 2006), pages 130-

138, Narosa, Tezpur, India, January 2006.

11. A Das and D K Bhattacharyya. View materialization using density con

cept. Information Visualization (Communicated).

12. A Das and D K Bhattacharyya. Using frequency count in feature selection.

Australian Journal for Information Systems (Communicated).

Bibliography

(A09lj

[AIS93]

[AK93]

. H Almuallim and T G Oietterich. Learning with many irrelevant - . -
features. In Proceedings of [jh National Conference On Artificial

Intelligence, pages 547-552, Anahein, California, 1991.

R Agarwal, T Imielinski, and A Swami. Mining a.')sociation rules

between sets of items in large databases. In ACM SIGMOD Con

ference on Management of Data, pages 207-216, Washington, May

1993.

T Anand and G Kahn. Opportunity explorer: Navigating large

databases using knowledge discovery templates. In Proceedings of

AAAI-93 Workshop in Knowledge Discovery in Databases. pages

45-51, Washington, DC, July 1993.

[AMS+94] R Agarwal, H Mannila, R Shrikant, et aI. Fast algorithms for mining

association rules in large databases. In 2f1h International Conference

. on Very Large Databases, pages 487-499, Chile, September 1994.

[AMS+96] R Agarwal, H Mannila, R Shrikant, et aI. Fast discovery of associ

ation rules. In Advances in Knowledge Discovery and Data Mining.

pages 307-328. AAAI Press, 1996.

[AS95]

[AYJOO]

R Agarwal and R Shrikant. Mining sequential patterns. In Proceed

ings 11th International Conference Data Engineering, pages 3-14.

Taipei, Taiwan, March 1995.

S Amer-Yahia and T Johnson. Optimizing queries on compressed

bitmaps. In Proceedings of 2rJh VLDB ponference. pages 329--338.

Cairo, Egypt, September 2000.

166

BIBLIOGRAPHY 167

[BA99]

[BAG99]

R J Bayardo Jr. and R Agarwal. Mining the most interesting

rules. In Proceedings of The sth ACM SIGKDD International Con

ference on Knowledge Discovery and Data Mimng, pages 145-154.

San Diego Unit.ed St.at.es, 1999.

R J Bayardo, R Agarwal, and D Gunopulos. Constraint-based rule

mining in large, dense dat.abase. In Proceedings of 1 ~ International

Conference on Data Engineering, pages 188-197, Washington, DC.

1999.

[BB96] G Brassard and P Bratley. Fundamentals of Algorithms. Prentice

Ha1l~ New Jersy, 1996.

[BFO+83] L Breiman, J H Freidman, R A Olshen, et al. Classification and

Regression Trees. Wordsworth. Belmont, 1983.

[Bit92]

[BMS97]

D Bitton. Bridging the Gap between Database Theory and Practice.

MIT Press, 1992.

S Brin, R Motowani, and C Silverstein. Beyond market basket:

Generalizing association rules to correlation. In Proceeding of A CM

SIGMOD International Conference on Management of Data. pages

265-276, Tucson, AZ, May 1997.

[BMU+97] S Brin, R Motwani, J D Ullman, et al. Dynamic item set count

ing and implication rules for market basket data. In Proceedings

of 1997 International Conference on Management of Data (A eM

.SIGMOD), pages 255-264, Arizona, USA, May 1997.

[Bor]

[CB91]

C Borgelt. An implementation of FP-growth algorithm.

http://fuzzy.cs.uni-magdeburg.de/ borgelt/papers/fpgrowth.pdf.

P Clerk and R Boswell. Rule induction with CN2: Some recent

improvements. In Proceedings of sth Eurvpean Conference, pages

151-163, Porto, Portugal, March 1991.

[CHN+96a] D W Cheung, J Han, V T Ng, et al. A fast distributed algorithm

for mining association rules. In Proceedings of 4th International

Conference on Parnllel and Distributed Information Systems, pages

31-42, Miami Beach, USA, 1996.

BIBLIOGRAPHY 168

[CHN+96b] D W Cheung, J Han, V T Ng, et al. Maintenance of discovered

association rules in large databases: An incremental updating tech

nique. In If!h International Conference on Data Engineering, pages

106-114, ~ew Orleans, Louisiana, 19YG.

[CLK97] D W Cheung. S D Lee, and B Kao. A general incremental tech

nique for maintaining discovered association rules. In Proceedings of

the sth International Conference on Database System for Advanced

Applications, pages 185-194, Melbourn, Australia, 1997.

[CNF+9~]. D W Cheung, V T Ng. A W Fu, et al. Efficient mi~ing of association

rules in distributed databases. IEEE Transactions on Knowledge

and Data Engineering, 8(6):911-921. December 1996.

[CS94]

[DB04]

[Doa92]

[DT99]

[Ege91]

[EH94]

S Choudhury and K Shim. Including grouJrby in query optimization.

In Proceedings of the 2(Jh International Conferences on Very Large

Databases (VLDB). pages 354-366, Santiago, Chile, 1994.

A Das and D K Bhattacharyya. Faster algorithms for association

rule mining. In Proceedings of If!'' International Conference on Ad

vanced Computing and Communicatzons(ADCOM2004), pages 629-

635, Ahmedabad. India, December 2004.

J Doak. An evaluation of feature selection methods and their aJr

plication to computer security. Technical Report CSE-92-18, CA:

University of California, Department of Computer Science, 1992.

L Dehaspe and H Toivonen. Discovery of frequent datalog patterns.

Data Mining and Knowledge Discovery, 3(1):7-36, 1999.

M J Egenhofer. Reasoning about binary topological relations. In

Proceedings of 2nd International Symposium on Advances in Spa

tial Databases, SSD'91, pages 143-160, Zurich, Switzerland, August

1991.

M J Egenhofer and J R Herring. Categorizing binary topological

relations between regions, lines and points in geographic databases.

Technical Report 94-1, U S National Center For Geographic Infor

'mation Analysis, 1994.

BIBLIOGRAPHY 169

[EKS+96] MEster, H P Krigel, J Sander, et a1. A density- based algorithm for

discovering clusters in large spatial databases with noise. In Pro

ceedmgs of 2nd Internatwnal Conference on Knowledge Dlscovery

and Data Muung, pages 226-231, Portland, 1996.

[ES02] C I Ezeife and Y Suo Mining incremental association rules with

generalized FP-t.ree. In Pmceedmgs of J5'-h Canadian ConfeT'ence

on Artificial Intelligence, AI2002, pages 147-160, Calgary, Canada,

~ay 2002.

[FAA +97J R Feldman, Y Awnann, A Amir, et al. Efficient algorithms for

discovering frequent sets in incremental databases. In Proceedmgs

of ACM SIGMOD Workshop on Research Issues on Data Mimng

and Knoulledge Discovery (DMKD), pages 59--66, 1997.

[FAL +99] R Feldman. Y Aumann, 0 Lipshtat, et al. Borders: An efficient

algorithm for association generation in dynamic databa"es. JouTnal

of Intelhgent Information System, 12(1):61-73, 1999.

[Fla98] P Flach. From extensional to intensional knowlroge: Inductiw

logic programming techniques and their approaches to deductive

databases. In Transaction and Change in Logic Databases, volume

LNCS 1472. Springer-Verlag. Berlin, 1998.

[FMM+96] T Fukuda, Y Morimoto, S Morishita, et al. Data mining using two

dimensional optimized. association rules :schemes algorithms and vi

sualization. In Pmceedings 1996, ACM-SIGMOD International Con

ference Management of data (SIGMOD '96), pages 13-23, Montreal.

Canada, June 1996.

[FR94] A S Fotheringham and P A Rogerson. Spatial Analysis and GIS.

Taylor and Prancis. 1994.

[FWD93] U M Fayyad, N Weir, and G Djorgovski. SKICAT: A machine learn

ing system for automated cataloging for large scale sky serveys. In

Proceedings of 1r1h International Conference On Machine Learning

(ICML 1993), pages 112-119, June 1993.

BIBLIOGRAPHY 170

[GCB+97] J Gray, S Chaudhury, A Bosworth, et al. Data cube: A relational ag

gr~gation operator generalizing group-by, cross-tab and sub-totals.

Data Mming and Knowledge Discovery, 1(1):29-54, 1997.

[GHQ95] A Gupta, V Harinarayan, and D QU8.'>.'>. Aggregate-query processing

in data warehousing environments. In Proceedings of 21st Interna

t'lOnal VLDB Conference, pages 358-369, California, USA, 1995.

[GK84]

[GN04]

[Gra94]

S C Gupta and V K Kapoor. Fundamentals of Mathematical Statis

tics. Sultan Chand and Sons, New Delhi, 1984.

A Ghosh and B Nath. Multi-objective rule mining using genetic al

gorithm. Information Sciences: An International Journal, 163:123-

133, .June 2004.

G Graefe. Volcano, an extensible and parallel query evaluation

system. IEEE Transaction on Knowledge and Data Engineenng.

6(1):120-135, 1994.

[GYC+03] G Gau, J Xu Yu, C H Choi, et al. An efficient and interactive A *

algorithm \\ith pruning power: Materialized view selection revisited.

In Proceedings of ~h International Conference On Database Systems

for Advanced Application (DASFAA), page 231. 2003.

[HCC92]

[HF95]

[HKOl]

J Han, Y Cai, and N Cercone. Knowledge discovery in databases:

An attribute oriented approach. In Proceedings of 1 Efh VLDB Con

ference, page::; 547-559, Vancouver, Canada. 1992.

J Han and Y Fu. Discovery of multiple level of association rule

from large databases. In Proceedings of International Conference on

VLDB (VLDB'95), pages 420-431, Zurich, September 1995.

J Han and ~'I Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, San Fransisco, Usa, 2001.

[HKKOO] E H Han, G Karypis, and V Kumar. Scalable parallel data mining

for 8.'>.'>ociation rules. IEEE Thmsactions on Knowledge and Data

Engineering, 12(3):337-352, 2000.

BIBLIOGRAPHY 171

[HKS97]

[HLL03]

[HPYOO]

[HRU96]

[HS93]

[Inm96]

[.JDOYY]

[.JKP94j

(Joh98]

J Han, K Koperski, and N Stephallovic. GEOMINER: A system pro

totype for spatial data mining. In Proceeding of The ACM-SIGMOD

Internatzonal Conference on Management of Data. pages 553-556,

lYY7.

X Hu, T Y Lin, and E Louie. Bitmap techniques for optimizing deci

sion support queries and association rule algorithm. In Proceedings

of International Databases Engineering and Application Symposium.

page::; 17-23. Hongkong, July 2003.

J Han. J Pei, and Y Yin. Mining frequent patterns without candidate

generation. In Proceedings of The 2000 ACM-SGMOD International

Conference on Management of Data, pages 1-12, Texa'l, USA. May

2000.

V Harinarayan. A Rajaraman, and J D Ullman. Implementing data

cubes efficiently. In Proceedings 1996 ACM-SIGMOD International

Management of Data, pages 205-216, Montreal, Canada, 1996.

~ Houtsma and A Swami. Set oriented mining of association rules.

Technical Report RJ9567, IBM Almaden Research Center. Califor

nia, October lY93.

W H Inmon. Building The Data Warehouse. John Wiley & Sons,

New York, 1996.

C Jermaine, A Data, and E Omiecinski. A novel index supporting

high volume data warehouse insertion. In Proceedings of 25 VLDB

Confernece, pages 235-246, Sanfrancisco, USA, 1999.

G H John, R Kohavi, and K Pfleger. Irrelevant features and subset

selection problem. In Proceedings of The J1t11 International Confer

ence On Machine Learning, pages 121-129. 1994.

T Johnson. Performance measurement of compressed bitmap in

dice;. In Pmceedings of 2sth VLDB Conference, pages 278-289.

Edingburg, September 1998.

BIBLIOGRAPHY 172

[KAH96] K Koperski, J Adhikary, and J Han. Spatial data mining: Progress

arid challenges. In Proceedings of Workshop on Research Issues

on Data Mining and Knowledge Discovery, pages 1-10, Montreal.

Canada, 1996.

[KBJ+99] A J Knobbe, H Blockeel, A P J M Siebes, et a1. Multi-relational

data mining. Technical Report INS-R9908, CWI, 1999.

[KH95] K Koperski and J Han. Discovery of spatial association rule in

geographic information databases. In Advances in Spatial Databases.

LNCS 951,-pages 47-66. Springer-Verlag, 1995.

[KHC97] M Kamber, J Han, and J Y Chiang. Metarule-guided mining of

multidimeru;ional association rules using data cubes. In Proceedings

of 1997 International Conference Knowledge Dtscovery and Data

Mining (KDD '97), pages 207-210, Newport, CA. August 1997.

[KR92]

[KS95]

[KS96]

[LCK98]

[LHC97]

K Kira and L A Rendell. The feature selection problem: Thaditional

methods and a new algorithm. In Proceedings of 1 rJh National Con

ference on Artificial Intelligence, pages 129-134, Menlo Park, 1992.

R Kohavi and D Sommerfield. Feature subset selection using the

wrapper method: Over fitting and dynamic search space topology.

In Pmceedings. of 1st International Conference On Knowledge Dis

covery and Data Mining, pages 192-197, 1995.

D Koller and M Sahani. Towards optimal feature selection. In

Proceedings of International Conference on Machine Learning, pages

284-292, Bari, Italy, July 1996.

S D Lee, D \V Cheung, and B Kao. Is sampling useful in data

mining? a case in the maintenance of discovered association rules.

Data Mining and Knowledge Discovery, 2(3):233-262, 1998.

B Liu, W Hsu, and S Chen. Using general impression to analyze

discovered classification rules. In Proceedings of International Con

ference On Knowledge Discovery and Data Mining, pages 31-36,

Newport Beach, CA, August 1997.

BIBLIOGRAPHY 173

[LK98]

[LLOO]

[LS96]

D Lin and Z M Kedem. Pincer Search: A new algorithm for discover

illOg the rilaximum frequent set. Lecture Notes in Computer Science.

1377:105-119, 1998.

E Louie and T Y Lin. Finding association rules using fast bit com

putation: Machine-oriented modeling. In LNCS, volume 1932, pages

486-494. Springier-Verlag, 2000.

H Liu and R Setiono. A probabilistic approach to feature selection

- a filter solution. In Proceedings of Intemational Confer'ence on

Machine Learning, pages 319:--327, Bari, Italy, 1996.

[Man97] H Mannila. Inductive databases and condensed representation for

data mining. In Proceedings of International Symposium on Logic

Programming, pages 21-30, Port Washington, USA, 1997.

[MEL +00] D Malerba, F Esposito. A Lanza, et al. Discovering geographic

knowledge: The Il\GENS system. In LNCS, volume 1932/2000.

page 40. Springer-Verlag, Berlin, 2000.

[MFM+98] Y Morimoto, T Fukuda, H Matsuzawa, et al. Algorithms for min

ing association rules for binary segmentation of huge categorical

databases. In Proceedings of 24th International Conference on Very

Large Databases, pages 380-391, Francisco, 1998.

[ML01]

[Mor98]

[MRS7]

[MY97]

D Malerba and F A Lisi. An ILP method for spatial association rule

mining, 2001.

S Morishita. On classification and regression. In Lecture Notes

in Artificial Intelligence, LNAI 1532, pages 40-57. Springer-Verlag,

Berlin, 1998.

H Manila and K J Raiha. Dependency inference. In Proceedings

oj l:fh International Conference on VLDB, pages 155-158, Brigton,

England, 1987.

R J Miller and Y Yang. Association rules over interval data. In

Proceedings of SIGMOD International Conference on Management

oj Data (SIGMOD '97), pages 452-461, Thcson, Az, USA, 1997.

BIBLIOGRAPHY 174

[MZ98]

[NF77]

[NG95]

[NH94]

T Morzy and M Zakrzewicz. Group bitmap index: A structure

fm·association rule retrieval. In Proceedings of 4th ACMSIGMOD

International Conference on Knowledge Discovery and Data Mining,

pages 284-288, Newyork. USA, 1998.

P M N arendra and K Fukunaga. A branch and bound algorithm for

feature selection. IEEE Transaction on Computers, C-26(9):917-

922, September 1977.

P 0 Neil and G Graefe. Multi-table joins through bitmapped join

indices. ACM SIGMOD; 24(3):8-11, September 1995.

R T Ng and J Han. Efficient and effective clustering method for

spatial data mining. In International Conference on VLDB, pages

144-155, Santiago, Chile, September 1994.

[NLH+98] R Ng, L V Lakshmanan, J Han, et al. Exploratory mining and

pruning optimization of constrained. association rules. In Proceedings

of 1998 ACM SIGMOD International Conference on Management

of Data, pages 13-24, Seattle, Washington, June 1998.

[NMJ A Nakaya and S Morishita. Fast parallel search for correlated asso

ciation rules. Unpublished Manuscript.

[PCY95a] J SPark, M S Chen, and P S Yu. An effective hash-based algorithm

for mining association rules. In Proceedings of 1995 ACM-SIGMOD

International Conference Management of Data, pages 175-186, San

Jose, CA, May 1995.

[PCY95b] J SPark, M S Chen, and P S Yu. Efficient parallel data mining for

association rules. In Proceedings of 1995 International Conference

on Information and Knowledge Management, pages 31-36, Malti

more, November 1995.

[Pia91] G Piatsky-Shapiro. Discovery, analysis and presentation of strong

ruels. In G Piatsky-Shapiro, editor, Knowledge DiscoverlJ in

Databases. AAAI/MIT Press, 1991.

BIBLIOGRAPHY 175

[PM94]

[Pop98]

[PujOl]

[RS02]

[SAY5]

[SA96]

[SDN90]

[SDN98]

G Piatetsky-Shapiro and C J Matheus. The interestingness of de

viations. In AAAI Workshop on Knowledge Discovery m Database.

pages 25-36. Seattle,WA, 1994.

L Popelimsky. Knowledge discovery in spatial data by means of

ILP. In Pnnclples of Data and Mining Knowledge Discovery, LNCS

1510. pages 271-279. Springer-Verlag, Berlin, 1998.

A K Pujari. Data Mining Techniques. University Press, Hyderabad.

India, 2001.

R Rastogi and K Shim. Mining optimized association rules with cat

egorical and numeric attributes. Knowledge and Data EngmeeTing.

14(1):29-50, 2002.

R Shrikant and R Agarwal. Mining generalized association rules.

In Proceedings of 1995 International. Conference on Very Large

Databases(VLDB'95), pages 407-419, Zurich, September 1995.

R Shrikant and R Agrawal. Mining quantitative association rules in

large relational tables. In Proceedin9s of 1996 ACM SIGMOD Inter

natwnal Conference on Management of Data (SIGMOD '96), pages

1-12. Montreal, Canada, June 1996.

J Shieinvald, B Dom, and W Niblack. A modeling approach to

feature selection. In Proceedings of 1(1'1 International Conference

on Pattern Recognition, pages 535-539, June 1990.

A Shukla, P M Despande, and J F Naughton. Materialized view

selection for multidimensional dataset. In Proceedings of 24th VLDB

Conference, pages 488-499, Sanfrancisco, USA, 1998.

[SMO+94] W M Shen, B Mitbandar, KOng, et al. Using metaqueries to

integrate inductive learning and deductive database technology.

In Proceedmgs of AAAI'94 W01'kshop on Knowledge Discove1Y in

Databases, pages 335-346, Seattle, Washington, July 1994.

[SON95] A Savasere, E Omiecinski, and S N avathe. An efficient algorithm

for mining association rules in large databases. In Proceedings of

BIBLIOGRAPHY 176

[SVA97J

21 st Conference on Very Large Databases, pages 432-444, Zurich.

Ssptember 1995.

R Shrikant, Q Vu, and R Agarwal. Mining association rules wit h

item constraints. In Prvceed;ngs of Inte1'national Confe1'ence K nOUlI

edge Discovery and Data Mining(KDD'97), pages 67-73, Newport

Beach.CA, August 1997.

[TBA +97J S Thomas, S Bodagala, K Alsabti, et al. An efficient algorithm for

the incremental updation of association rules in large databases. In

Proceedings of The 3rd International Conference On KDD And Data

Mming (KDD '97), pages 263-266, New port, 1997.

[TBB+91J S B Thrun, J Bala, E Bloedorn, et al. The Monk's problem: A

performance comparison of different algorithms. Technical Report

CS-91-197, CMU-CS, Carnegie Mellon University, December 1991.

[URT99J

[Web95J

H Uchiyama, K Runapongsa, and T J Teorey. A progressive

view materialization algorithm. In Proceedings of 2nd International

Data Warehousing and OLAP Workshop, pages 36--41, Kansas City.

Xovember 1999.

G I Webb. OPUS: An efficient admissible algorithm for unordered

search. Journal For Artificial Intelligence Research, 3:431-465, 1995.

[YFM+97] K Yoda. T FUkuda. Y Morimoto, et al. Computing optimized rec

tilinear regions for association rules. In Prvceedings of 3n1 Inter'

national Conference on Knowledge Discovering and Data Mining

(KDD'97), pages 96-103, Newport, CA, August 1997.

[YL95J

[ZakOO]

W Van and P A Larson. Eager aggregation and lazy aggregation.

In Proceedings of 21st International Conference on VLDB, pages

345-357, Zurich, September 1995.

M J Zaki. Generating non-redundant association rules. In Proceed
ings of 6th ACM-SIGMOD International Conference on KDD, pages

34-43, Boston, USA, 2000.

BIBLIOGRAPHY 177

[ZE01]

[ZH99]

Z Zhou and C I Ezeife. A low-scan incremental association rule

ntaintena.nce method based on apriori property. In Proceedings of

14th Canadian Conference on Artificial Intelligence, A 12001 , pages

26-35, Ottawa, Canada, June 2001.

M J Zaki and C J Hsiao. CHARM: An efficient algorithm for closed

association rule mining. Technical Report 99-10, Rensselaer Poly

technic Institute, New York, October 1999.

[ZPO+97] M J Zaki, S Parthasarathy, M Ogihara, et al. New algorithms for fast

discovery of association rules. In.,Froceedings of 3rd International

Conference on KDD, pages 283-296, 1997.

