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Abstract

In this thesis, we study certain partition identities involving self-conjugate 7- and
9-core partitions, general partition function, and generalized Frobenius partitions.
We also study the representations of a number as sums of various polygonal numbers.
Using the properties of Ramanujan’s general theta functions and representations of
product of theta functions as a linear combination of other theta functions, we ob-
tain identities involving self-conjugate 7- and 9- core partitions. Further, the use
of elementary properties of Ramanujan’s theta functions yields interesting identities
involving self-conjugate t-core partitions and double distinct ¢-core partitions. Using
the integer matrix exact covering system, we obtain the g-product representations
for the generating functions of generalized Frobenius partitions with 4 and 5 colors
and 4-order generalized Frobenius partitions with 4 colors. In the process, we find
various new congruences involving generalized Frobenius partitions with 4 colors and
4-order generalized Frobenius partitions with 4 colors. We also deduce identities and
recursion relations for general partition functions p.(n) for different integral values
of r wherein we use different properties of the Rogers-Ramanujan continued fraction
and Ramanujan’s cubic continued fraction. Our investigation on this topic leads to
simple proofs of Ramanujan’s partition congruences p(5n + 4) = 0 (mod 5) and
p(7n+5) = 0 (mod 7) and yields some identities for Ramanujan’s tau function. Fi-
nally, we use the dissection of Ramanujan’s general ’theta functions to obtain various

identities involving representations of a number as sums of polygonal numbers.
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Chapter 1

Introduction

Ramanujan’s general theta function f(a,b) is defined by

fla,b) = D gD gp| < 1, (1.0.1)

n=-—oo

which is equivalent to Jacobi’s classical theta function

o0
Y3(z,q) = Z gV e?™*  with lg] < 1.

n=—o

In fact

21z

f(a,b) = 95(z,q), where a=qge**, b=gqe”

Various properties of (1.0.1) were explored by Ramanujan to generate numerous
results in diverse directions including modular equations, continued fractions, class
invariants, partitions etc. Later, several authors contributed and expanded the
scope of the use of (1.0.1) in different fields. In this thesis, we shall focus on the
use of Ramanujan’s general theta function in obtaining partition identities and on
representations of an integer as sums of polygonal numbers. Most of our methods are
elementary and involve direct application of the properties of Ramanujan’s general
theta function.

The thesis consists of five chapters including the introductory chapter. In the
following few paragraphs we briefly introduce the basic concepts and terminology

used in the subsequent chapters.



A partition A = (A, Az, -+, A\p) of a natural number n is a finite sequence of
non-increasing positive integer parts A, such that n = Ele X;. For example, the
partitions of 5 are (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1). If
p(n) denotes the number of partitions of n, then the generating function for p(n) is

given by

oo . 1
;p(n)q (@9

where, for [g| < 1, (@ g)eo = [[2o(1 — ag™).
Ramanujan [51])-[53] found nice congruence properties for p(n) modulo 5, 7, and

11, namely, for any nonnegative integer n,
p(5n +4) = 0 (mod 5), - (1.0.2)
p(7Tn +5) =0 (mod 7), (1.0.3)
p(11n+6) =0 (mod 11).

Moreover, Ramanujan offered a more general conjecture which states that if § =

527°11¢ and X is an integer such that 24\ = 1 (mod §) then
p(nd + A) = 0 (mod 6).

Ramanujan also gave a proof of this conjecture for arbitrary @ and b = ¢ = 0.

However, for arbitrary b and a = ¢ = 0 the conjecture needs to be corrected as
p(nd + X) =0 (mod ¢'),

where ¢’ = 597%11¢ with &/ = bifb=0, 1, 2and &' = [(b+2)/2] if b > 2.

A partition is often represented with the help of a diagram called Ferrers—Young
diagram. The Ferrers—-Young diagram of the partition A = (A, A, -, \¢) of n
is formed by arranging n nodes in k£ rows so that the ¢th row has A\, nodes. For
example, the Ferrers-Young diagram of the partition A = (4,2,1,1) of 8 is

o o o o



The conjugate of a partition A, denoted X, is the partition whose Ferrers—Young
diagram is the reflection along the main diagonal of the diagram of A. Therefore,
the conjugate of the partition (4,2, 1,1) is the partition (4, 2,1, 1) itself. A partition
A is self-conjugate if A = A’. The partition (4,2, 1,1) is self-conjugate.

The nodes in the Ferrers—Young diagram of a partition are labeled by row and
column coordinates as one would label the entries of a matrix. Let A} denote the
number of nodes in column j. The hook number H (i, j) of the (4, 7) node is defined
as the number of nodes directly below and to the right of the node including the
node itself. That is, H(%,j) = \; + X] —j —4+ 1. A t-core partition is a partition
with no hook number divisible by ¢. For example the nodes (1,1), (1,2), (1,3),
(1,4), (2,1), (2,2), (3,1), and (4,1) in the Ferrers—-Young diagram of the partition
A = (4,2,1,1) have hook numbers 7, 4, 2, 1, 4, 1, 2 and 1, respectively. Therefore,
A is a 3-core and a 5-core partition, but not a 7-core partition. Obviously, it is a
t-core partition for ¢ > 8.

Now, given a partition A = (A1, Az, -+, Ak) of n with distinct parts, the shifted
Ferrers diagram of A, S(A), is the Ferrers-Young diagram of A with each row shifted
to the right by one node than the previous row. The doubled distinct partition of A
is the partition A% of 2n obtained by adding \; nodes to the (i—1)st column of S()).
For example, we consider the partition (4, 2,1) of 7 whose Ferrers-Young diagram is

as follows:

Now adding 4, 2, and 1 nodes respectively to the null, first, and second columns of

the above diagram we obtain the Ferrers-Young diagram



which represents the double-distinct partition (5,4, 4,1) of 14 corresponding to the
partition (4,2,1) of 7.

Chapter 2 of this thesis is dedicated to identities involving self-conjugate ¢- core
partitions and double distinct t-core partitions.

Let asci(n) and add,(n) denote, respectively, the number of self-conjugate t-
core partitions of n and the number of the double distinct t-core partitions of n.
Garvan, Kim and Stanton [25] found the ¢-product representations of the generating
functions for asc,(n) and add,(n). Among several results on asc;(n), Garvan, Kim

and Stanton [25] gave bijective proofs of

ascs(2n + 1) = ascs(n), (1.0.4)

asc;(n) =0, ifn+2=4%8m+1). (1.0.5)

Baruah and Berndt (4] proved (1.0.4) and several other results involving 3-
and 5-core partitions by using Ramanujan’s theta function identities and modu-
lar equations. Using product identities for two theta functions [17], we prove that
ascr(8n + 7) = 0, which is a special case of (1.0.5).

Baldwin, Depweg, Ford, Kunin and Sze [3] proved that if ¢ is an integer with
t =8 or t > 10, then every integer n > 2 has a self-conjugate t-core partition. They
also gave an infinite sequence of integers that have no self-conjugate 9-core partition.
In fact, they proved the following proposition.

If n = (4% — 10)/3 for some positive k, then n has no self-conjugate 9-core
partition. '

In Section 2.4 of our thesis, we show that asce(8n 4+ 10) = ascy(2n), and since
2 has no self-conjugate 9-core partition, we see that there is an infinite sequence of
positive integers that have no self-conjugate 9-core partitions. We also deduce the

above proposition from our result.



In Section 2.5, we establish several results connecting self-conjugate t-core par-
titions and double distinct ¢-core partitions.

Chapter 3 is devoted to generating functions and congruences for generalized
Frobenius partitions. G. E. Andrews [1] introduced the idea of generalized Frobenius

partitions (or simply F-partitions) of n which is a notation of the form

a; ay . . . G
by by . . . b
of non-negative integers a,’s, b,’s with

n=r+§rza1+§:b“
=1 1=1

where each row is of the same length and each is arranged in non-increasing order.
Let cgr(n) represent the number of F-partitions of n with k-colors and strict decrease
in each row. Andrews [1] gave the generating function for c¢x(n) and obtained the
g-product representations of the generating functions for ¢, (n), cdz(n), and cpz(n).
He further remarked that “after the above results, the expressions quickly become
long and messy”. In Section 3.2, we present expressions for the generating functions
of cpq(n) and cgs(n) similar to those of cdi(n), cpz(n), and cpz(n). Furthermore,

Andrews proved the congruences

cha(5n+3) =0 (mod 5),

cpr(n) =0 (mod k%) if k is prime and does not divide n.

Eichhorn and Sellers [18], Lovejoy [40], Ono [47], Paule and Radu [48], and Xiong
[59]) obtained many congruences and families of congruences involving c¢y(n) and
cps(n). In Section 3.3 of this thesis, we present three congruences for cg4(n), all
new, which are obtained by using Ramanujan’s theta functions.

Again, Kolitsch [35, 37) considered the function c¢,(n), which denotes the num-
ber of F-partitions of n with & colors whose order is k under cyclic permutation
of the k colors. The generating function for cg,(n) is given by Kolitsch [37] and

the g-product representations of the generating functions for c@y(n) and cé,(n) are



known [56, 38]. In Section 3.4 of this thesis, we obtain the generating function for
chy(n) in terms of g-products. Further, Kolitsch [35] found for all integers k > 2,
that

chi(n) =0 (mod k?).

More congruences, families of congruences, identities and recurrence relations in-
volving c¢,(n) have been established by Kolitsch (36, 37, 38], Sellers [55, 56, 57), .
and Xiong [59]. In particular, Sellers [55, 56] established that

¢ (kn) =0 (mod k*)  for k=2,3,5,7, and 11.

It was further remarked in [56, p. 372] that “one question that naturally arises is
whether congruences of this form occur for larger primes such as k = 13 or 17, or for
composite values of k”. We give a partial answer to this question by proving three
congruences for cg,(n) in Section 3.5.

In Chapter 4, we deal with congruences and recurrence relations involving the
general partition function and Ramanujan’s tau function. For a non-zero integer r,
we define the general partition function p,(n) as the coeflicient of ¢ in the expansion

of (¢; q)7,. Therefore,
> ()t = (9%
n=0

Note that p_;(n) is the usual partition function p(n). Several authors contributed to
congruences and identities satisfied by p,(n). Newman [44]-[46], Atkin [2], Gandhi
[24], Gordon [26], Boylan [16}, Kiming and Olsson [34] studied different congruence
properties of p,(n) for certain values of r. Baruah and Ojah [5] used properties of the
cubic continued fraction to obtain a few congruences for p_z(n). Recently, Berndst,
Gugg and Kim [12] noticed that p. 182 in Ramanujan’s lost notebook [54] corre-
sponds to page 5 of an otherwise lost manuscript of Ramanujan in which Ramanujan
stated some general congruences for p,(n). They also proved and discussed further
results depending on Ramanujan’s ideas. Farkas and Kra [19]-[22] used function

theoretic considerations involving Riemann surfaces defined by the action on the



upper half plane H? of subgroups of the modular group PSL(2,Z) to obtain several
congruences and identities involving p,(n). In particular, Farkas and Kra [21, The-
orem 1] obtained five three term recursion identities and asked whether the list of
three term recursions for partition coefficients is complete or not. In Section 4.3 of
this thesis, we prove all these five recursion identities and present four more three
term recursions for partition coefficients giving an affirmative answer to the question
of Farkas and Kra. In the process, we obtain new two term recursion relations for
partition coefficients. We also give alternative proofs of several two term recursion
relations that appeared in [19]. In the process, we also deduce (1.0.2) and (1.0.3)

and several identities for Ramanujan’s famous tau function 7(n) defined by

9(g;9)% =D 7(n)g™. (1.0.6)

n=1

In particular, we deduce that
7(5%n) = 48307(5n) — 5''7(n),
which is a special case for p = 5 of Ramanujan’s famous conjecture [50]

3

n.+1) n—l)

(") = 7(p)T(p") — p"'7(p

first proved by Mordell in [43].

The last chapter of this thesis is dedicated to the representations of a number
as sums of various polygonal numbers. A polygonal number is a number which can
be represented as dots arranged in the shape of a regular polygon. For example
1, 3, 6, 10,--- are triangular numbers, because they can be represented as dots

arranged in the shape of triangles which is evident from the following diagram.

Jacobi’s celebrated two-square theorem [32] states that



If r{O + O}(n) denotes the number of representations of n as a sum of two
squares, then

{0+ O}(n) = 4(d 4(n) — d34(n)), (1.0.7)

where d, ,(n) denotes the number of positive divisors of n congruent to i modulo j.

Simple proofs of the above theorem can be found in [15] and [28]. Similar repre-
sentation theorems involving squares and triangular numbers were found by Dirich-
let, Lorenz, Legendre, and Ramanujan (30, Theorems 2, 3, 5, 6]. In [30], Hirschhorn
obtained sixteen identities (including those obtained by Legendre and Ramanujan)
simply by dissecting the g-series representations of the identities obtained by Ja-
cobi, Dirichlet and Lorenz. Hirschhorn {31] further extended this work and obtained
twenty nine more identities involving squares, triangles, pentagons and octagons.
Recently, Lam [39] and Melham [41, 42] contributed significantly on this topic. In
[42], R. S. Melham presented an informal account of analogues of Jacobi’s two-square
theorem which are verified using computer algorithms.

In the concluding chapter of this thesis, we obtain twenty five more such iden-
tities involving squares, triangular numbers, pentagonal numbers, heptagonal num-
bers, octagonal numbers, decagonal numbers, hendecagonal numbers, dodecagonal
numbers, and octadecagonal numbers. Although most of these identities can be
proved without using g-series, our intention is to exhibit the utility of the properties

of Ramanujan’s theta function in this particular topic.



Chapter 2

Self-conjugate t-core Partitions

2.1 Introduction

In the introductory chapter, we have discussed in detail self conjugate t-core parti-
tions and double distinct ¢-core partitions and indicated the contributions of Garvan,
Kim and Stanton (25], Baruah and Berndt (4], and Baldwin, Depweg, Ford, Kunin,
and Sze [3]. Granville and Ono [27] proved that for ¢ > 4, every natural number
n has a t-core partition, and thereby settling a conjecture of Brauer regarding the
existence of defect zero characters for finite simple groups. In [25], it was also shown
that asci(n), the number of self-conjugate t-core partitions of n, is the number of

solutions in integers z, to

t/2
n= Ztmf + (21— 1)z,, fort even,
1=1
and
(t-1)/2
n= Z tz? + 21x,, for t odd.
=1

The generating function for asc;(n) is given as [25, Egs.(7.1a) and (7.1b)]

oQ
Z asc (n)g” = (—q; 4% oo (¢%; %)%, for t even (2.1.1)
n=0

Note: The contents of this chapter appeared i International Journal of Number Theory [7] of

World Scientific Publishing Company.
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and

o0 t—1)/2
n_ (=2,0%)ee(g?; 4%
E asci(n)q" = ()—q(‘; q2t)°°)w , for t odd. (2.1.2)

n=0
In Section 2.3, we prove that asc;(8n + 7) = 0, which is a special case of (1.0.5).
In Section 2.4, we show that asce(8n + 10) = asce(2n) and in the process deduce

the following proposition proved in [3].

Proposition 2.1.1. If n = (4* — 10)/3 for some positive integer k, then n has no

self-conjugate 9-core partitions.

" We also deduce two more propositions similar to the above proposition.
Now, the generating function for add,(n), the number of the double distinct

partitions of n that are ¢-cores, is given by (25, Eq. (8.1a))

o 2.2 2t. 2t\(t-2)/2
Zaddt(n)qnz( 7.9 )°°(tq g Jo "7 for t even (2.1.3)
e (=4 ¢")oo
and
o 2.2 2t. 2t\(t-1)/2
Zaddt(n)q" = (=¢%q )°°2(tq ;tq Joo , for t odd. (2.1.4)

Observe that addi(n) = 0 if n is odd.

In Section 2.5, we prove certain results involving asc;(n) and add,(n).

We will use Ramanujan’s theta functions in our proofs in Sections 2.3-2.5. In
the next section, we state a few special cases of Ramanujan’s theta function and

give some preliminary results.

2.2 Ramanujan’s theta functions and some pre-

liminary results

We recall that Ramanujan’s general theta function f(a,b) is defined by

oo

fla,b) := Z g™ D/ 2pn(n-D/2 1 gh) < 1,
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Jacobi’s famous triple product identity takes the simple form
fla,b) = (—a; ab) o (—b; ab)(ab; ab)co. (2.2.1)

Three special cases of f(a,b) are

¢lq) : = =1+2> ¢" = (-4;4)%(¢% oo (22.2)
o nint /2 _ (05970
¥(g) : = ;q TN (2.2.3)
and
f(=q):=f(=q,=¢") = > (-1)*¢"" V" = (g; 9)co, (2:2.4)

where the product representations in (2.2.2)-(2.2.4) arise from (2.2.1), and the last
equality in (2.2.4) is Euler's famous pentagonal number theorem.

After Ramanujan, we also define

X(@) = (=¢: ¢*)o- (2.2.5)

Now, the generating functions (2.1.1) and (2.1.2) for asc;(n) can be rewritten in

the form
i asc(n)q™ = x(q) f*(—q*), for t even
=0
and
ni;o asc(n)g" = x(q)f(;(l;f;(—q ), for t odd. (2.2.6)

In particular,

S asen(mgr = KOS

(n)q @) (2.2.7)
n=0
and
o0 4(_ 18
Z ascg(n)q™ = x_(%q_)' (2.2.8)

In the following two lemmas we state some properties satisfied by f(a,b).
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Lemma 2.2.1. [10, p. 46, Entry 30] We have
f(a,b) + f(—a, —b) = 2f(a®b, ab®) (2.2.9)
and
f(a,b) — f(—a, —b) = 2af(b/a, a®b?). (2.2.10)
Lemma 2.2.2. (10, p. 45, Entry 29] If ab = cd, then
f(a,b)f(c,d) + f(—a, —b) f(—c, —d) = 2f(ac, bd) f(ad, bc) (2.2.11)
and
f(a,0)f(e,d) = f(=a,=b)[ (¢, —d) = 2af (b/c, ac’d) [(b/d, acd®).  (2212)

In {17], Z. Cao developed a general theorem for the product of n theta functions.

In our proofs in Sections 2.3 and 2.4, we will also use some of his theorems.

2.3 A Theorem on self-conjugate 7-cores

Theorem 2.3.1. If ascy(n) denotes the number of self-conjugate 7-core partitions

of n, then
asc;(8n+7)=0. (2.3.1)

Proof. Employing Jacobi’s triple product identity (2.2.1) and using the definitions
(2.2.4) and (2.2.5), we find that

(@) (6% d (@ 8) = (=4 6)oo (=% 0)oo( =6 0o (— 0% 6o
x (=" 0"%)oo(—0"% ¢ oo (0" 43,
_ (8 w(d 6%
(=47, ¢")w
_ x(@f(=4")
x(q)

(2.3.2)
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From (2.2.7) and (2.3.2), we have
> ascr(n)q” = f0.4"°)F(¢*,a) F(, P). (2.3.3)
n=0

Now, from [17, Eq. (3.1)], we recall that, for ¢ = a1b; = a2by = agbs and |g| < 1,

f(al, bl)f(az, bz)f(as, bs)
= f(alagagq, blbgbst)f(albzas, b1a2b3)f(alb3, blaa)
biagb bia
+ a1 f(a1a2asq?, b1b3bs3) f (alb2GBQa - q2 3> f (a1bsq, _1(]_3)

b b2b a1bya
+axf <a1a§a3q3, lqz 3) f( 1; 3,b1a2b3Q) f(a1bs, bras)

b.b2b bia
+ a1azf <a1a§a3q“, lqi 3) f(arbaas, brashs) f (albsq, 1Ts>

bib2b biasb
+ araza3f (a1a§a3q5, 1q§ 3) f (albzasq, E q2 3) f(a1bs, bra3)

ai1bsa bia
+ by f(aradas, bib2baa?) f ( =~ S,blazbgq) f (a1b3q, —;1—3-) L (@34)

Replacing q by ¢** and setting a; = q, by = ¢*3, ay = ¢3, by = ¢!, a3 = ¢° and
by = ¢° in (2.3.4), we find that

fla, ) F(d® ') f(d°, ¢°)
= f(d*,¢®) f(d", ) f (", ¢"°) + af (¢*°, ¢*) F(¢®. ¢*) f (¢, ¢*)
+ (@ ¢ (6. d) f (% a"%) + ¢* F(d%,¢") f(¢"7, ®°) (g™, ¢*)

+ @ f(@, A (@ ) (@0 ") + P f(a', a7 f(¢®, ) fld™, qY).  (2.3.5)

Replacing ¢ by —q in (2.3.5) and subtracting the resulting identity from (2.3.5), and
then with the aid of (2.3.3), we deduce that

ICENTRAL LIBRARY, T. U.

]Acc NO.. TA199..
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[o o]

Zasq(n)q" - zasq(n)(—l) q

f( 26 58 10 18 [f 17 25) f(—q”, _q25)]

+qf(q 0 44 24 4 [f 31 11 f(_q31’ —q“)]
+q f( 54 30 10 18 [f 3 39 +f(—q3,—q39)]
+q f( 8 16 ( 24 4 [f( 17 25 f(—q”,—q%)]
+¢°f(¢™, @) (%, ) (g™, ") + f(=¢", —q'")]

+¢f(¢%,0) f(¢*, )@ ¢) + f(=¢% —¢)). (2.3.6)

Now, from (2.2.9) and (2.2.10), we obtain

(@7, = (=4, -¢%) = 24" f (¢, ¢'%°), (23.7)
F@*a) + f(=¢" —¢") = 2£(¢*, ¢"), (2.3.8)
f(@,d®) + f(=*, —¢*°) = 2£(¢®, ¢'%). (2.3.9)

Employing (2.3.7)-(2.3.9) in (2.3.6), we deduce that

i ascr(n)q™ — Z ascr(n gt = Z ascy(2n + 1)g*

n=0 n=0

2 7f( 26 58) ( 16°)f(q1° 18)+2qf( 40 44)f(q64,q1°4)f(q24,q4)
+2q f( 54 30)f(q48 q120)f(q10 q18)+2q21f( 68 16) ( 160)f( 24 4)

+2¢° f(¢%, ) F(d®, 6" £ (d"°, ¢') + 2¢° (', 4" ("%, ") F (™, ¢%).

(2.3.10)

Dividing both sides of the second equality in (2.3.10) by ¢q and then replacing ¢? by
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q, we arrive at

o0
Z ascr(2n +1)¢"
n=0

= f(q*%, ¢®) f(g* ¢®) f(¢® &®) + (¢ ¢®) f(¢**, ¢**) f (4", ¢*)
+qf (@, ) (@, ) F (&%, &) + ¢°F(¢*, ) f(¢*, *°) F (a*%, &%)

+ ¢ (¢, ) (@ (D, ) + ¢ F (%, ) F(d*,¢®) f(¢P ). (23.11)

Replacing ¢ by —¢ in (2.3.11) and then subtracting the resulting identity from

(2.3.11), we obtain

Z asc7(2n + 1)q" — Z asc7(2n + 1)(-1)"q"

n=0 n=0
= f(¢* @) (d° ) f (2 ) — f(=¢°, —d°) F(—q"3, —¢*)]
+qf (g, NS, @) (@, d"°) + F(=*, —®) f (=", —¢*®)]

+4*f(¢*2, ) (°, ) Fg™. 9) — F(=¢°, —°) (=" —9)]. (2.3.12)

Now we simplify the square bracketed expressions on the right hand side of
(2.3.12) by employing the following product identity for two theta functions given
in [17, Eq. (2.6)].

If |ab| < 1 and cd = (ab)**2, where k; and k, are both positive integers, then

kytka—1 2ar 2oy ek o kky LGN C LI
fab)fled)= Y, a7 f(a7 T thnpTTtthrg ot skt o)
r=0
K24k k2 —k k2 2+k
% f(a—2—2 2+k2rb—2—2 2+k2’rc,a—2—2k2 -’CZ"‘bk ; 2_k2rd). (2313)

Choosing k; = 3 and k2 = 1 in (2.3.13), we note that, for (ab)® = cd,
f(a,b)f(c,d) = f(a®%d, a®%) f(ac, bd) + af(a®b8d, bc) f(abc, a™"d)

+ a’bf(a*?b%d, a73c) f(a3b?c, a"2b71d)

+ a®® f(a®b'%d, a"%3¢) f(a%bc, a3b72d). (2.3.14)
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Setting a = ¢°, b = ¢°, ¢ = ¢'3, and d = ¢*° in (2.3.14), we find that

£(a® ") f(a®, 4®)
= f(¢*, ) f(a",¢%) + ¢° (¢, 4*°) f(¢*, ¢**)

+a* f(¢'7° a7 f(d*, ') + &7 (¢*%, ¢7*) F(a%, 0 7Y).
= f(¢®,¢*) f(a"®,¢*°) + & F(4'*%, 4*°) F (4%, 4**)

+ q22f(q166, q2)f(q46, q10) + qgf(qm, q44)f(q52, q4)’ (2315)

where in the last equality we also used the trivial identity
f(a,b) = af (a®b,a™"). (2.3.16)

Now, replacing ¢ by —¢ in (2.3.15) and then subtracting the resulting identity

from (2.3.15), we obtain
F(@, @) f(d%,d%) = f(=°,-¢°) (4", —¢*)
=2¢°f(¢'%,¢*°) f(¢*, ") + 2¢° f ("™, ¢*) f(¢**, ¢*). (2.3.17)

Similarly, setting (a,b,¢,d) = (¢°,¢°,¢%",¢") and (a,b,c,d) = (¢°,¢% ¢,¢") in
(2.3.14), we can deduce that

(@ (@) + f(—¢% =) f(—=d*", —¢*®)
= 2f(¢*,¢*) f(g®, ¢%) + 2¢* f(1,¢'%) f(¢*%, ¢*) (2.3.18)
and
(@) flg,q*) = f(—=d°, —¢°) f(—q, —¢")
=2¢°f(¢*°, ¢*°) (4, ¢*°) + 24 £(a"%, ¢°°) £ (g%, ¢°), (2.3.19)

respectively.
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Employing (2.3.17)—(2.3.19) in (2.3.12), we find that

ascr(2n + 1)q Z ascr(2n + 1)(—1)"q
n=0

n=0

= 24" f(q",¢%) f(a'%,4°) (¢, ¢*) + 24" f(*, ¢*°) F(a'*, ¢**) (4%, )
+2qf(q”,¢®) F(d®,¢*) F(d*, ¢°°) + 26> F (™, ¢®) F(1,"%®) F (g%, ¢®)

+2¢°£(%, %) F(a"°, a°®) F(d°°, 4°°) + 26° f(¢°%, ¢°%) f (a""%, ¢%°) F (4", ¢®).

An+3

Comparing the coefficients of ¢ on both sides of the identity above, we readily

arrive at (2.3.1) to complete the proof. O

2.4 A Theorem on self-conjugate 9-cores

Theorem 2.4.1. If ascg(n) denotes the number of self-conjugate 9-core partitions

of n, then
asce(8n + 10) = ascy(2n). (2.4.1)

Proof. With the help of Jacobi’s triple product identity (2.2.1) and the product

representations (2.2.4) and (2.2.5), we have

e, (%) F(d®¢) f(d", a")
= (=40")oo(—=7% %) 00 (—0% 0"%)o0(—0"; ") oo (—0"; ¢%)co
% (_q13,q18)°°(_q15. q18)oo(_q17.q18) (q18. q18)4
_ (6% 9%
(=% ¢*%) oo
_ x(9)f*(=4")
x(g°)
From (2.4.2) and (2.2.8), we find that

(2.4.2)

Z asco(n a4 [ ¢ 1", g"). (2.4.3)
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Now, from [17, Corollary 3.14), we recall that, for ¢ = a1b; = asb; = asbs = asbs

and |q| < 1,
4 4
H f(a’h bt) + H f(_a‘h _b’l.)
1=1 =1

= 2f(a1a2, blbg)f(a1b2a3a4, b1a2b3b4)f(a3b4, a4b3)f(a1b2b3b4, b1a2a3a4)
bib birasbsb
+ 2maqf <a1a2q, %) f (a1b2a3a4q2, 1a;23 4)

asb
X f (%’a‘ib:;q) f(a1b2b3b4,b1azasa4)

b b
+ 2a004 f (alagq, _1q—2> f(a1b2a3a4,b1a2b3b4)

asb aibybsb
x f (%,04173‘]) f ( - ;23 4,blazasa4q2>
b1a2b3b4
2

+ 2azaq f(a1az, b162) f (a1b2a3a4q2,

aybabsb
X f(a3b4,a4b3)f ( ! ;23 4,b1a2a3a4q2> . (244)

Replacing ¢ by ¢'® and then setting a; = q, by = ¢*7, a2 = ¢3, by = ¢*5, a3 = ¢°,

by =q" as = ¢" , and by = ¢** in (2.4.4), we have

Fa,a")f (@) f(d® ¢ flg" a)
+ f(=0, -4 f(-¢*, =4"*) f (=", =) f(~¢", —¢"")
=2f(¢",¢*) f(d®,¢") f(¢'%, )/ (¢*°, ¢**)
+2¢° (4%, 6") f(¢™, ¢*) F(g7%, ¢**) F(a*, ¢%%)
+2¢"°f(a®,¢") F(¢%, 4*) f(a7% 4%) f (¢, ¢%)
+2¢ f(a*, 6 (g™, ) f(d'°, ) f (g, ¢%)
=2f(q",¢**) /1 (¢, 4" [(a"°, ¢*)/ (a®°, 4%)
+2¢° (g%, a") f(¢™, ¢*) F(¢*, 4°) f(d®, 4)
+2¢°f(¢*,9") f(*, *) F (%, ¢*) F(d*, 4°)

+2¢"f(q*, 4 f(¢*, ) f(¢"°, ) f (a*, %), (2.4.5)



19

where in the last equality we also used (2.3.16).

We rewrite (2.4.5), with the aid of (2.4.3), in the form
Z asce(n)q"™ + Z ascg(n)(—1)"q"
n=0 n=0

=2f(q*,¢**) f(a*%, 4*) f(a"°,¢®°) F(¢*°, ¢¥?)
+2¢°£(4*%, ") (%, ¢®) F (% ) f(¢*°, ¢*%)
+2¢° (g%, 4") F(d®%, ") F(d% ) f(d*, ¢*®)

+2¢f(¢*, ¢**) F(d™, ¢®) (', ) f(¢*, ¢%°). (2.4.6)

From (2.4.6), we deduce that

o0

Z ascg(2n)q"

n=0

= f(¢®, ¢"°) f(¢",¢**) f(d®,4"°) F(d*°, ¢"°)
+ @7 (a", a) (a2, ¢*) fa,4*") (g%, ¢*%)
+q*f(a",d") f(d*, ) f(a,a") F(d*, ¢**)

+ ¢ f(@d") f(6*, a*) f(¢®, ¢"°) F(d%, ¢**). (2.4.7)

Replacing ¢ by —q in (2.4.7), then subtracting the resulting identity from (2.4.7),

we find that
Z ascy(2n)q™ — Z ascyg(2n)(—-1)"¢"
n=0 n=0

=¢*f(a*, ¢") F(d®, @) f(a. ") F(a",d") + F(—q, —¢"") f(—¢"", =¢")]

+ ¢ f(d ) (P ) f (0,6 f(dh.d") — f(—a,—a") f(—g", —q")]. (2.4.8)
Now, by (2.2.11) and (2.2.12),'we have

Had (@ a") + f(—a, =) f(=a", —=q") = 2 (%, ¢*®) f(¢*%, ¢*),  (24.9)

f@.d)f@"q") = f(=a,—¢") f(—=¢"', =) = 20 (¢"°, ) F(®,¢%°).  (2.4.10)
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Employing (2.4.9) and (2.4.10) in (2.4.8), we obtain

[o o] (o 0]
Z ascy(2 Z asce(2n)(—1)"¢"
n=0 n=0

=2¢3f(¢*%,¢*) F(a®, ¢"%) f (¢%, *®) f(¢**, ¢*)
+2¢° f(¢", ) (%, ) F (d"°, ¢°°) F (%, ¢%°).

Thus,
o0
Z asco(4n + 2)q"
n=0

= qf{(q", ) f(a°, ) f(g*, ") (¢, ¢")) + P F(d" ') fla,. ") F(d°, a*) f(d*, ¢*),

which can also be written, with the help of (2.4.3), as

Y asco(dn+2)q" = ¢f(d'°, ¢*) £(¢"°, ¢*) f(a*, ) F(¢°, 4'*) + & ) asce(n)g

n=0 n=0

(2.4.11)

Equating the coefficients of ¢>**2 on both sides of (2.4.11), we readily arrive at

(2.4.1) to finish the proof. O

Now we deduce Proposition 2.1.1 from Theorem 2.4.1.

Corollary 2.4.2. Proposition 2.1.1 holds.

Proof. For a fixed positive integer m, we define a sequence of integers (tx) by the

recurrence formula

t) = 2m, ty = 4tk_1 + 10, for k > 2.

By mathematical induction, we find that

45=1(6m + 10) — 10

tkr‘ 3 H

k>1.
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Therefore, from (2.4.1), we obtain

(4’°-1(6m +10) — 10
ascg

3 > = ascg(Qm), k>1. (2.4.12)

Setting m = 1 in (2.4.12), and noting that 2 has no self-conjugate 9-core partition,

we arrive at

4k+1 —10
ascy (—3——) =asc(2) =0, k>1,

to complete the proof. |

Remark 2.4.1. The identity (2.4.12) also gives results analogous to Proposition
2.1.1. For example, setting m = 2 and m = 4 in (2.4.12), and noting that 4 and
8 have ezactly one and two self-conjugate 9-core partitions, respectively, we readily

deduce the following two propositions.

Proposition 2.4.3. If n = (22 - 4%"! — 10)/3 for some positive integer k, then n

has ezactly one self-conjugate 9-core partition.

Proposition 2.4.4. If n = (34 -4k~ —10)/3 for some positive integer k, then n

has ezactly two self-conjugate 9-core partitions.

2.5 Theorems on double distinct partitions

In this section, we prove a few theorems involving add;(n) defined in (2.1.3) and

(2.1.4).

Theorem 2.5.1. If ascz(n) denotes the number of 3-cores of n that are self-conjugates

and adds(n) denotes the number of double distinct 3-core partitions, then

ascs(4n) = adds(n). (2.5.1)
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Proof. Setting t = 3 in (2.2.6), we find that

o _.6

Zasc;;(n)q" = M (2.5.2)
e x(q*)

Furthermore, applying the Jacobi’s triple product identity (2.2.1) and recalling

(2.2.4) and (2.2.5), we find that

(g, qs) = (—q; qﬁ)oo(_qs;qﬁ)oo(qﬁ;q6)00 _ (=g q2)oo(q6;q6)oo — X(Q)f(_qs)‘

(=% ¢%)w x(¢%)
(2.5.3)
From (2.5.2) and (2.5.3), we have
ascs(n)q" = f(q,¢%). (2.5.4)
\ n=0
Now, setting a = ¢ and b = ¢° in (2.2.9), we find that
f(a,8°) + f(=9,~¢°) = 2f(¢°, ¢'°). (2.5.5)
Again, from (2.1.4) and (2.2.1), we obtain
> adds(n)g* = f(¢%, ¢%). (2.5.6)
n=0
Employing (2.5.4) and (2.5.6) in (2.5.5), we find that
Zasc;;(n)q" + Z(—l)"asq,(n)q" =2 Z adds(n)g*™. (2.5.7)
n=0 n=0 k=—00

Comparing coefficients of ¢** on both sides of (2.5.7), we readily deduce (2.5.1) to

complete the proof. ]

Remark 2.5.1. Swnce addi(n) = 0 for n odd [25, Section 8], we deduce from the
above theorem that asc3(8n+4) =0 for alln > 0.

Theorem 2.5.2. If adds(n) denotes the number of double distinct 3-core partitions
of n, then

adds(2P,) = 1, (2.5.8)

where Py are the generalized pentagonal numbers k(3k £ 1)/2.
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Proof. Comparing the even parts in (2.5.6), we obtain

iadd3(2n)q“ = f(q,4%). (2.5.9)
n=0
Now, from the definition of f(a,b), we see that
fla.d®) = i gF R/ (2.5.10)
k=-00
Thus, from (2.5.9) and (2.5.10), we find that
iaddg(Zn)q” = i gkBe-1)/2 (2.5.11)
n=0 k=—-00

Comparing the coefficients of ¢ on both sides of (2.5.11), we arrive at (2.5.8). O

Theorem 2.5.3. Ifascy(n) denotes the number of 2-cores of n that are self-conjugates

and adds(n) denotes the number of double distinct 4-core partitions, then

1, if nis a trnangular number;
adds(2n) = asca(n) =

0, otherwise.

Proof. From (2.1.3) and (2.2.1) we deduce that

zadd4(n)q" = f(q% ¢%). (2.5.12)

0
Also, from (2.1.1), (2.2.1), and (2.2.3), we obtain

Y ase(n)g* = f(g.¢%) = Y g2, (2.5.13)
n=0 k=0

and therefore

1, if n is a triangular number;
ascy(n) = . (2.5.14)
0, otherwise.

Using (2.5.12) and (2.5.13), we arrive at

Z addy(n)q" = Z ascy(n)g®™. (2.5.15)
n=0 n=0

Equating the coefficients of ¢?® in (2.5.15) and then using (2.5.14) we complete the

proof. d
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Theorem 2.5.4. If adds(n) denotes the number of double distinct 5-core partitions
and t2(n) denotes the number of representations of n as a sum of two triangular

numbers, then
adds(10n + 2) = t2(5n + 1) — ta(n). (2.5.16)

Proof. From (2.1.4) and (2.2.1), we deduce that

o]

> adds(n)g” = f(¢*, ¢ f (4", &°)- (2.5.17)

n=0
Furthermore, if 1)(q) is as defined in (2.2.3), then 1?(q) is the generating function
for t3(n), the number of representations of n as a sum of two triangular numbers,

ie.,
Y3(q) = Y ta(n)g™. (2.5.18)
Now, from {10, p. 262, Entry 10(v)}, we recall that
¥(g) ~ ab?(¢°) = fla,9")f (¢ &°)- (2.5.19)

Replacing ¢ by ¢* in (2.5.19), we have

J(d* d®) Fg*, %) = ¥*(d®) — ¢*¥*(q"). (2.5.20)

Employing (2.5.17) and (2.5.18) in (2.5.20), we find that

> adds(n)g® =) _ta(n)g”™ ~ > D ta(n)q'". (2.5.21)
n=0 n=0

n=0
We readily arrive at (2.5.16) by equating the coefficients of ¢'°**2 on both sides of
(2.5.21). O

Theorem 2.5.5. Ifascs(n) denotes the number of 5-cores of n that are self-conjugates,

and if adds(n) denotes the number of double distinct 5-core partitions of n, then

ascs(2n) = adds(n). (2.5.22)
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Proof. Settinga=gq,b=¢,c=¢* and d = ¢" in (2.2.11), we deduce that

Fa. (@ d") + f(=a, - F(=¢*, —q") = 2/ (¢*, ") f(¢*,¢"%).  (2.5.23)

With the help of (2.2.6) and (2.2.1), we rewrite (2.5.23) as

iascs (n)g™ + Z Y*ascs(n)g™ = 2f(q*, ¢*®) f(q%, ¢*2). (2.5.24)

n=0

Employing (2.5.17) in (2.5.24), we arrive at
o0

E ascs(n)q™ + i(-l)"ascs(n)q” =2 i adds(n)q™. (2.5.25)

n=0 n=0 n=0
Comparing the coefficients of ¢>* on both sides of (2.5.25), we easily deduce (2.5.22)

to finish the proof. O

Remark 2.5.2. Asin Remark 2.5.1, since add;(n) = 0 for n odd, we readily deduce
from the above theorem that ascs(4n+2) =0 for alln > 0. In [25, Corollary 2(8)],
it was shown that ascs(m) = 0 if and only if there ezists a prime ¢ = 3 mod 4 and

an odd wnteger b such that ¢° ezactly dwvides m + 1.

Theorem 2.5.6. If ascy(n) denotes the number of 9-cores of n that are self-conjugates,

and if addg(n) denotes the number of double distinct 9-core partitions of n, then
asco(dn + 10) — asco(n) = addg(n + 1). (2.5.26)

Proof. From (2.1.4) and (2.2.1), we find that

o0

> adds(n)q™ = f(a*, 4'%) f(d*, 4 F (%, 4"%) F(d®, 4'°).

n=0

Therefore, (2.4.11) can be rewritten as

oo
Z ascg(4n +2)q" =¢ Z adde(n)q™ + ¢* Z asce(n)q” (2.5.27)
n=0 n=0

Equating the coefficients of ¢"*? on both sides of (2.5.27), we obtain the proffered
identity (2.5.26). O



Chapter 3

Generalized Frobenius Partitions

3.1 Introduction

In the introductory chapter, we have defined partitions and their conjugates. G.
Frobenius [23] (see also [1]) introduced an idea of representing the conjugate of a
partition A of n once A was known. This was done by simply removing the dots
(say r in numbers) on the main diagonal of the Ferrers-Young diagram of A and
then enumerating the dots above and below the main diagonal by rows and columns
respectively to obtain two strictly decreasing finite sequences of non-negative integers
ay > ag > - > a, > 0,by > by >--- > b > 0. These two sequences are then

presented in the Frobenius notation given by

a a . . . Qr
by by . . . b )
Clearly, n=r+y, 6+ b
For example, the Ferrers-Young diagram of the partition A = (6,4, 3,1) of 14 is

Note: The contents of this chapter appeared in Elsevier's Discrete Mathematics (6].

26
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Removing the dots on the main diagonal of the above Ferrers-Young diagram, we

find that

X L L ] [} ® o
® X L [ ]
[} L] X
[ ]
Enumerating the dots above and below the main diagonal by rows and columns

respectively, we easily see that A can be presented in Frobenius notation as

52 0
310/

Similarly, the conjugate X' = (4, 3,3,2,1,1) of A in Frobenius notation is

310
520/

Andrews (1] enhanced this idea to introduce generalized Frobenius partitions (or

simply F-partitions) of n which is a notation of the form

a a . . . QG
by by . . b
of non-negative integers a,’s, b,’s with

T T
n=r+Za1+Zb,,
1=1 =1

where each row is of the same length and each is arranged in non-increasing order.
Andrews (1] considered two general classes of F-partitions, in one of which each
non-negative integer is allowed to have k-copies(colors) and strict decrease in each
row is maintained. Let c¢x(n) denotes the number of such F-partitions of n and the
generating function for c¢gx(n) is given by [1]

) 0o 1 o0

Yo =l goge > ™™ ™ @1y

n=0 n=1 mp,ma, Mr_1=—0
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where -
Q(ml,m2,~- ,mk_l) = ijz‘*‘ Z mimy.
j=1 1<i<j<k-1

In particular (1],

[o o] " 1

> cpi(n)g” = T

n=0 Q) q o0

oo

(6% 9 )
cpa(n)g" = ;

; (4; *)8.{a* *)oo

i cby(n)” = (9% 4")eo (4% 025 PR Ut i MU O S

~ (4 9%)3(9% 4%)% (9% ¢*)% (4% ¢°)% (4% 9'%)oo(0?; 4*) oo (9: )%

(3.1.2)

In Section 3.2, we present expressions for the generating functions of cg4(n) and
cos(n) similar to (3.1.2) above. In Chapter 1, we have discussed the congruences

satisfied by c@q(n) and cps(n). In Section 3.3, we establish the congruences

cpe(2n+1) =0 (mod 4?),
cps(dn +3) =0 (mod 4%),
chy(d4n+2) =0 (mod 4).
Next, Kolitsch [35, 37} considered the function céi(n), which denotes the number

of F-partitions of n with & colors whose order is k& under cyclic permutation of the

N 1, 1
k colors. For example, the F-partitions enumerated by cg2(2) are ( ), ( Og ),

1, 1 0, 0, 0 0
) 7, , , Y 1, and ¢ |, where the subscripts
0y 0y 1, 1, 1, 14

represent the two colors viz. red and green of the non negative integers. The

[

generating function for ¢y (n) is given by [37],

X kqu(m)
chp(n)q" = —=——, (3.1.3)
;0 () Gok
where the sum ‘on the right extends over all vectors m = (mj, Mg, - ,my) With

m-1=1and Q(m) = %Zle(mi —mip)? wherein T = (1,1,1,--- ,1) and my4; =

my.
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In particular (see [56] & [38]),

52(’&)(]” — 4q(q16; qlﬁ)go
— (4 03.(% ¢®)oo

— v 99(¢%¢°),
2_ h(ma" = (4:9)%.(¢% ¢*)oo”

[M]8

In Section 3.4, we obtain the generating function for c¢,(n) in terms of g-products.
In Chapter 1, we have discussed the congruences satisfied by c¢,(n) for different

values of k. In Section 3.5, we prove the following congruences.

chy(2n) =0 (mod 43),
chy(4n+3) =0 (mod 4%),
chy(dn) =0 (mod 4%).

We conclude this introduction with a brief discussion of an integer matrix exact
covering system as described by Cao {17)].

An exact covering system is a partition of the integers .into a finite set of arith-
metic sequences. An integer matrix exact covering system is a partition of Z™ into
a lattice and a finite number of its translates without overlap.

Let

o0

S= > flz1,3,T)

T1,L2, 1 n=—00

We change the variables from z, to y, by the transformation y = Az where A is an

T )1
. o I T2 Y2
integer matrix with det A # 0, z = ~ |,andy =

Tn Yn

1
By the inverse formula, z = A7ly = mA*y, where A* is the adjoint of A.
Let
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where d,_1(A) is the (n — 1)** determinantal divisor of A (the k** determinantal

divisor of A is the g.c.d. of all k x k minors of A).

Therefore,

Setting sgn(sn(A))d A(A) = B, |sn,(A)| = d, we can rewrite (3.1.4) as
n—1
1
Thus, we have
By =0 (mod d).

(3.1.4)

(3.1.5)

Ify=c (modd) (r=0,1,2,-- ,k —1) is the solution set of (3.1.5) then we have
z = By + ﬁBcr, (r=012,--,k-1), {By+ ﬁBcr}:; covers Z™ and there is

no overlap between the members thereby giving an integer matrix exact covering

system. Corresponding to this integer matrix exact covering system we can write S

as a linear combination of k parts.

3.2 Generating functions for c¢s(n) and cps(n)

In this section, we find expressions for the generating functions of cd4(n) and cgs(n).

Theorem 3.2.1. We have

S n_ 0%(g?) + 12q0(¢*)Y%(¢%)
> chaln)g" = <ld .
n=0 (q) Q)oo
Proof. Setting k£ = 4 in (3.1.1) we have
S 1 = 2 2 2
C¢4(n)qn = qml tmj+matmima+mamatmamy
;-o (g; )%, mhm%;s:_w

(3.2.1)
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Let

oo
S = § : qm§+m§+m§+m1mz+m2ma+m3m1 (3.2.2)

m),m2,mM3=-—00

We change the variables from m;, mg, ms to ny,ny,ng by an integer matrix exact
covering system {Bn + éBcr}f;é, where B = (b, )sx3 is an integer matrix, n =
n
n, | and cg,c1, - - ck—1 are the solutions of the congruences Bn =0 (mod d).

n3
We shall further require that the coefficients of nyny, nonsz, nan, in

(1111 + biang + bians)? + (barng + baang + bagnz)? + (bayny + baang + bazns)?
+ (b11m1 + biang + bizng)(baaing + baang + bagng)
+ (bain1 + baang + bagng)(bsiny + bsang + bsang)

+ (ba1m1 + b3ang + baang)(biiny + biang + byang)
to be zero in order to separate n,’s. Thus, we have the conditions that

2b11b1g + 2b21bgg + 2b31b3p + b11bog + bigbay + boybay + bogbsy + b31bi2 + baabyy = 0,
(3.2.3)

2b19b13 + 2090093 + 2b32b3g + b12bag + bi3bag + basbss + bagbsa + b3ab13 + bazbiz = 0,
(3.2.4)

2b11b13 + 2b31b93 + 2b31b3g + bi1bog + bizbar + baybss + bogbsy + ba1biz + bazbyy = 0.
(3.2.5)

The integer matrix exact covering system is obtained by following the general pro-

cedure for obtaining series-product identities developed in [17]. Let
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Clearly, B’ satisfies (3.2.3)-(3.2.5) and det B’ = 4% = 1631,
0 2 2

Also 168 ' = | 9 0 2 | is an integer matrix.

220

Now, the system of congruences B'n = 0 (mod 16) is equivalent to

-1 1 1
Bn =0 (mod 4), where B = 1 -1 1 |. Thatis,
1 1 -1

—n; +ny +n3 =0 (mod 4),
ny —ng +ng =0 (mod 4),

ny+ng —nz =0 (mod 4).

The above system of congruences has four solutions

0 0 2 2
0] 2],]0],and]| 2
0 2 2 0

my ( -1 1 1 ny

my | = 1 -1 1 ny |

ms K 1 1 -1 n3/

m ( -1 1 1 m \ 1

mg | = 1 -1 1 ng |+ 0 [,
ms K 11 -1 ns \ 0
my ( -1 1 1 ny 0 \
my | = 1 -1 1 ng [+1 11,

msa \ 1 1 -1 ng 0
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my -1 1 1 5 0
msa 1 1 -1 ng 1

Corresponding to this integer matrix exact covering system, we can write S as a

linear combination of four parts as

oo oo
S = Z q%{(2n3)2+(2n1)2+(2n2)2} +3 Z q%{(2n3+1)2+(2n1)2+(2n2+1)2}
n1,nz,nN3=—0o ny,ng,nN3=—00
) 00
- Z q2n§+2n%+2n§ +3 Z q2nf+2'n§+2n§+2n2+2n3+1
n3,n2,n3=-—00 n1,Nn2,N3=—00
o0 3 oo 00 2
— ( Z q2n%> +3q( Z q2nf> ( Z q2n§+2n2>
nyj=—00 ny=—co n2=—00
= ¢*(¢%) + 1290(¢*)¥*(¢*), (3.2.7)

where we have used (2.2.2) and (2.2.3) to arrive at the last equality. Employing
(3.2.7) and (3.2.2) in (3.2.1), we complete the proof. O

In the next theorem, we find an expression for the generating function of cgs(n).

Theorem 3.2.2. We have

[e o]

> cs(n)g” = ( q.;)s {(@)*(@*) + 1290(4")p(a*) ¥ (g*) + 8g%(¢°)¥°(9)
n=0 1 1/00

+126°p(d®)(a*)¢?(a) + 16¢*¥(¢*°)¥°* (¢*)}.

Proof. Setting k = 5 in (3.1.1) we have

00
n
> " cps(n)g
n=0
1 =)

— E qu+m§+m§+m2+m1mz+m1m3+m1m4+m2m3 +momg+mamag

. 5 ‘

(¢;9)

*® my,my,m3,my=—00

(3.2.8)
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Let

00
T = ' E qu+m%+m§+mf+mxm2+m1m3+m1m4+m2m3+m2m4+m3m4 (3 9 9)

™m1,MM2,M3,1M4=—00

We change the variables from m;, my, m3, my4 to n;,ns2,n3,n4 by an integer matrix

1 . .
exact covering system {Bn+ EBcr}f;é, where B = (b,j)ax4 is an integer matrix, n =
1
T2
and cg, ¢y, - - - k1 are the solutions of the congruences Bn =0 (mod d).
n3
Ny

We also require the following additional conditions in order to separate n,’s.

2b11b12 + 2ba1by2 + 2b31b33 + 2041042 + b11ba2 + biabar + b11b3z + bi2ba;
+ b11bay + b12bay + baybaz + baobay + ba1bag + bogbar + b31baz + b32bay = 0,
2b11b13 + 2691693 + 2031033 + 2641643 + b11b23 + bi3bar + b11b3z + bizba
+ b11b43 + b13bay + ba1baz + basba1 + ba1baz + basbar + ba1bas + bszbay = 0,
2b11b14 + 2bg1bog + 2b31b34 + 2041044 + b11b2g + bigb2r + b11bsg + brabar
+ b11bag + brabgy + b21bag + bagbsy + barbag + bagbay + b31bag + basbs = 0,
2b12b13 + 2bg2bas + 2b32b33 + 2042043 + b12bas + bizbao + bi2baz + bi3bae
+ b12bas + b13baz + bagbaz + bagbaz + bazbas + baszbaz + bagbas + bsbay = 0,
212014 + 2b92bog + 2b33034 + 2042044 + 012024 + b14b22 + b12b34 + brabsy
+ b12bas + brabaz + baobag + baabsa + baobag + baabaz + b3obag + basbse = 0,
2b13b14 + 2b23bog + 2b33b3s + 2b43bas + b13bag + bigbag + b13bas + brabas

+ b13bag + b14baz + bazbza + boabss + bazbas + baabas + bazbag + b3absz = 0.

Proceeding as in the previous proof, our task reduces to obtaining the solutions



modulo 16 of the system of congruences Bn = 0 (mod 16), where

1 1 1 1

1 1 -1 -1
B =

1 -1 -1 1

1 -1 1 -1

That is, we require to solve the simultaneous congruences

n1+n2+n3+n450(m0d 16),
ny +ng —ng —ng =0 (mod 16),
ny —ng —nz +ng =0 (mod 16),

ny —ng +n3 —ng =0 (mod 16).

The above system of congruences has sixteen solutions

0 0 0 0 4 4

0 8 0 4 12

o (s ol (s [af [12]
K 0 0 8 8 4 4

4 8 8 8 8 12

4 8 0 0 8 12

2| s ol sl ol |12l
\ 12 8 8 0 0 12

12 \ 12

‘ , and 12 modulo 16.

12 4

12

12

12

12

35



Hence we have the integer matrix exact covering system with members

™ms

ny

2

n3

Ty

ni

no

ng

Ny

U3

2

ng

N4

m

ng

ng

T4

ny

ny

n3

N4

36



n

Ny

ng

Ny

n

g

n3

Mg

n

n2

ns

Ty

n

U

ng

N4

m

N2

ng

Ny

m

g

ng

Ty

37



my 1 1
ma 1 1
ms - 1 -1
My 1 -1
ms 1 1
my 1 1
M3 - 1 -1
K N 1 -1
my 1 1
my 1 1
ms - 1 -1
\ (N 1 -1
my 1 1
Mo 1 1
ms - 1 -1
\ my 1 -1
my 1 1
mg 1 1
ms - 1 -1
my 1 -1

n

ng

ng

Ny

st

na

n3

T4

ny

U’

ng

Ny

np

N2

ng

Ny

n

N2

n3

Ny

38

Corresponding to this integer matrix exact covering system, we can write 7" as a

linear combination of sixteen parts as
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(e}
T = § ; q10n¥+2n§+2n§+2nz
n1,n2,n3,N4=—00
o0
+3 Z qlonf+2n§+2ng+2n§+2n2+2n3+1
71,M2,n3,Mq=—00
o0
+ E : q10n§+2n§+2n§+2ni+5n, +ng+natng+l
np,n2,Nn3,N4=—00
oo
+ 3 E q10n¥+2n§+2n§+2n2+5n1 +3n2+3nz+nqa+3
n1,M12,N3,n4=—00
oo
+ Z q1on§+2n§+2n§+2n§+1on,+2n2+2n3+2n4+4
n1,12,13,N4=—00
oo
+3 Z q10n§+2n§+2n§+2n§+10n1 +2n4+3
n1,n2,N3,N4=—00
o
+ § : q10n§+2n§+2n§+2n§+15n,+3n2+3n3+3n4+9
T1,n2,13,N4=—00
oo
+3 § q10n¥+2n%+2n§+2n2+15n1 +n2+nz+3na+7

n1,M2,Nn3,MN4=—00

= 0(g")¢*(?) + 12q0(¢"%)0(a*)¥*(q*) + 8q¥(d®)¥*(q)

+ 12¢°9(q*)¥(q") % (q) + 160" (¢ ¥ (¢*), (3.2.10)

where we have used (2.2.2), (2.2.3), and (2.3.16) to arrive at the last equality. Em-

ploying (3.2.10) and (3.2.9) in (3.2.8), we complete the proof.

3.3 Congruences involving c@4(n)

In this section, we find some congruences involving c¢4(n) arising from the expression

of the generating function for c¢4(n) obtained in the previous section.



Theorem 3.3.1. We have

cps(2n+1) =0 (mod 4?),

cha(dn +3) =0 (mod 4%),

chs(dn +2) =0 (mod 4).

Proof. From Theorem 3.2.1, we note that

(e o]

n_ P2(d%) p(a)*(¢*)
;c¢4(n)q R CT R
A C)
(9% ))& (a; 4% +12q(q q) (q,q)

40

(3.3.1)
(3.3.2)

(3.3.3)

(3.3.4)

Replacing g by —q in (3.3.4) and then subtracting the resulting identity from (3.3.4),

we find that

oo oo}

> cpa(n)gt = > ca(n)(—1)"q"

n=0 n=0

T (@A GdL (—q; q2)§o
3

=(q2;q;§ s (- ~ @)}

( )w?(
12 K CErDIRCra {= @)}

From (2.2.2) and (2.2.3), we find that

0(9) = (=¢; )2 (0% P)oo

©*(q%) { 1 1 }+12 o(g*)*(q*)
( q

(g% 904

(¢% 4%)3,

" (6945 0%

and

(AP _ (5 dD%
via) = (3000 (00

Again, from Entry 25 (10, p. 40], we have

©*(q) — ¢*(—q) = 8q¥*(¢*),

©*(q) + ©*(—q) = 2¢*(¢%),

©*(q) — ' (—q) = 16gy*(¢°).

o)
+
24 (g 984

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)
(3.3.9)

(3.3.10)
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Using (2.2.2) on the left hand sides of (3.3.8)~(3.3.10), we obtain

(=405 — (405 = 8475575 (;bz(q 4)) (3.3.11)
(=4 ¢%)00 + (070 = 2(%2%1)—) (3.3.12)
(=365 — (68)6 = 16q<;'/}4(q )) (3.3.13)

Employing (3.3.11) and (3.3.12) in (3.3.5), we deduce that

> cha(m)g" = Y cpu(n)(—1)"q" = 32 3@2)1(1;2((14)(%4;(,4)30_ (3.3.14)

2. 4231
n=0 n=0 ’q)°°

Comparing the terms involving ¢?*** on both sides of (3.3.14), and then replacing

q* by g, we find that

ad 3 27,2 2. 2\4
3 cha(2n + 1)g" = 16% W(é?q))(lg 4o (3.3.15)
n=0 y4/00

from which we readily deduce the congruence (3.3.1).

Now, employing (2.2.2) and (2.2.3) in (3.3.15) and then simplifying, we have

i cpa(2n + I)g" = 16 (4% ¢")eo (3.3.16)
— (4% ¢*)%(4: ¢%)e

Replacing ¢ by —¢ in (3.3.16) and then subtracting the resulting identity from
(3.3.16), we find that

> cga(2n+1)g" = > cga(2n +1)(-1)""
(B 1 1
= e, {(q, q)%8 ( —4; 42 )éff}
_ (% d%) — (e o2\16
=16 (4% 942 (q PR { (g; q2)oo}
=16 %;%ﬁ {—a% — (@)%} {{-a % - (@A) +2(e5d)h )

(3.3.17)



42

Using (3.3.11), (3.3.13) and (2.2.3) in (3.3.17), we deduce that

(o] o

Y cpa(2n+1)g" = ) cga(2n+ 1)(=1)"¢"
n=0 n=0
= 256q§—q—q;); {6499 (") + 2(¢% ¢ (6% 4%)5 } - (3.3.18)

Equating the terms involving ¢?**! on both sides of (3.3.18), and then replacing ¢*

by ¢, we find that

00 2
S cga(dn + 3)g" = 256 <‘(’q‘;>°° (3206 + @ (e )} (33.19)
n=0 !

Now (3.3.2) easily follows from (3.3.19).
Again, replacing g by '—q in (3.3.4) and then adding the resulting identity with
(3.3.4), we obtain

Y cta(n)g + ) cha(n)(~1)"g"
n=0 n=0
_ 9 1 1 p(g*)¥*(¢*) 11
T (¢% %)% {(q; & " (—q;q2)§o} 1% (2% ¢»4, {(q; s (g qz)éo}
_ ¢*(¢%) o a2V4 214
- (qg;qz (q q4)4 {( a9 )oo+ (qaq )oo}
+12077 q())w oy {(- —(;0%)%}
RIS 22(q )d)“( (g% ¢*)5
= T (@ nw %0 (g% ¢%)12 ’ (3:3.20)

where we have used (3.3.11) and (3.3.12) in the last equality.
Comparing the terms involving ¢>" on both sides of (3.3.20), and then replacing ¢?
by ¢, we find that

s 5 2. ,2\4 4/ .2 2. 2\
»_ (9% %) e(9)¥*(a°)(¢% ¢°)

cha(2n)q" = X +48 = 3.3.21

2 obu(2m) Gag T (Gon (8321)
Employing (2.2.2) and (2.2.3) in (3.3.21), we deduce that

- n CRT (¢% 4)5.(a% M),

chs(2n)q" = & + 48
,; «{2n)g @88 T (g9

(7% %)% (¢*;9*)%,

o X A
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Replacing ¢ by —¢ in (3.3.22) and then subtracting the resulting identity from

(3.3.22), we obtain

> couen)a” = S emam)(-11r
q"’, )3, 1 (g% q%)8, 1 1
(¢4 Y {( ,02)22} * 48q(qz; 7*)% {(q; q*)L " (—4 q2)é§}
2\9
= () D) 20{ — ()%}
89 Ch )Z;(q pAle +(g;0)%2}
%—Z—l—l{A’3 B®} + 48¢ %}q—?‘g {4*+ B}, (3.3.23)

where A = (~¢;¢%)%,  and B =(g;¢°)%-

Now, by the binomial theorem, we have
(A— B)® = A% — B ~5AB(A® - B®) + 104°B*(A - B).
Therefore,

A® — B5 = (A -~ B)® +5AB(A® — B%) — 10A’B*(A - B)
=(A-~B){(A- B)*+5AB(A*> + AB + B?) — 10A*B?}

=(A-B){(A- B)*+5AB(A - B)’ +5A*B?}. (3.3.24)
Also,
A*+B*=(A+B){(A+ B)*-3AB}. (3.3.25)

Employing (3.3.11) and (3.3.12) in (3.3.24) and (3.3.25), we find that

5_ b5 _ ¥*(q*) 4 1/)8( B 2 ¢4(Q) 2, ,4\8
- B = s o {aovt o 0t G e

(3.3.26)

3 3 ©*(¢%) ¢*(¢%) 2. 4\4
A"+ B _2(q,q) {4(q )L 3(q,q)oo}. (3.3.27)
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Using (3.3.26) and (3.3.27) in (3.3.23), we deduce that

> cpa(2n)q" = ) cha(2n)(—1)"g"
n=0 n=0
_ (q4'q4)1°¢2( ) / ws(q) 2 w“(q ) 2. 4\8
(¢%; 9 )18 *(¢%) v*(¢%) a2, Av4
r e {4<q2;q2); i )°°} ' (8:3:28)

Equating the coefficients of the terms involving ¢*"*! in (3.3.28), we readily arrive

at (3.3.3) to finish the proof. O

3.4 Generating function for c¢,(n)

In this section, we find an expression for the generating function of cé,(n).

Theorem 3.4.1. We have

i@(n)qn = 16q _(2_)‘&‘1_) (3.4.1)

Proof. Setting k = 4 in (3.1.3) and utilizing the subsequent conditions, we have

o]

Y n
E cya(n)q
n=0
4 0
— q3mf+2m§+3m§+2m1mz+2mzm3+4m3m1 —3m1—2mgz~3msz+1 (3 4 2)
2 E . 4.
(45 ) my,mg,m3=—00
Let
o
SI - § : q3m¥+2m§+3m§+2m1m2+2m2m3+4m3m1—3m1—2m2—3m3+1 (3 4 3)

my,ma,ma3=—00

We change the variables from m,, ms, ms to n1, ng, ns by the integer matrix exact

covering system {Bn + chT}r Zo» where B = (b,;)sxs is an integer matrix, n =

n
n, | andcg, ¢1, -+, ck—1 are the solutions of the congruences Bn = 0 (mod d).

ng
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We further require that the coeflicients of nyng, nongs, nan; in
3(lb11n1 + bigng + 13137’&3)2 + 2(bginy + bgang + 1)23”3)2 + 3(b3ing + bsana + 1333713)2
+ 2(b11ny + biang + bizng)(ba1ny + bagna + bagna)
+ 2(ba1my + baang + baznz)(b3iny + baamg + bagns)
+ 4(b31ny + baang + baznz)(biina + bigna + bizna)

to be zero in order to separate n;’s. Thus we have the conditions that

3b11b12 + 2b21b92 + 3b31b3g + bribag + bigbar + ba1bag + bagbsy + 2b31b12 + 2b32by; = 0,
(3.4.4)

3b12b13 + 2bgabas + 3bsabsz + biabas + bizbag + baobsz + bagbag + 2b3abiz + 2b33bia = 0,
(3.4.5)

3b11b13 + 2b21b93 + 3b31b33 + b11bas + bizbay + byrbsz + bagbay + 2b31b13 + 2b33byy = 0.

(3.4.6)

Now, we consider the same integer matrix exact covering system (3.2.6) as in
-1 1 1

Theorem 3.2.1, because the matrix B = 1 -1 1 also satisfies the con-
1 1 -1

ditions (3.4.4)-(3.4.6). Corrésponding to the integer matrix exact covering system

(3.2.6) we can write S as a linear combination of 4 parts as follows

oo oo
r__ 4n?+4-8n24+4n2 ~2ny —4ng—2nz+1 4n?48n2+4n2—2n, +4no+2n3 41
) g™ 2 3 + gm 2 3

n1,n2,nNg=—00 n1,N2,N3=—00
0o oo
+ E : q4nf+8n§+4n§+2nl —dnz+2n3+1 + § : q4nf+8n%+4n§+2n1+4n2-—2n3+1.

n1,N2,N3=—00 n1,m2,N3=—00

It is easy to see that each part of the above sum is equal to g¢?(g%)1(q*). Therefore,

we have
S = 4q9*(¢* )P (q"). (3.4.7)

From (3.4.7), (3.4.3), and (3.4.2), we readily arrive at (3.4.1). g
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3.5 Congruences involving c¢,(n)
In this section, we find some interesting congruences involving c,(n).

Theorem 3.5.1. We have

chy(2n) =0 (mod 4°%), (3.5.1)
chy(dn +3) =0 (mod 4%), (3.5.2)
cgy(4n) =0 (mod 4%). (3.5.3)

Proof. From Theorem 3.4.1, we have

e YR . $A(dR)(Y)
;c¢4(n)q R T R oy O X o, (3:54)

Replacing ¢ by —q in (3.5.4) and then adding the resulting identity with (3.5.4), we

deduce that

ZE@(H)Q" + Zc_¢4(n)(—
n=0 n=0
CRCRLIC) 11
16q (g% %), {(q;q2)4 ( Q'02)4}
_ V(g )zb( 4
—16q(q P s {(- —(g; %} (3.5.5)

Employing (3.3.11) in (3.5.5), we obtain

= — n - — _1\n,n 2 ¢2( 2)'¢3( 4)
;cm(n)q +;c¢4(n)( 1)7q" = 128" v e (3.5.6)

Extracting those terms on both sides of (3.5.6) that involve ¢?" only, and then

replacing ¢2 by g, we find that

- VAP (e?)
;0454(271 " = 64q(q 206 (3 P (3.5.7)

Now congruence (3.5.1) readily follows from (3.5.7).
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Next, with the help of (2.2.3), we can rewrite (3.5.7) as

N (¢% ¢Hwola*; ¢*)8 (¢4 495
2n)q" = 64 ® — 64 . (3.5.8)
;C(p“( % EECT RO % )L (g )2

Replacing g by —q in (3.5.8) and then adding the resulting identity with (3.5.8), we
find that

o0

> cha(2n)g + D cd(2n)(~1) "

n=0 n=0

=64q(q4;q“)§o{( 11 }

(@%e»)%, ()2 (- q'q"’)é?,

_ (¢% 4% RN
= barm ;@2)7, (0% q ‘2{ (4:4")z}

_ (4% 9%)3
~E q)(qq”{ - (60))

X {(=4;¢%)% + (605 + (6% }

_ (g% q")¢,
=S4T G e {09 0) — (6.0)5)

X {{(~q: 0% = (4 °)&) +3(¢% ¢)% } - (3.5.9)

Employing (3.3.11) and (2.2.3) in (3.5.9), we deduce that

2254(271)97” + 254(2”)(—1)71(1”
n=0 n=0

= 2(45 09)50(0% ) (4% ¢%)% 2. 4vd
= R P {6 q( A (¢ L +3(g ,q)w}. (3.5.10)

Equating the terms involving ¢?* on both sides of (3.5.10), and then replacing ¢2 by
g, we find that

OOE' e — (6% ¢*)&. (g% %)% (g% q")%, ava
2 Pldm)a" = 2360 e {64q<q;q)go<q2;q2>go*3(""”‘”}’

from which we easily arrive at (3.5.3).

Finally, replacing ¢ by —¢ in (3.5.4) and then subtracting the resulting identity
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from (3.5.4), we obtain

S SBa(m)a” = 3 a(n)(~1)"
n=0 n=0

P2 (d*)(q?) 1 1
= 164 (g% %)%, {(q;q"’)éoJr(—q;q?)éo}

2
- d}q() )(q( q) T {66+ (6%} (3.5.11)
Using (3.3.12), (2.2.2) and (2.2.3), we deduce that
> aln 2 _ (4% 9o
; Ga(m)a" ;0 Bulm)(~1)g" = 32 G (35.12)

Extracting from both sides of (3.5.12) those terms involving only ¢?**!) and then

dividing both sides by ¢ and replacing ¢* by g, we have

Z‘)£4(2n+ g =167 (q)'q(;’ I (3.5.13)

Replacing ¢ by —¢ in (3.5.13) and then subtracting the resulting identity from
(3.5.13), we obtain

> cha(2n+1)g" = Y cy(2n + 1)(=1)"g"
n=0 n=0
(0% 0D 11
=G, @ E T );2}
_ (4% ¢*)oo (e 2116
= @ 4)16{ ® e}
4
= 16——8 E2 {Cah - @ %) {Cadl + 6 PRY - 2%
(3.5.14)
Employing (3.3.12) and (3.3.13) in (3.5.14), we find that
ic ¢s(2n + 1)q" - i£4(2n+ 1)(-1)"¢"
n=0 n=0
4 22
- 2000 L0 (4t - 2 L) (6519

Equating the coefficients of ¢>"*! on both sides of (3.5.15), we readily arrive at

(3.5.2) to complete the proof. a



Chapter 4

General Partition Function and
Tau Function

4.1 Introduction

For a nonzero integer r and a nonnegative integer n, the general partition function
p-(n) is defined as the coefficient of g™ in the expansion of (g;¢)7,. Thus,

Y pr(n)q” = (45 9)%

n=0

In particular, p_1(n) is the usual partition function p(n), i.e., the number of un-
restricted partitions of n, for which Ramanujan [51]-[53] found nice congruence
properties modulo powers of 5, 7, and 11, as discussed in Chapter 1. Ramanathan
[49] considered the generalization of these congruences modulo powers of 5 and 7
for all r, but these results were found to be incorrect by Atkin [2]. Newman [44]-
[46] studied the function p.(n) and obtained several interesting congruences and
identities involving p,(n). Using the theory of elliptic modular functions, Newman

established the following theorem [44].

Theorem 4.1.1. Suppose that r 15 one of the numbers 2, 4, 6, 8, 10, 14, 26. Let
! be a prime greater than 3 such that r(l+1) = 0(mod 24). Let A =r(I*> ~1)/24
and define p.(a) as zero if a 18 not a nonnegatwe integer. Then

n

“1p, (7) . (4.1.1)

[S1h}

pr(nl+ A) = (=)

49
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Atkin [2], Gandhi [24], Gordon [26], Boylan [16], Kiming and Olsson [34] also
studied ’various congruence properties of p.(n) for certain negative values of r. Re-
cent works of Baruah and Ojah [5] and Berndt, Gugg and Kim [12] have been
discussed in the introductory chapter. Farkas and Kra [19]-[22] obtained several
‘congruences and identities involving p-(n). In particular, Farkas and Kra [21, The-
orem 1] obtained five three term recursion identities and remarked whether the list
of three term recursions for partition coefficients is complete or not. In Section 4.3,
we provide alternative proofs of these recursion relations and present four more such
three term recursions for partition coefficients. In the process, we obtain new two
term recursion relations for partition coefficients. We also give alternative proofs of
several two term recursion relations that appeared in {19]. In the process, we also
deduce Ramanuj’an’s partition congruences (1.0.2) and (1.0.3) and several identities
for Ramanujan’s tau function 7(n).

Our approach involves 2-, 4:575-, and 7- dissections of (g; ¢)7, for some particular
values of r, where a f,—dissect%(/ﬁ/n of a power series P(q) in ¢ is a representation of the
type t-1

P(g) =Y ¢"Pld).
k=0

We also require elementary properties of the Rogers-Ramanujan continued frac-

tion R(g) and Ramanujan’s cubic continued fraction G(g) defined by

1/5 2
q q q
R(g):i=— - — <1
(9) .1, 1. lg
and
1/3 2 2, 4
q q+gq q+q
G(q) == — \ lg] < 1.
1 + 1 + 1 -+

fir.,

Two interesting identities satisfied by F(q) := ¢~ Y/5R(q) are

105 _ g 2B (P — (4 @)oo
F™(¢’) - q-¢°F(q°) 7 ) (4.1.2)
. ~4\6
F™(q) —11g - ¢°F*(q) = AL (4.13)

(¢% %)%,
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These two identities were found by Watson (58] in Ramanujan’s notebooks. Using
(4.1.2) and (4.1.3), Hirschhorn [29] proved that
1 (@®59%)%
@9  (¢%6°)%
+5¢" = 3¢°F 1 (¢°) + 2¢°F (") ~ ' F (&) + *F7H¢). (4.14)

(F*(¢°) + aF*(¢°) + 2¢° F*(¢°) + 3¢°F(¢°)

This identity is also in Ramanujan’s unpublished menuscripts on p(n) and 7(n) (54,

1
13]. Clearly, (4.1.2) and (4.1.4) give 5-dissections of (g; ¢). and T respectively.
Also, if W(q) = ¢~'/3G(q) then from [10, p. 345, Entry 1(iv)], we find that

(6 0)% = (@ )% (A¢W2(*) - 3¢ + W), (4.1.5)
(@92 = (% )32 (4aW(q) + W(@))° - 27q) (4.1.6)

Replacing ¢ by —q in (2.2.2), we find that
_ (592

P(=9) = (4:9°)%(0% 0" = e (4.1.7)
By [10, p. 40, Entry 25}, we have
0(q) = o(q*) + 24%(q%), (4.1.8)
¢*(9) = ¢*(¢%) + 499’ (¢"), (4.1.9)
16¢9%(¢%) = v*(q) — ¢*(—9), (4.1.10)
¥2(9) = p(a)¥(q?)- (4.1.11)

Next, by {10, p. 303, Entry 17(v)], we have

49 B(q") _ A(g") _ 2 50__@3
Joo (c<q7> Blg) 1 ”A(q?)>’ (4.1.12)

where A(q), B(g) and C(g) are defined by

(300 = (4% ¢

f(=¢% -¢*) f(=¢* ~¢°) f(=9, 4%
A(g) := ————=—, B(q) .= — ="+, and C(q) := -2~ 1.
) e (9) - (9)
Clearly, (4.1.12) gives a 7-dissection of (¢; ¢)oo-

Similarly, setting

I(g) == f(=9,—4¢"%), J(q) := f(—-¢* —q"), K(q) := f(~¢°, —-¢"9),
L(q) := f(=4¢* —¢°), M(q) = f(—=¢°,—¢®), and N(q) := f(—q° —q")
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in [10, p. 373, Entry 8(i), Eq. (8.1)}, we find that

(@) 2J(@®) | sM(q¥)
(6:9)e0 = (a5 T(q%) - qK(qlg) —q 1(q") +q° L(g®)
(¢7)

13 13

169, 169>00<L(‘113) N(g"

12

7_
) T N

which is a 13-dissection of (g; ¢)oo-

We will also need the following algebraic identities in our subsequent sections:

XP+YP = (X +Y)((X+Y) =5XY (X +Y)2+5X2Y?), (4.1.14)
X3+Y3I=(X+Y)(X +Y)?-3XY), (4.1.15)
X +Y = (X+Y)((X+Y)P —7XY(X + V) + UXYHX +Y)? - 71X3Y?),

‘ (4.1.16)
X -Y'=(X-Y)X+Y)(X +Y)*-2XY). (4.1.17)

The rest of the chapter is organized in the following way. In Section 4.2, we give
alternative proofs of thirteen two-term identities that appeared in [19] and also find
a simple new identity (4.2.10). Furthermore, we aiso deduce simple proofs of (1.0.2)
and (1.0.3). In Section 4.3, we prove nine three-term identities of which (4.3.2),
(4.3.3), (4.3.8), and (4.3.9) are new identities. The other five identities appeared in
[19, Theorem 1]. In the process, we also deduce a known identity for Ramanujan’s
tau function 7(n). In Section 4.4, we find a general three-term identity involving
p24(n), which eventually yields a general identity involving Ramanujan’s tau function
7(n). Finally, in Section 4.5, we prove a few congruences for p,(n) for some negative

values of r.

4.2 Two term recursion relations -

In this section, we prove some two term recursion relations by using the dissec-
tions and theta function identities given in the previous section. We also deduce

Ramanujan’s partition congruences (1.0.2) and (1.0.3).



Theorem 4.2.1. For a positive integer k, we have

2k 32k - 1 k
P33 ”+—‘8—— = (—3)"p3(n),
3% _ 1
De (32kn + 2 ) = 3%pg(n),
5% — 1
2%k _(_1\k
P (5 n+— )—( 1)*p(n),
5% — 1
pa (5% 4+ 220 = (Ut
5% — 1
D3 (52kn + 8 ) = 5kp3(n),
2k 2k 1 k
pa (5 ) = (-5)puto)
2k 2% _1 3k
ps | 5 n + 3 = (=5)"ps(n),
2% _
pua (0 + L) = (oot
2k 2k -1 k
Ps <2 n+ 3 > = (—8)"ps(n),
pg (4n + 3) = 0,
72 _ 1
p (74 ) = (1)),
o TE1
P2 (7 n+—0 ) = pa(n),
2k % 1 k
Pa (7 net ): (=7)tpa(n),
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(4.2.1)
(4.2.2)
(4.2.3)
(4.2.4)
(4.2.5)
(4.2.6)
4.2.7)
(4.2.8)
(4.2.9)

(4.2.10)

(4.2.11)
(4.2.12)
(4.2.13)

(4.2.14)

We note that, the identities (4.2.6), (4.2.7), and (4.2.9) are the special cases
of (4.1.1) with (r,¢) being chosen as (4,5), (8,5), and (8,2), respectively. The
identities (4.2.1)-(4.2.9), (4.2.11)—(4.2.14) are proved in [19]. Our method of proofs

are different from the previous authors. The identity (4.2.10) appears to be new.



o4

Proof. From (4.1.5), we have

o0

Y pa(n)g” = (g 9)%

n=0

= (¢% "), (48°*W2(¢®) — 3+ W(¢)) . (4.2.15)
Extracting the terms in (4.2.15) that involve ¢*™*!, then dividing by q and replacing
¢ by g, we obtain

zp3(3n +1)q" = -3(¢% ¢*)3, = -3 Zpg(n)QS". (4.2.16)

n=0 n=0

Equating the coefficients of ¢3 on both sides of (4.2.16), we deduce that

p3(3n + 1) = =3ps(n),

which can be iterated to arrive at (4.2.1).

From (4.1.5), we have

o0

Z ps(n)q"

n=0

= (g;9)%,

= (% ¢°)% (4°W(¢®) — 3¢ + W(¢%))”
=(¢%¢)% (9(12 +W2(g%) - 6gW(¢%) + 8¢°W (%)

_ 24¢* W) + 16q6W4(q3)). (4.2.17)

Collecting the terms in (4.2.17) that involve ¢3™*+2, then dividing by q? and replacing

q° by g, we obtain

o0 [e o]
Zpe(Bn +2)g" = 3%(q% ¢°)8, = 32 Zps(n)qs". (4.2.18)
n=0

n=0

Comparing the coefficients of ¢3™ on both sides of (4.2.18), we deduce that

pe(3%n + 2) = 3%*ps(n),
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which can be iterated to arrive at (4.2.2).

The proofs of (4.2.3)-(4.2.8) are similar. Here we prove only (4.2.6) in details
and give a brief outline of the proofs of (4.2.3)-(4.2.5), (4.2.7), and (4.2.8).

By (4.1.2), we have

> pa(n)q™ = (g5 9)%
= (4% ¢®)(FY (%) — g — ¢°F(¢°))*
= (0%%4®)o(F™4°) = 44F(¢°) + 2¢°F *(¢°) + 8¢°F}(¢”)
—5¢* —8¢°F(¢°) + 2¢°F*(¢°) + 44" F*(¢°) + ¢°F*(¢®)).  (4.2.19)

Extracting the terms involving ¢°*** in (4.2.19), then dividing the resulting identity

by ¢* and replacing ¢° by q, we find that
im(fm +4)g" = -5(¢% ¢°)5 = =5 Zm : (4.2.20)
n=0
Equating coefficients of different powers of ¢ modulo 5 in (4.2.20), we obtain
pa(5°n +4) = ~5p4(n) (4.2.21)
and
pa(5°n + 9) = py(52n + 14) = pa(52n + 19) = ps(52n + 24) = 0. (4.2.22)

Iterating (4.2.21), we easily arrive at (4.2.6) by mathematical induction.
Now, from (4.1.2), we find that

Zm(n)q" =(3:9)0 = (67,6 (F7Hq) — ¢ — ¢°F(q°)), (4.2.23)
sz n)g" = (¢;9)% = (6% ¢°)2%(F (") — 2¢F (¢°) — ¢*

+28°F(¢°) + ¢* F2(c)), (4.2.24)
> ps(n)g” = (g;9)% = (4% 9%°)%(F3(¢%) — 3¢F ~%(¢°) + 5¢°
n=0

—3¢°F*(¢°) — ¢"F*(¢%)), (4.2.25)
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Zpg(n)q"

n=0

= (5;9)%

— (q25; q25)§°(F_8(q5) _ 8qF—7(q5) + 20q2F—6(q5) _ 70q4F—4(q5) + 56q5F—3(q5)
+112¢° F72(¢%) — 120" F2(¢°) — 125¢® + 120¢° F(¢®) + 112¢"°F?(¢°)

- 56¢'1 F*(q°) — 70¢"2F*(q°) + 20¢" F°(¢°) + 8¢'°F"(¢°) + ¢'°F°(¢%)), (4.2.26)

0
Z p1a(n)q”
n=0

= (g;¢)mh
= (g% ¢S (F(¢°) — 14qF 73(¢°) + T7¢° F%(¢°) — 182¢° F71(¢°)
+910¢° F~%(¢%) — 1365¢° F~8(¢®) — 1430¢" F~"(¢%) + 5005¢° F ~%(¢°)
—10010¢° F~4(¢®) + 3640¢ 1 F~3(¢®) + 14105¢"*F ~%(¢°) — 6930¢"3 F~*(¢°)
— 15625¢™ + 69304 F(¢°) + 141054 F2(¢°) — 3640¢*" F3(¢°) — 100104 F*(¢°)
+ 5005¢%° F%(q°) + 1430¢2 F7(¢°) — 1365¢*2 F8(¢°) — 910¢** F®(¢°)

+ 182q25F11(q5) + 77q26F12(q5) + 14q27F13(q5) + q28F14(q5))~ (4227)

Extracting the terms involving ¢*"*!, ¢®*+% 3 ¢5*3  and ¢**** in (4.2.23),
(4.2.24), (4.2.25), (4.2.26), and (4.2.27) respectively and proceeding as in the proof
of (4.2.6) we obtain (4.2.3), (4.2.4), (4.2.5), (4.2.7), and (4.2.8).

Next to prove (4.2.9) and (4.2.10), we employ (4.1.7) and (4.1.8) to obtain

o0

> ps(n)g” = (g;9)%,

n=0
= (g% ¢") 20 (—¢")¢*(—0q)
= (g% "2 (0(q®) — 2¢°%(q"%))*(0(q*) — 2q¥(q®))*. (4.2.28)

Collecting the terms involving ¢***! in (4.2.28), then dividing the resulting identity

by ¢ and replacing ¢ by ¢, we find that
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(o]

Zps(4n +1)¢"

n=0

= —8(g; 0)2,(¥* (@) ¢* ()% (%) + 4g¥*(¢*) > (q)¥(g?) — 169(d*)¥(a* ) (a)¥*(¢%))

= —8(q; 9)% (P> (@)% (a*)(¥* (%) + 4q¥°(¢*)) — 169(q®)¥(q*)e(q)¥*(¢?)). (4.2.29)

With the aid of (4.1.9) and (4.1.11), we rewrite (4.2.29) as

Y ps(dn+ 1)q" = —8(q; 9% ¥ (@) () — 16¢%*(¢")). (4.2.30)

n=0

Using (4.1.10), (4.1.7), and (2.2.3) in (4.2.30), we obtain

Sopsan+ 1)q" = -8(g;9)% = -8 ps(n)®.  (4.2.31)
n=0 n=0

Iterating (4.2.31), we arrive at (4.2.9) by mathematical induction.
Again, extracting the terms in (4.2.28) in which the powers of ¢ are congruent

to 3 modulo 4, we find that

o]

Y ps(dn+3)g"

n=0

= 32(g; )% ((d*)¥(a") V> ()% (d%) — ¥*(d))p(9)¥*(a?) ~ 4a¥*(g*)w(q)¥3(¢?))

= 32(¢; 0% (0(a)¥(a)* (D% (d") — (DY (@) (¥*(¢) + 49¥%(¢"))).  (42.32)
Invoking (4.1.9) and (4.1.11), we obtain
0@ (@) (¥*(¢°) + 4q9*(¢") = (DY (¢) = W (9)p(®)b(g*)b(g%).  (4.2.33)
Using (4.2.33) in (4.2.32), we conclude that
iops(zm +3)% =0,

which immediately yields (4.2.10).
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The proofs of (4.2.11)-(4.2.14) are similar. First we prove (4.2.14). Employing
(4.1.12), we have '

> ps(n)g™ = (g;9)% = (% ¢*)%, (B(q7) - qA(q ) _ ¢+ q5@> . (4.2.34)
n=0

Clg)  "B(q") A(q")
Expanding the left hand side of (4.2.34) and extracting the terms in which the

powers of g are congruent to 5 modulo 7, we find that

Zp6(7n+5)q”
A(q) 3 C%g) )

ot B(q) _
—<q’q>w<2“q+6( AQC(e) ~ C@B @’ Bl@aa)

_a [Ald)B*(q) () 2(9)  2B(9)C*(q)
60( & B AR )
o) B9 . CYg)
+00 (5o ~ T qf}(q)B?(q)))' 4239

Now, writing [11, p. 174, Entry 31} and [14, Eq. 3.15] in terms of A(q), B(q),

and C(q), we obtain

A(9)B*(q) | C(a9)A%*q)  ,B(q)C*q) _ (495
C) 4 Bl A =80+ g7 (4.2:36)
A9 B9, C) (@0
B@Cie  ‘c@ag T AwBe - T ey (4.237)
B®(q) Ala) s ) g (4.2.38)

A@)Cq) C(g9)B*(q) ~ Bl9)A%q)
Using (4.2.36), (4.2.37), and (4.2.38) in (4.2.35) and simplifying, we deduce that

ips(’/n +5)q™ = 49q(q";q")%, = 49 Zp )g™ e, (4.2.39)
Equating coefficients of different powers of ¢ modulo 7 in (4.2.39), we obtain
pe(72n + 12) = T2pg(n) (4.2.40)
and

pe(7?n + 5) = pg(7*n + 19) = pg(7°n + 26) = ps(7°n + 33) = pe(7%n + 40)

= ps(7°n + 47) = 0.
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Iterating (4.2.40), we arrive at (4.2.14) by mathematical induction.
Also by (4.1.12), we have

> n(n)g" = (45 9)e = (4% 6%)co @873 ~ qgg?; -+ qs%%) , (4.2.41)

n=0

Y m(n)d" = (69)%
n=0

(49, 49\2 B? B(q") 3A(q7)
~ (i ’°°<cz @) " B()

@) . AW | A,
@) o) T B Y
3(97) 60((17)

_ _ ,C(q") 10C%(q")
A B A

+ g%+ 2¢° 1t q A2(q7)>’ (4.2.42)

> pa(n)g" = (4 9)%

,B(d)
&) e M o)

_ a2 B(q")
B3(q7) C(q") B(q")

_BMd) s B, . AWQ)C()
Ance T Ay Y Ty T
5C(d") | . 10B@)C) CUg) . O

A(q) 2@ 0 agB) " g
1503(‘17)

+q As(q7)>_ (4.2.43)

Extracting the terms involving ¢""*2, ¢""*4, and ¢"*6 in (4.2.41), (4.2.42), and

_ (q49;q49)3 <BS(Q7) A(¢d")B(q")

Alg")
Clq")

4 Az(q7)
B2(q7)

+64¢° —3q + 3¢*

+ 3q5

+ 3¢ + 3¢%°

(4.2.43) respectively and proceeding as in the proof of (4.2.6), we arrive at (4.2.11),
(4.2.12), and (4.2.13). O

Corollary 4.2.2. Ramanujan’s congruences

p(5n +4) = 0 (mod 5), (4.2.44)

p(Tn+5) =0 (mod 7) (4.2.45)

hold.
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Proof. By the binomial theorem, we have

(¢;9)5% = (6°;¢*)oo (mod 5) and (g; )], = (¢;¢" oo (mod 7).

Therefore,
oyt = (89% _ (85w
(4 9)e0 = (@9 (49)oo (med 5)
= (¢°¢°)ee »_ P(n)g" (mod 5). (4.2.46)
n=0

Now, from (4.2.19), we observe that the coefficients of ¢>** in (q; q)%, are divis-
ible by 5. Thus, comparing the terms involving ¢>"** in (4.2.46), we readily arrive

at (4.2.44).

Again, we have

(0 9% _ (@"4 oo

G0 = (g = (@ 00T (4.2.47)
Employing (4.1.12) in (4.2.47), we find that
0. aove [ B(d") A(q") Clq") 6_ 7.7 -
(6" 4"*)% 7y 7'2+5——7 = (790 (n)g" (mod 7).
¢ q (C(q) B qA(q)> q’;q ;7’”)0( )
(4.2.48)

While proving (4.2.14) above, we have already noticed that the terms involving
¢"™*> in the expansion of the left hand side of (4.2.48) are multiples of 7. Thus,

Ramanujan’s congruence (4.2.45) readily follows from (4.2.48). a

Remark 4.2.1. The following identities which are obvious from the pentagonal num-

ber theorem, can also be derived while proving (4.2.3) and (4.2.11).

p1(52n + 6) = py(5%n + 11) = p,(5*n 4 16) = p(5°n + 21) =0, (4.2.49)
p1(7*n +9) = p1(7%n + 16) = p(7*n + 23) = p1(7°n + 30)

=p(7*n + 37) = p1(7*n + 44) = 0. (4.2.50)
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Similarly, the identities analogous to (4.2.22) that can be derived while proving

(4.2.5) and (4.2.13) are

p3(5%n + 8) = p3(52n + 13) = p3(52n + 18) = p3(52n + 23) = 0, (4.2.51)
p3(7°n 4 13) = p3(7*n + 20) = p3(72n + 27) = p3(7°n + 34)

= p3(7?n + 41) = p3(7?n + 48) = 0. (4.2.52)

Now, if we recall [10, p. 39, Entry 24(1t)], Jacobi’s famous identity

o

(30)% =D (-1 (20 +1)g" D72, (4.2.53)
£=0

then from (4.2.51)-(4.2.53), we conclude that no numbers of the form 5°n + j with
j =38, 13, 18, 23 or T*’n+k with k = 13, 20, 27, 34, 41, 48 are triangular numbers.

Furthermore, from (4.2.53) and the definition of ps(n), we have
m(m + 1)
(i
easily deduce from (4.2.5) that

ps (52k(2m -é- 1) — 1) 5H 1) (2m 4+ 1),

> = (—1)™(2m + 1) for each positive integer m. Therefore, we can

4.3 Three term recursion relations

In this section, we prove nine three term identities of which (4.3.2), (4.3.3), (4.3.8),
and (4.3.9) are new. The other five identities were proved by Farkas and Kra [19,
Theorem 1]. The process also yields several two term identities which we record in
Remark 4.3.1 and Remark 4.3.2. We also deduce several results on Ramanujan’s

tau function 7(n) defined in (1.0.6).



Theorem 4.3.1. We have

pe(5*n + 6) = —6ps(5n + 1) — 5°ps(n),
p12(5%n + 12) _ 54p15(5n + 2) — 5°p1a(n),
p1s(52n + 18) = —510p18(5n + 3) — 58p1s(n),
P2a(52n + 24) = 4830paa(5n + 4) — 5 paa(n),

pa(7°n + 8) = —dpy(Tn + 1) — Tps(n),
p2(13%n + 14) = —2p,y(13n + 1) — pa(n),

p12(3*n + 4) = —12py3(3n + 1) — 3°p1a(n),

pa(3*n + 30) = —12pe(3°n + 3) — 37pg(n),

p15(3%n + 50) = 1836p;15(3%n + 5) — 3%py5(n).
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(4.3.1)
(4.3.2)
(4.3.3)
(4.3.4)
(4.3.5)
(4.3.6)
(4.3.7)
(4.3.8)

(4.3.9)

Proof. The proofs of (4.3.1)-(4.3.4) are similar. Therefore, we prove (4.3.4) in details

and give a brief outline of the proofs of (4.3.1)-(4.3.3).
From (4.1.2), we have

> pu(n)g® = (g,9)% = (¢ ¢*)2(F 7 (¢°) — ¢ — ¢ F(g°))*.

(4.3.10)

Extracting the terms involving ¢°*** in (4.3.10), then dividing the resulting identity

by ¢* and replacing ¢° by ¢, we find that

Y puldn+4)"
n=0

= (¢°,¢°) % (4830F ~2(q) — 212520¢F*3(q) + 3487260¢*F ~1%(q)

~ 25077360¢° F~5(q) + 14903725¢* + 25077360¢° F°(q) + 3487260¢° F*°(q)

+212520q" F'3(g) + 48304° F2°(q))

= (% ¢°)25(4830(F~(q) + ¢*F*(q)) — 212520q(F~**(q) — ¢°F**(q))

+ 3487260¢°(F~'%(g) + ¢*F'°(q)) — 25077360¢°(F~*(q) — ¢°F*(q))

+ 149037254*)
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= (¢% )% (4830(((F‘5(<1) - Fq)* +2¢°)% - 2¢%)
— 212520 ((F~5(q) — ¢*F°(q))* + 3¢°(F~*(q) — ¢*F*(q)))

+34872604% ((F~%(g) — ¢*F°(9))* + 2¢°) — 25077360¢°(F~°(q)

— PF5(g)) + 14903725q4). (4.3.11)

Employing (4.1.3) in (4.3.11), we obtain
o0 . 1\6 2 2
n q) q o0
> paul(dn+4)q" = (% ¢°)2 | 4830 (11q+ (5_ Z, 2 ) +2¢° | —2g*
e (6% ¢%)5%
CT AN (g;9)S
- 212520q <11q + © 1 +3¢° | 11g + ———==
( (@5 ¢°)% (4% ¢°)%

. )6 2
+ 3487260 <<1lq + ((q‘;—gg‘;%) + 2q2>

) [> e

. 6
— 250773604 (llq + ((q%;’z—;g—) + 14903725q4>

o0

= 4830(q : q)* — 48828125¢*(¢%; ¢°)24

= 4830 ) paa(n)q” — 48828125 ) _ paa(n)g*" . (4.3.12)
n=0

n=0
Equating coefficients of ¢°*** in (4.3.12), we arrive at (4.3.4).

Now, from (4.1.2), we find that

> pe(n)g” = (g;9)%
n=0
= (¢%;¢°°)%, (F “8(g°) — 6gF(¢°) + 9¢* F*(¢°) + 10¢° F~3(¢°)

~30¢*F7*(¢°) — 66°F 1 (¢°) + 41¢° + 64" F(¢°) — 30¢°F*(¢°)

10 F3(g°) + 90 F4(¢°) + 64 F5(%) + q”Fﬁ(«f)), (4.3.13)
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Zpu(n)qn
n=0
= (g; )12
=(¢%¢") (F‘”(qs) — 120F~"(¢°) + 54¢°F °(¢°) — 88¢°F°(¢°)
- 99¢*F3(¢%) + 528¢° F~7(¢°) — 286¢°F ~°(¢°) — 1188¢" F°(¢°)
+ 13863 F~4(¢°) + 1628¢° F~3(¢®) — 27064 F~2(¢°) — 1728¢" F'(¢°)
+ 3301¢"2 + 1728¢"3 F(¢°) — 27064 F%(¢®) — 1628¢"° F3(4°)
+ 13864 F*(¢®) + 1188 F3(¢%) — 28648 F8(¢°) — 528¢'°F7(¢°)
— 99q2OF8(q5) + 88q21F9(q5) + 54q22F10(q5) + 12q23F11(q5) + q24F12(q5.)),
(4.3.14)

o0
> pis(n)g”
n=0

= (q;9)%8
= (4% ¢%)3% (F'w(qs) — 18¢FV(¢°) + 135¢* F 7%(¢°) — 510¢° F~%°(¢°)

+ 765¢* F~14(g°) + 1224¢° F~13(¢%) — 6732¢5 F~%(¢%) + 6120¢" F ' (g°)

— 38420¢° F%(¢%) — 12546¢'°F ~8(¢®) + 103428¢' F 7 (¢°)

— 33150¢'2F~%(¢°) — 183600¢™ F~(¢°) + 1224004 F~*(¢°)

+ 2488804 F~3(¢°) — 214965¢* F~2(¢°) — 282150¢* F~*(¢®) + 254525¢"®
+282150¢'° F(¢®) — 214965¢%° F2(¢°) — 2488804 F3(g°) + 122400¢%* F*(¢®)
+ 18360092 F°(¢°) — 33150 F®(¢°) — 103428¢*° F"(¢®) — 12546¢°° F3(q°)
+ 38420¢%" F%(q°) + 168309 F"°(¢°) — 6120¢*° F (¢°) — 6732¢°° F'*(¢%)

— 1224¢* F13(g%) 4 765¢** F (%) + 510¢%3 F*5(¢°) + 135¢3 F15(¢®)

+ 18q35F17(q5) + qsepls(qs)) (4.3.15)

Extracting the terms involving ¢***!, ¢°"*? and ¢°**3 in (4.3.13), (4.3.14), and
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(4.3.15) respectively and proceeding similarly as in the proof of (4.3.4) we arrive at
(4.3.1),(4.3.2), and (4.3.3).
Next, from (4.1.12), we have

= no_ (...\4 __ (.49, 49\4 B(q7) A(q7) 2 5C’(q7) !
§p4(n)q = (69)% = (4% ¢)% (C(q7) ~ 9B ¢ +q A(q7)> . (4.3.16)

Expanding the right hand side of (4.3.16) and extracting the terms involving ™",

we find that

q)

+ éSq —4q

Zm(?n + 1)¢"
CG) | 4 BOCQ)

o 0L
= "”°°( e B3(9) A5Q)
A

(T TV (@)B%(q) , Cl@)A*q) _ ,B(9)C*q)
= (¢%q )oo (25(] 4 ( Cs(q) +4q B3(q) q A3(q) >> . (4.3.17)

Using (4.2.36) in (4.3.17), we deduce that

o0

D pa(Tn+ 1)g" = —4(g; 9)& — 79(q; 4)%
n=0

=_4Zp4 n)g" —7Zp )g™ e, (4.3.18)

n=0

Equating coefficients of ¢"**! in (4.3.18), we arrive at (4.3.5).

Similarly using (4.1.13) and (10, p. 373, Entry 8(i), Eq. 8.2], we can prove
(4.3.6).

Also by (4.1.5), we have

Zpu (3;9)22 = (¢°;¢°)2 (4613W2(q3) —3q+ W_l(q‘q’))4 . (4.3.19)

Expanding the right right hand side of (4.3.19) and collecting the terms involving

¢>™*!, we find that
> peBn+1)q" = (g% ¢°)ez (—63q — 12 (W(q) + 48¢°W(q) + 64¢°W*(q))) .

(4.3.20)
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Using (4.1.6) in (4.3.20), we obtain

> pa(3n+1)g" = —12(q; 9)32 — 243q(¢% ¢°)52

n=0
= —12) pa(n)q" — 243 pia(n)g™*,
n=0 n=0
from which we easily deduce (4.3.7).

Proceeding similarly as in the proof of (4.3.7), we find that

( )m
Zpg (n)d" = 75 (4.3.21)
With the aid of (4.1.5), we rewnte (4.3.21) as
9 9) 31172 —17 3\\4
Zpg (3n)q ( ) (4¢°W3(g®) - 3¢+ W' (¢))". (4.3.22)

n=0

Extracting the terms in (4.3.22) that involve ¢3"*1  then dividing the resulting iden-

tity by g and replacing ¢* by ¢, we obtain
)22
Zpg n+ 3)q ((q q)) (—63g — 12 (W=3(q) + 48¢*W*(q) + 644°W°(q))) .

n=0

(4.3.23)
Using (4.1.6) in (4.3.23) and simplifying, we find that
ng n+3)¢" +122p9 (n)g* = —3% (@50 ) (4.3.24)
= = (4 Q)
We recall [5, Eq. (3.9)] which states that
(g% ¢*)L2

(9;9)3,
= (¢%¢%)2, (W'Q(qa) +3qWHg®) + 9¢* + 8¢ W3(¢®) + 12¢*W3(¢°)
+ 16q6W4(q3)>. (4.3.25)
Employing (4.3.25) in (4.3.24), we find that
> pe(3%m + 3)g" + 12 > pe(n)q
n=0 n=0
= —3%(q°; ¢°)2, (W'z(qs) + 3gW 7 (g%) + 9% + 86°W3(¢%) + 12¢*W(g°)

+ 16q6W4(q3)>. (4.3.26)
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Extracting the terms involving ¢*" in (4.3.26) and then replacing ¢® by ¢, we obtain

> pe(3°n+3)g" +12) pe(3n)q" = —37q(¢% ¢*)% = —37 D _ pe(n)g*"*".
n=0 n=0 n=0

(4.3.27)
Comparing the coefficients of ¢3"*! in (4.3.27), we readily arrive at (4.3.8).
Following the steps as in the proof of (4.3.7), we deduce that
Zpls (3n +2)¢" = 3%¢(q% ¢°)23 + 90(¢*; ¢°)%,(q; 9) 22 (4.3.28)

With the help of (4.1.5), we write (4.3.28) as

ZP15(3W+2)Q
n=0
= 3%g(¢% ) + 90(¢* ¢*)3(¢%; )12 (48°W3(¢®) — 3¢ + WH(g®))*.  (4.3.29)

Collecting the terms involving ¢3"*! in (4.3.29), then dividing the resulting identity

by ¢ and replacing ¢° by g, we find that

[ o]
> pis(3*n + 5)g" = 1107(g; )15 — 21870q(¢%; ¢°)22(g; 9)3. (4.3.30)

n=0

Using (4.1.6) in (4.3.30), we obtain

Zp15(32n +5)q

—110721915 n)g" — 218709(q”; ¢")ea ("5 4°)% (4°W*(¢*) — 3¢+ WH(g%))
(4.3.31)

. Extracting the terms involving ¢*"*2 in (4.3.31), we find that

o0 o0
> pis(3%n +23)¢" = 1107 > p15(3n + 2)g™ + 65610(g; ¢)22(¢% ¢*)%.  (4.3.32)
n=0 n=0

Eliminating (q; ¢)2(¢?%; ¢3)3, betwéen (4.3.28) and (4.3.32), we deduce that

me (3°n + 23)¢"™ = 1836 Zpls (3n 4 2)¢" — 33 Zp )@ (4.3.33)
n=0 n=0
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Equating the coefficients of ¢>**! in (4.3.33), we arrive at (4.3.9) to complete the
proof.

O

Remark 4.3.1. Equating coefficients of ¢°**?, j=0,1,2,3 in (4.3.12), we obtain

two terms recursion relations
p2a(5%n + 55 + 4) = 4830pye(5n + 7). (4.3.34)
The identities involving pg, P12, P18, Pa, and pa analogous to the above are

p6(52n+5j+1 = —6pe(bn + j) with j =0,2,3,4,
p12 (5°n + 55 + 2) = 54pya(5n + j) with 7 =0,1,3,4,
pa (TPn+ 75 + 1) = —4dp4(Tn + j) with j = 0,2,3,4,5,6,

—2py(13n + j) with 7 =10,2,3,4,5,6,7,8,9,10, 11, 12,

)
)
ps (5°n+ 55 +3) = —510ps(5n + j) with j =0,1,2,4,
) =
o) (132n + 135 + 1)
) =

P12 (32n+3j+1 —12p19(3n + j) with 7 =0, 2.

Since pas(n) = 7(n + 1), we immediately arrive at the following corollary from

(4.3.4) and (4.3.34).
Corollary 4.3.2. We have
7(5%n) = 48307(5n) — 5''7(n),
7(5%n + 55 4+ 5) = 48307(5n+j + 1), 1 =0,1,2,3.

Note that, the first identity in the above corollary is a special case for p = 5 of

Ramanujan’s famous conjecture [50]

(") = 7(p)r(p") — p'l7(@™7Y), (4.3.35)

first proved by Mordell in [43].
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Remark 4.3.2. Equating the coefficients of ¢** and ¢***? in (4.3.27), we obtain the
two term recursion relations

po(3in 4 3) = —12py(32n),

po(3%n + 57) = —12ps(3%n + 6).
Simalarly, equating the coefficients of ¢** and ¢*™*% in (4.3.33), we have

p1s(3%n + 23) = 1836p15(3%n + 2),

pys(3%n 4+ 77) = 1836p;5(3%n + 8).
Also equating the coefficients of ¢°* in (4.3.31), we find that

p15(3%n + 5) = 1107p:5(3n).

4.4 More Identities for py(n) and 7(n)

Theorem 4.4.1. If k, n are nonnegative integers, then
P2a(25n 4+ 2542 — 1) = apoq(2n + 1) + brpas(n), (4.4.1)
where ax and by are given recursively as
ar = —24ak_1 + bg_1, by = —2048ay_1,
with ag = —24 and by ='—2048.

Proof. We prove (4.4.1) by induction on k. Employing (4.1.7) and (4.1.8), we have

Y " pau(n)g” = (% 4 2(0(a*) — 2qu(g®))™2. (4.4.2)
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Expanding the right hand side of (4.4.2) binomially and extracting the terms in-

2n+1

volving ¢°"**, we obtain

> pau(n+1)g" = —(g; 9)22(12 - 20" (¢°)¥(q*) + 220 - 2°99°(¢*)¥*(¢")

et
+ 792 2°¢* 07 (¢" )9 (¢*) + 792 - 27°%(¢* )7 (¢*)
+220 - 2°¢*0%(¢*)9°(¢*) + 12 - 2 ¢°p(a*) ¥ (¢%))
= —(4,9)52(3 - 20(g")¥(g")(#¥*°(¢%) + 2°¢°9(¢"))
+220 - 2°9¢0° (") (¢*)(¥°(¢*) + 2°¢°°(¢"))
792 PPV + Pait(a). (443)
From (4.1.14) and (4.1.15), we find that
0'%(¢%) + 2%°9*%(¢*) = (<p2(q2) + 4q1/)2(q4)) ((wz(qz) +499%(g*))"
— 20003 (¢ (g*) (#(6%) + 4au(g"))” + 80g¢* (6w (")),

(4.4.4)

0%(@%) + 2°¢°¥0(q") = (¢*(¢%) + 4g¥*(¢")) ((¥*(¢®) + 4q¥°(¢"))* — 12q¢°(¢*)%?(¢").

(4.4.5)

Employing (4.1.9) and (4.1.11) in (4.4.4) and (4.4.5), we deduce that
©'%¢%) +2°°¥°(*) = ¢ (a)(¥*(9) — 20¢9°(q) + 80¢°¥*(¢)), (4.4.6)
0°(¢*) + 2°¢°¥°(¢*) = ¥*(a)(¢*(9) — 12q%"(¢)). (4.4.7)

Using (4.1.11), (4.4.6), and (4.4.7) in (4.4.3) and simplifying, we have
Zp24(2n + 1)q"
n=0

= —23(q; q) 229" (q)(3¢%(q) + 160g¥®(q) + 768¢°¥(¢%)),

= —2%(g; 9)220*(9)(3((¢*(q) — 16q¥*(¢))® + 32q¢*(q)¥* (¢%)) + 160g¢%(q)).
(4.4.8)
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We further simplify (4.4.8) by employing (4.1.10), (4.1.11), (4.1.7), and (2.2.3) to
obtain

[>.<}

Y paa(2n +1)q" = —3.2%(g;9)% — 2 a(g% ¢*)%

n=0
= -3.2° me n)g® — 21 Zp g2l (4.4.9)

Equating the coefficients of ¢?**! in (4.4.9), we find that

p24(4n + 3) = —3.23}724(277, + 1) — 211p24(n).

This proves (4.4.1) for k = 0.

To complete the induction step, we assume that (4.4.1) is true for k = ¢, which is

equivalent to

o0
ZPN(QHIN +2* - 1)g" = Zpu n)q" + b Z paa(n)g*™*!
n=0

= ay(q; 9)% + bea(q?®; ¢%)2
a(g; 4225 (a% 62 + beg(q®; )2 (4.4.10)

Replacing g by —¢ in (4.4.10) and subtracting the resulting identity from (4.4.10),
we find that

o oo
sz“(ztﬂn +ot+1 _ 1)q" — Zp24(2t+1n 42+l _ 1)(=q)"

n=0 n=0

= —a,(¢% ") (=4 6°)% — (4;6°)%) + 2bia(d®; )28
= —a(d% P)8((— )% — (6 )5%)° + 3(¢% )5 (3 6% — (3:6D)%))

+2b:9(9% 42 (4.4.11)

Now, employing (2.2.2) and (2.2.3) in (4.1.10), we obtain

(—4;6%)% — (4; 6% = 169(—¢% ¢°)%.. (4.4.12)
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Using (4.4.12) in (4.4.11), we have

o0 oo
Zp24(2t+1n + 2t+1 _ l)qn _ Zp24(2t+1n + 2t+1 _ 1)(_q)n

n=0 n=0
= —a,(q?; ¢%)24(4096¢%(—q%; 9%) 2 + 48¢q) + 2b.q(q%; )2
= 2(b, — 24a,)q(q?; ¢*)24 — 4096a,q°(q*; ¢*)%2. (4.4.13)

Extracting the terms in (4.4.13) having odd powers of ¢, we find that

> paa(2n 4 272 — 1)q" = (b, — 24a.)(g; 9)2% ~ 2048a,q(q%; ¢°)2

n=0

o0 0o
= O¢41 Zp24(n)q" + bt+1 Z P24(n)q2"+1. (4414)
n=0

n=0

Equating the coefficients of ¢®"*! in (4.4.14), we arrive at

P24 (20 + 2% — 1) = ar41p2a(2n + 1) + biyap2a(n),
which completes the induction step to finish the proof. a

Remark 4.4.1. The first equality in (4.4.9) can be rewritten, after multiplying both

sides by q, as
a(q;9)% — g(~gq; —9)% = —48¢%(¢%; ¢*)% — 2"%¢*(¢*; ¢")2,

from which it can be easily deduced that

7(2k) = —247(k) — 2!'r (g) , (4.4.15)

where k is any integer and 7(z) = 0 1f = is not an integer.

The above two identities were written by Ramanujan in an incomplete and unpub-
lished manuscript in two parts on the partition function p(n) and tau function 7(n)
published along with Ramanujan’s Lost Notebook [54]. For additional details and
commentary on Ramanujan’s manuscript, we refer to Berndt and Ono’s beautiful

ezposition [13].
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Note that, when k = 2™ in (4.4.15), then it reduces to the special case with p = 2
of Ramanujan-Mordell’s identity (4.3.35).

Remark 4.4.2. Reuwriting (4.4.1) as

o0 o0 o0
Z p2a(2Hn + 28 — 1)¢" = a Zp24(n)q" + bi zp24(n.)q2"+1, (4.4.16)
n=0 n=0 n=0
and equating the coefficients of ¢° in (4.4.16), we obtain
P24(2572n 4+ 2671 — 1) = axpas(2n). (4.4.17)

We can show, inductively, that ax = 0(mod 2%%*+3) for k > 0. Therefore, from

(4.4.17), we conclude that
p24(2572n 4+ 2F*1 — 1) = 0(mod 23%+3).
Since T(n + 1) = pas(n), from (4.4.1), we obtain
7(262n) = ax7(2n) + be7(n),
and that from (4.4.17) and the multiplicativity of T(n), we conclude that

7(25+1) = a4,

4.5 Congruences for p.(n) with r <0

In this section, we derive some congruences for p.(n), when r = ~2, —4 and -8.

Theorem 4.5.1. We have

p_4(4n +3) = 0 (mod 2%), (4.5.1)
p-g(4n + 3) = 0 (mod 2°), (4.5.2)
p-s(8n +7) = 0 (mod 2°), (4.5.3)
p-2(5n +2) = p_o(5n + 3) = p_z(5n + 4) = 0 (mod 5), (4.5.4)

p-a(5n+ 3) = p_4(5n + 4) =0 (mod 5), (4.5.5)
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Note that Farkas and Kra [22, p. 405] proved (4.5.2) and several other similar

congruences. The remaining congruences in the above theorem seem to be new.

Proof. Employing (3.3.6) and (3.3.7) in (4.1.9), we find that
2. /2110 8. /814
‘(q4,<;14)'°<,44 N C - 44l )
(6 D&(a%aY)% (0% ¢*)%(¢% ¢®)%

From (4.5.6), it is clear that

ip—cx(n)q" = ;4
_ (499
(4% ¢%)cs (9% 4°)56

Extracting the terms involving odd powers of ¢ in (4.5.7), we obtain
& o]
Zp_4(2n +1)g" = 4(q2; q2)<2>o(q4; q4)go
mard (g; )22

_ 405 0e(=9 ")

- (4% 42

(4.5.6)

(0% 492, (¢% ®)s
(65698

+4q (4.5.7)

(4.5.8)

Replacing ¢ by —¢ in (4.5.8) and subtracting the resulting identity from (4.5.8), we
find that

n=0 n=0
= 4%%;%((—q; )Y —(4:4%)e0)
4. .4\14
— 4 (i - (6 )
X (((—4:6°)% — (4, 69)%)" +5(0% ¢)% (=0, 6% — (4;0%)%) + 5(q% ¢*)%)-

(4.5.9)
Now, writing {10, p. 40, Entry 25(ii)] in terms of g-products with the aid of

(2.2.2) and (2.2.3), we find that

(' ¢*%)2,
7% 4%)oo(4%; %) oo

(—4:¢")5% — (6:4))% = a7 (4.5.10)
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Using (4.5.10) in (4.5.9) and then equating the coefficients of ¢?"*!, we arrive at
(45.1).

Next, from (4.5.6), we have

S pos(n)g” = —
n=0

(g;9)%,
4. o4)14 4. 4\2 (8. 834 \ 2
7,4 )0 g2 (g% B4
=< 2. (2 14( 8. ,8)4 +4q(q q)2. (2qmq) ) . (4.5.11)
(9% 92)38(a% )% (g2, ¢?)10

Equating the terms involving odd powers of ¢ on both sides of (4.5.11), we obtain

o0
(65698 (¢%4¢Y)%(~¢ )%
p_g(2n +1)q" = 8129 oo _ g1 19 Joo =) 4512
g—;o s ) (g,9)% (g2 ¢%)32 ( )

Replacing ¢ by —g in (4.5.12) and subtracting the resulting identity from (4.5.12),

we get

o0 o
Zp-g(% +1)q" — ZP—S(zn +1)¢"
n=0 n=0

C
= (qTq—z%((—q; )% - (4:4°)%)
(‘14'44);Z 218 218 \3 2
=81 gy (-60)% = (60))" + 30 45— 7% — (4:49)%))- (4.5.13)
) I
With the help of (4.4.12), we write (4.5.13) as
i e 4. 4\24
Y psn+1)g" - ) ps(2n+1)¢" = 822%;;’; (4096¢°(—4¢%; %)% + 48q) .
n=0 n=0 q )q o0
(4.5.14)
Extracting the terms involving ¢?"*! in (4.5.14), we obtain
c- n_ a0 0)% 28
> p_s(dn +3)q" = 64"—=222(256¢(—q; )2 + 3), (4.5.15)
n=0 (q) q)OO

which yields (4.5.2).

Again, manipulating the g-products, we can rewrite (4.5.15) as

e 64 (_q. q2)56 (_q. q2)32
p_g(dn+3)g" = ——— (256(1 L0 L 30 9} 4.5.16
,;0 o s (4% ¢%)5 (¢%¢M)% (g% ¢")% ( )
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Replacing ¢ by —q in (4.5.16) and subtracting the resulting identity from (4.5.16),

we get

Zp_g(tln +3)¢" — Zp_8(4n + 3)(—q)"
n=0 n=0

64 256q 3

= B PR ((qz. q4)56((—q; )%+ (; )% + O q4)32((-q; )32 - (q; qz)iﬁ))
64 2569 - 3

RRCETRLE ((qQ;q“)gS(X Y0+ et - Y4)) , (4.5.17)

where X = (—¢;¢?)%, and Y = (g;¢%)%,.

Now, employing [10, p. 40. Entry 25(v)}, we find that

X+Y =(-¢;¢"% +(5;6)%,
= ((—¢; )% — (3;61)%)? + 2(¢% ¢H)%,

= 64q° 5 (384; qs)}" v + 2(¢% g™ (4.5.18)
(¢% ) (9% 6¥)%

In view of (4.5.18) and (4.1.16) we conclude that X7 + Y7 and (X + Y)((X +

Y)? — 2XY) are functions of ¢2, say, U(q?) and V (g?) respectively. Therefore, using
(4.1.17) and (4.4.12) in (4.5.17), we obtain

o] [ o]

- " o 64 256qU (%) | 48¢V(¢®)
2Pt 3)" = ) ps(n +3)(=0)" = (r ( @ g (qz;q4>gg)‘

(4.5.19)

Extracting the coefficients of ¢?**! in (4.5.19), we arrive at (4.5.3).

Again, from (4.1.4), we have

(g 9%
(q25. q25)12

[o]

NGRE (F4(¢®) + aF*(¢%) + 20°F*(@®) + 3¢° F(¢°) + 5¢* — 3¢°F(¢°)

+2¢°F~ (%) — ¢'F3(¢%) + q8F‘4(q5))2. (4.5.20)
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Expanding the last expression of (4.5.20) and extracting the terms involving ¢°**2,
¢°**+3, and ¢°"*4, we easily deduce (4.5.4).

Finally, from (4.1.4), we get

CH
(¢°%; q25)24 475 3.5 2 2
—((']'g,'q—s)Q—T(F (6°) + aF*(¢°) + 2¢°F*(¢°) + 3¢°F(¢°) + 5¢* — 3¢°F}(¢°)
4
+ 205 g%) - TP + *F ) (4.5.21)

Equating the terms involving ¢°**3 and ¢°*** on both sides of (4.5.21), we arrive at

(4.5.5). a



Chapter 5

On Representations of a Number
as Sums of Polygonal Numbers

5.1 Introduction
Jacobi’s celebrated two-square theorem is as follows.

Theorem 5.1.1. ([32]). Let 7{O + O}(n) denote the number of representations of
n as a sum of two squares and d, ;(n) denote the number of positive dwisors of n

congruent to i modulo j. Then

T{D + D}(Tl) = 4(d1,4(n) - d3,4(n)). (511)

Simple proofs of Theorem 5.1.1 can be seen in [15] and [28]. Similar represen-
tation theorems involving squares and triangular numbers were found by Dirichlet,
Lorenz, Legendre, and Ramanujan. For example, another classical result due to

Lorenz (30, Theorem 3] is stated below.

Theorem 5.1.2. Let r{l0 + mO}(n) denote the number of representations of n as

a sum of | times of a square and m times of a square. Then

3

{0+ 30}(n) = 2(dy 3(n) — da;3(n)) + 4(dy12(n) — dg12(n)). (5.1.2)

78
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Recent contributions of Hirschhorn {30, 31] have been discussed in the intro-
ductory chapter. In this chapter, we present twenty five more identities involving
squares, triangular numbers, pentagonal numbers, heptagonal numbers, octagonal
numbers, decagonal numbers, hendecagonal numbers, dodecagonal numbers, and
octadecagonal numbers which are'obtained by using Ramanujan’s theta-function.

For k > 3, the n** k-gonal number Fi(n) is given by

(k - 2)n? — (k — 4)n

Fk = Fk(n) = )

By allowing the domain for Fi(n) to be the set of all integers, we see that the
generating function G(g) of Fi(n) is given by

o (k—=2)n%—(k-4)n

=Zqu=Z’q 2

n=—0oo n=-—0o0

We note an exception for the case £ = 3. We observe that G3(q) generates each
triangular number twice while Gg(g) generates them only once. As such we take
Ge(q) as the generating function for triangular numbers instead of G3(q). We further

observe that

Gi(q) = f(g.¢"%), (5.1.3)

where [(a,b) is Ramanujan’s general theta function. In view of (5.1.3), the re-
spective generating functions of squares, triangular numbers, pentagonal numbers,
heptagonal numbers, octagonal numbers, decagonal numbers, hendecagonal num-

bers, dodecagonal numbers, and octadecagonal numbers are

Galg) = f(
Go(q) = f(q,q ) = ¥(q),
Gs(q) = f(

)= f(

Gr(q
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Gs(9) = f(9,9%),
Go(g) = f(g:47),
Gul(g) = f(a,¢%),
Ga(q) = £(9,4°),

and

Gis(g) = f(g,9").

In Section 5.2, we give dissections of ¢(q), ¥(q), Gs(q), and G12(g) and recall some
identities established in [30] and [31]. In the remaining five sections, we successively
present sets of identities involving decagonal numbers, hendecagonal numbers, do-

decagonal numbers, heptagonal numbers, and octadecagonal numbers.

5.2 Preliminary Results

Let U, = a™t)/2pn(n=-1/2 and V,, = o™= D/2pn(+1)/2 for each integer n. Then we

have [10, p. 48, Entry 31]

.

n-1 U V.
f(a,b) = FUL V) = 3 Uit (T+ U) | (5.2.1)
=0 T r

Replacing a by ¢® and b by ¢® in (5.2.1), we find that

n-1 '
f(qa, qb) — Zq(ﬂz'—b)r2+(“7'b)rf (q(“—zﬂ)nz+(a+b)nr+(“7'b)n q

b

(ﬂz'—b)nz_(a-)-b)nr—(“z;b)n) )

r=0
(5.2.2)
Setting a = b =1 and then letting n = 3,5,8 in (5.2.2), we obtain
¢(9) = ¢(q°) + 2¢Gs(4°), (5.2.3)
. 9(9) = ¢(g®) + 29A(¢°) + 2¢*Gra(¢), (5.2.4)

o(q) = 0(¢®) + 29B(q"°) + 2¢"9(¢*?) + 2¢°G10(q"®) + 2¢"%9(¢'®),  (5.2.5)

respectively, where A(q) = f(¢° ¢") and B(q) = f(¢% ¢%).
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Setting @ = 1, b = 3 and then putting n = 2,4,6 in (5.2.2), we deduce that

¥(q) = B(q®) + 4Gro(d®), (5.2.6)
¥(g) = F(¢,6%°) + ¢/ (¢®, ") + ¢ F(a'*, %) + ¢°Gus(g), (5.2.7)
and  9(q) = f(¢%,¢"®) + ¢B(¢"®) + ¢ (¢, ') + &°F (%, ")
+ q"%G10(q"®) + ¢"°Gas(¢°), (5.2.8)
respectively.

Setting @ = 1, b = 0 and then choosing n = 3,5 in (5.2.2) and noting that
¥(g) = 3 f(1,q), we obtain

¥(q) = Gs(¢°) + q¥o(¢°) (5.2.9)
and ¥(g) = C(¢°) + 9G7(q°) + ¢*¥(¢*), (5.2.10)

respectively, where C(q) = f(q?, ¢%).
Furthermore, setting a = 1, b =2 and n = 3 in (5.2.2), we find that

Gs(q) = f(¢"%,¢"°) + af(¢°, &™) + ¢*Cui(d®). (5.2.11)
Again setting a =1, b =9 and n = 2 in (5.2.2), we obtain
Gr2(9) = Alg*) + ¢G(¢%). (5.2.12)

We require identities deduced: in [30] and [31] which we mention below. The
first seven of these identities appear in [30] as equations (1.1), (1.3), (1.4), (1.5),
(1.11), (1.12), and (1.14), respectively, while the last six identities appear in [31] as
equation (1.2), (1.3), (1.4), (1.6), (1.13), and (1.14), respectively. The notations of
the type 7 {{F; + mF;} (n), that are used throughout the sequel, denote the number
of representations of n as a sum of [ times a polygonal number F; and m times a
polygonal number Fj. Note that {20 + A}(n) that appears in (5.2.14) is r{2F; +
Fs}(n). However, we have kept the former notation in such cases which involve

squares or triangular numbers.
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r{A + A}(n) =d4(4n+ 1) — d3a(4n + 1), (5.2.13)
'I‘{2D + A}(n) = d1,4(8n + 1) — d3,4(8'fl + 1), (5214)
r{A +40)(n) = %(d1_4(8n +5) - daa(8n + 5)), (5.2.15)

r{A+20}(n) = %(dl,g(8n +3) +dss(8n +3) — ds 3(8n + 3)

— d75(8n + 3)), (5.2.16)

{60+ A}(n) = d13(8n + 1) — d23(8n + 1), (5.2.17)
r{O + 124} (n) = %(dl,g(Sn +13) — dyg(8n + 13)), (5.2.18)
r{30 + 4A}(n) = %(d1,3(8n +7) = dys(8n + 7)), (5.2.19)

T{A + 4F5}('I’L) = d1,24(24n + 7) + d19,24(24n + 7) — d5,24(24n + 7)

— dy324(24n + 7), (5.2.20)

r{34 + Fs}(n) = d; 12(12n + 5) — d1112(12n + 5), (5.2.21)
m{3A 4 2F5}(n) = d; g(24n + 11) — d7(24n + 11), (5.2.22)
r{6A + Fs}(n) = dy g(24n + 19) — d7 g(24n + 19), (5.2.23)

T‘{3D + F5}(TL) = d1,8(24n + 1) + d3,3(24n + 1) - d5,8(24n + 1)

~ drg(24n + 1), (5.2.24)
T'{3D + 4F5}('I’L) = dl,g(GTL -+ 1) + d3,8(6n + 1) - d5,8(6n + 1) - d7,8(6n + 1)
(5.2.25)
5.3 Identities involving decagonal numbers
Theorem 5.3.1. We have
T‘{D + 3F10}(7’L) = d1,3(16n + 27) — d2,3(16n + 27), (531)
1
{22 + 3Fp}(n) = §(d1,3(16n + 31) — dp3(16n + 31)), (5.3.2)
1
r{2A + Fm}('n) = §(d1,4(16n + 13) - d3,4(16n + 13)), (533)

T{D + Fm}('n) = d1,4(16n + 9) - d3,4(16n + 9), (534)



r{6A + Fio}(n) = %(dl‘g(lﬁn +21) — dya(16n + 21)),
{30 + Fio}(n) = d13(16n + 9) — d2 3(16n + 9),
r{Fs + Fio}(n) = %(d1,3(48n +43) — dy4(48n + 43)),
r{Fs + 3F10}(n) = d1(48n + 83) — d73(48n + 83),
T{2Fs + Fio}(n) = d124(48n + 31) + d1924(48n + 31)
— d524(48n + 31) — dp324(48n + 31),
r{A + Fio}(n) = %(dl,s(mn +11) + dyg(16n + 11)

— d5,8(16n + 11) — d7,3(16n + 11))

Proof. The identity (5.2.17) is equivalent to

o(@*)e(q) = D _(dia(8n+ 1) — (8 + 1))g™

n>0

Using (5.2.8) in (5.3.11), we have

o(®)(F(a%,q"®) + ¢B(a*®) + ¢*F(¢**, ") + ¢* f(¢*°, ¢"™¥)

+¢°G10(¢"®) + ¢°Gs(¢%) = ) (dr3(8n + 1) — da5(8n + 1))q™.

n2>0

identity by ¢* and replacing ¢® by ¢, we find that

70(9)G10(¢®) = D> _(d1,3(48n + 33) — dy3(48n + 33))g"™.

n>0

Equating the coefficients of ¢"*! on both sides of (5.3.13) and noting that

The identity (5.2.18) is equivalent to

P(aVH(g) = 5 S (dha(8rn +13) — dy(8n+13))a"

n>0

83
(5.3.5)
(5.3.6)
(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)

(5.3.12)

Extracting the terms involving ¢®"** in (5.3.12) and then dividing the resulting

(5.3.13)

d1,3(48n + 33) = d13(16n + 11) and dp3(48n + 33) = dp3(16n + 11), we arrive at

(5.3.14)
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With the aid of (5.2.8), we rewrite (5.3.14) as

$(q%)(f(¢%,a"®) + aB(¢*®) + ¢ f(a*, ¢'%) + ¢° £ (¢%, ¢")
+ ¢"°G1(¢*®) + ¢ Gos(q®)) = % Z(d1,3(8n +13) — dy3(8n + 13))¢™.  (5.3.15)

n>0
Collecting the terms in (5.3.15) in which the power of ¢ is congruent to 4 modulo 6,
we find that |
2 3 1 n
(*)Gw(e®) = 5 D _(d13(48n + 45) — dz.5(48n + 45))q™. (5.3.16)
n>0
Equating the coefficients of ¢"*! on both sides of (5.3.16) and noting that
d13(48n + 45) = d; 3(16n + 15) and d;3(48n + 45) = d2 3(16n + 15), we arrive at
(5.3.2).
The identity (5.1.1) is equi\;alent to
=1+4) (dia(n) — dsa(n))g™. (5.3.17)
n>1

If we invoke (5.2.5), (5.3.17) becomes

(0(a™) + 29B(q"°) + 20"%(q™) + 2¢°G10(7'°) + 2¢"°%(¢"**))*

=1+4) (d1a(n) — dsa(n))g™ (5.3.18)

n>1
Now, we extract those terms in (5.3.18) where the powers of ¢ are congruent to 13
modulo 16, divide the resulting identity by ¢** and replace ¢'6 by g, to obtain
1
¥(¢¥)Grolq) = 5 Z(d1_4(16n +13) — d3 4(16n + 13))q"
n>0
which readily yields (5.3.3).
Further, we collect the terms involving ¢'6*? in (5.3.18) to deduce that

B*(q) + qGio(q) = D _(d1a(16n +2) — dsa(16n + 2))g™. (5.3.19)

n>0
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Noting the fact that d; 4(16n + 2) = d; 4(8n + 1) and d34(16n + 2) = d34(8n + 1),

we obtain from (5.3.19),

B*(q) + qG3,(q) = D _(d1a(8n + 1) — d34(8n + 1))q™. (5.3.20)

n>0

Using (10, p. 46, Entry 30(v),(vi)], we have
B(q) = f(a ¢°) = 1(a% 4")e(d®) + 26°F(®, )0 (¢"®)  (5.3.21)
and  Gi(g) = f2(g,4") = f(&, ¢")e(d®) + 20/ (¢°, ") (g™®). (5.3.22)

Replacing B%(q) and G%,(q) in (5.3.20) by the right sides of (5.3.21) and (5.3.22)

respectively, and then factorizing, we find that

(0(a®) + 26" (¢ N(F(¢% 0°) + af (6%, 0)) = D (d1a(Bn + 1) — d3(8n + 1)),

n20
(5.3.23)
Setting a = b=n = 2 in (5.2.2), we obtain
0(¢") = o(¢®) + 24°¥(¢"°). (5.3.24)
Employing (5.3.24) in (5.3.23), we get
©(0*)(B(*) + aG10(a%)) = D _(d14(8n + 1) — d3a(8n + 1))g™ (5.3.25)

n>0
\Equating odd parts in (5.3.25), we find that
0(9)Gro(g) = ) (d14(16n+9) — d3 4(16n + 9))q",
n>0
which readily yields (5.3.4).
The identity (5.1.2) is equivalent to
0(@)e(¢®) =1+2) (di3(n) — das(n))g" + 4D (dasz(n) — ds12(n))g”
n>1 n>1

=1+2) (dis(n) —das(n))g” +4 Y (dis(n) — das(n))g™. (5.3.26)

n>1 n>1



86

Employing (5.2.5) in (5.3.26), we have

(0(¢®*) + 29B(q"°) + 2¢*9(¢®) + 2¢°G10(¢"®) + 20" (¢'**))
x (0(a"%?) + 2¢° B(q*®) + 2¢"*%(¢%®) + 2¢”"G10(¢*®) + 2¢*84(¢***))

=142 (di13(n) — dos(n))g" +4 > (dra(n) — daa(n))g™ (5.3.27)

n>1 n>1
Extracting the terms in (5.3.27) involving ¢'®"+% then dividing the resulting identity
by ¢° and replacing q'¢ by g, we find that
1
q(@")Go(g) = 5 D _(dr5(16n + 5) ~ dy3(16n + 5))q"
n>0

from which we easily deduce (5.3.5).

Again using (5.2.3) in (5.3.13), we have

9((q°) +29Gs(3*))Gro(q®) = D (drs(16n + 11) — dy5(16n + 11))g".  (5.3.28)

n>0

Separating the terms involving ¢***! and ¢***? in (5.3.28), we obtain

0(¢*)Gro(g) = Y _(dr3(48n +27) — da5(48n + 27))q" (5.3.29)
n>0

and  2Gs(q)Go(g) = D _(d13(48n + 43) — da3(48n + 43))q™, (5.3.30)
n>0

respectively. Now, the identities (5.3.6) and (5.3.7) follow easily from (5.3.29) and
(5.3.30), respectively.
The identity (5.2.22) is equivalent to
$(¢*)Gs(q?) = > (d1s(24n + 11) — drg(24n + 11))g™. (5.3.31)
n>0
Invoking (5.2.6) in (5.3.31), we have

(B(¢®) + ¢°G10(¢%))Gs(q®) = Z(dl,s(mn +11) — d7g(24n + 11))g".  (5.3.32)

n>0
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Isolating the terms involving ¢®**! in (5.3.32), we obtain

9G10(6*)Gs(q) = D (d1,5(48n + 35) — dr(48n + 35))q™. (5.3.33)

n>0
Comparing the coefficients of g"*! on both sides of (5.3.33), we arrive at (5.3.8).

The identity (5.2.20) is equivalent to

¥(q)Gs(q*)

= Z(d1|24(24n + 7) + d19,24(24n + 7) — d5,24(24n + 7) - d23,24(24n + 7))(]".

n>0 ,

(5.3.34)

Using (5.2.6) in (5.3.34), we have

(B(¢%) + 9G10(¢%))G5(g*)

= Z(d1,24(24n + 7) + d19,24(24n + 7) - d5,24(24n + 7) - d23,24(24n + 7))qn

n>0
(5.3.35)
Extracting the terms having odd powers of ¢ in (5.3.35), we obtain
G10(9)Gs(a?)
= Z(d1124(487’l + 31) + d19124(48n + 31) - d5‘24(48n + 31) - d23_24(48n + 31))(.]”,
n>0
which readily yields (5.3.9).
The identity (5.2.16) is equivalent to
1
Playb(g") = 5 D_(dig(8n +3) + das(8n + 3) ~ ds(8n + 3) ~ drs(8n + 3))g™
n>0
(5.3.36)

With the help of (5.2.6), we rewrite (5.3.36) as

(B(¢®) + 9G10(a*))%(q?)

1
=5 D (dis(8n+ 3) + d3s(8n + 3) — ds s(8n + 3) — drg(8n + 3))g".  (5.3.37)

n>0



Collecting the terms involving ¢>**! in (5.3.37), we obtain

Gio(9)¥(q)
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1
= > (d1s(16n + 11) + dyg(16m + 11) — ds g(16n + 11) — d7 (160 + 11))¢",

n>0

from which we easily arrive at (5.3.10).

5.4 Identities involving hendecagonal numbers

Theorem 5.4.1. We have

r{A + Fu}(n) = di12(36n + 29) — diy 10(36n + 29),
r{A + 2F1 }(n) = d18(72n + 107) — d7 5(72n + 107),
r{2A + Fi1 }(n) = d1g(72n + 67) — d7 5(72n + 67),

{0 + F11}(n) = d1 8(72n + 49) + d3 8(72n + 49)

— d5,8(72n + 49) - d7,3(72n + 49),

T‘{D + 4F11}(n) = d1,8(18n + 49) + d3,8(18n + 49)

- d5'3(18n + 49) - d7,8(18n + 49),

T{Flo + Fn}(’n,) = d1,3(144n + 179) - d7,8(144n + 179)

Proof. The identity (5.2.21) is equivalent to

¥(g*)Gs(q) = > _(d112(12n + 5) — dy1 12(12n + 5))g™

n>0

With the aid of (5.2.11), we write (5.4.7) as

V(@) (f(d2 4") + af(d®,¢*) + ¢*Gu(g?))

= Z(d1,12(12n -+ 5) — d11,12(12n + 5))(]”

n>0

(5.4.1)
(5.4.2)

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)

(5.4.8)



89

Extracting the terms involving ¢3**2 in (5.4.8), we obtain
¥(@)Gulg) = Y_(d112(36n + 29) — di112(36n + 29))",
n>0
which readily yields (5.4.1).
The identity (5.2.22) is equivalent to
$(¢*)Gs(q®) = > _(d1s(24n + 11) — d7 5(24n + 11))g™ (5.4.9)
n>0

Invoking (5.2.11) in (5.4.9), we find that

Y(@®)(f(a® ) + ¢ f(¢*% ¢*) + ¢*Cu1(¢®))

= (d15(24n + 11) — dr 5(24n + 11))g™ (5.4.10)

n20

Equating the terms involving ¢*"*! in (5.4.10), we obtain
q(@)Ga(¢®) = ) (dis(72n + 35) — dr5(72n + 35))q™, C(5.4.11)

n>0
from which we deduce (5.4.2).
The identity (5.2.23) is equivalent to
$(¢®)Gs(q) = > _(d1(24n + 19) — dyg(24n + 19))g"™. (5.4.12)
n>0

Using (5.2.11) in (5.4.12), we have

P(¢®)(f(g'%, ¢") + ¢f(®, ¢*) + ¢°Gu(d?))

=) (d1s(24n +19) — d75(24n + 19))q". (5.4.13)

n>0
If we collect the terms involving ¢®"*2 in (5.4.13), then we get
D(@)GCulg) = D (drs(72n + 67) — drs(72n + 67))¢",
n>0

which gives the identity (5.4.3).
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The identity (5.2.24) is equivalent to

©(q*)Gs(q)

= (di18(24n + 1) + d3g(24n + 1) — ds5(24n + 1) — drs(24n + 1))g".  (5.4.14)

n>0

With the aid of (5.2.11), we rewrite (5.4.14) as

(@) (f(d% ¢") + qf(°, ¢*) + *Gu(d®))

= Z(d1,3(24n + 1) + d3_8(24n + 1) - d5,8(24n + 1) - d7_3(24n + 1))q". (5415)

n>0

Extracting the terms involving ¢***2 in (5.4.15), we obtain

p(9)Gn(9)

= Z(d1_8(72n + 49) + d3,8(72n + 49) — d5,8(72n + 49) — d7,3(72n + 49))(]",

n>0
which readily yields (5.4.4).
The identity (5.2.25) is equivalent to

(p(q3)G5(q4) = Z(dl,g(ﬁn + 1) + d3,8(6n + 1) - d5’8(67’1, + 1) - d7,8(6n + 1))(]"

n>0

(5.4.16)

Using (5.2.11) in (5.4.16), we have

o(@®)(f(a*, %) + ¢* F(d*, ¢*) + G (g™))

= (d1s(6n+1) + dss(6n+ 1) — dsg(6n + 1) — drg(6n +1))g".  (5.4.17)

n>0

Isolating the terms involving ¢***2 in (5.4.17), we find that

qch(q)Gu(q4)

=) (drs(18n + 13) + d3(18n + 13) — d5 5(18n + 13) — d75(18n + 13))q",

n>0

from which we easily deduce (5.4.5).
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Again employing (5.2.6) in (5.4.11), we obtain

9(B(¢%) + ¢Gr0(¢%))G11(¢®) = D _(drs(72n + 35) — drg(72n + 35))g".  (5.4.18)

n>0

Comparing the terms in (5.4.18) where the powers of ¢ are even, we find that

9G10(q)Gn(q) = ) _(drs(144n + 35) — dy 5(144n + 35))g™. (5.4.19)
n>0
Equating the coefficients of ¢"*! in (5.4.19), we arrive at (5.4.6). 0O

5.5 Identities involving dodecagonal numbers

Theorem 5.5.1. We have

'r'{5l:| + Flz}(n) = d1'4(57’L + 4) - d3,4(5n + 4), (551)
T'{F12 + Flg}(n) = d1,4(5n + 8) - d3,4(5n + 8), (552)
T{SA + Flg}(’n) = %(d1,4(20n + 17) - d3,4(20n + 17)) (553)

Proof. Employing (5.2.4) in (5.3.17), we find that
((¢%) + 29A(¢°) + 24"Gra(¢%)* = 1 +4 ) _(d1a(n) —dsa(n))g™.  (5.5.4)
n>1
Extracting those terms in (5.5.4) in which the powers of ¢ are congruent to 4 modulo
5, we obtain
(a°)Gr2(q) = D _(dra(5n +4) = daa(5n + 4)q",
n>0
from which (5.5.1) follows.
Again, collecting the terms involving ¢°**2 in (5.5.4), we get
4GT5(q) = D _(dra(5m +3) — dya(5n + 3))q", (5.5.5)
n>0

which immediately gives (5.5.2).
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Further, extracting the terms involving ¢°**? in (5.5.4), we find that

A%(q) =) (dia(5n +2) — daa(5n + 2))g"™. (5.5.6)

n>0

By (10, p. 46, Entry 30(v),(vi)], we have
A%(q) = A%, q") = A(d")e(q") + 2¢°Gra(a* )0 (™). (5.5.7)

From (5.5.6) and (5.5.7), we obtain

A(@)p(a") + 2¢°Gr2(g)(g%) = ) (d1a(5n+2) — dga(5n +2))g".  (5.5.8)

n>0
Collecting the terms involving ¢***3 in (5.5.8), we find that
2G12(Q)%(¢°) = D _(d1,4(20n + 17) — d34(20n + 17))q",
n>0

which readily yields (5.5.3). O

5.6 Identities involving heptagonal numbers

Theorem 5.6.1. We have

r{Fy + Fr}(n) = dy 4(20n + 9) — dg (20 + 9), (5.6.1)
{50 + Fr}(n) = %(d1,4(20n +17) — dg,4(20n + 17)), (5.6.2)
r{2Fy + Fr}(n) = %(d1,4(40n 1 73) — dy 4(40n + 73)). (5.6.3)

Proof. With the aid of (5.2.12), we rewrite (5.5.5) as

q(A(g*) + aG(¢%))? = D (dr4(5n +3) ~ daa(5n +3))q™ (5.6.4)

n>0

Extracting the terms involving ¢®**2 in (5.6.4), we find that

G3(g) = D (d14(40n + 18) — ds 4(40n + 18))g™. (5.6.5)

n>0
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Equating the coefficients of ¢™ in (5.6.5) and noting the fact that d; 4(40n + 18) =

d1,4(20n + 9) and d3 4(40n + 18) = d3 4(20n + 9), we arrive at (5.6.1).
The identity (5.2.13) is equivalent to
P*(q) = Z(d1,4(4n +1) = daq(dn +1))q™.
n>0

Invoking (5.2.10) in (5.6.6), we obtain

(C(¢°) + aG7(a°) + ¢*¥(a™))* = D (dia(dn+1) — dza(4n +1))g"

n>0
Equating the terms involving ¢®*** in (5.6.7), we get
2G7(g)(¢°) = Y _(d1,4(20n + 17) — d3 4(20n + 17))q™.
n>0
Comparing the coefficients of ¢™ in (5.6.8), we easily arrive at (5.6.2).
Further, the identity (5.2.14) is equivalent to
o(@)(q) = > (d1a(8n +1) — dza(8n + 1))g"™.
n2>0

Using (5.2.4) and (5.2.10) in (5.6.9), we find that

(0(a°°) + 26° A(¢"°) + 2¢°G12(¢"))(C(¢°) + aG2(q°) + ¢* (™))

= Z(d1,4(8” +1) —d3a(8n +1))q™.

n>0
Now, we collect the terms involving ¢>*** in (5.6.10) to obtain
20G12(q*)Gr(q) = ) _(d1,4(40n + 33) — d34(40n + 33))q",
n>0

from which we deduce (5.6.3).

(5.6.6)

(5.6.7)

(5.6.8)

(5.6.9)

(5.6.10)
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5.7 Identities involving octadecagonal numbers

Theorem 5.7.1. We have

T{F5 + Flg}(n) = d1,24(96n + 151) + d19,24(96n + 151)

- d5'24(96n + 151) - d23,24(96n + 151), (571)

1
T{A + Flg}('n,) = §(d1,4(32n + 53) - d3,4(32n + 53)), (572)
{3 + Fig}(n) = %(.dl,3(32n +61) — da.s(32n + 61)). (5.7.3)

Proof. The identity (5.2.20) is equivalent to

¥(q)Gs(q")

= Z(d1,24(24n + 7) + d19,24(247’l + 7) — d5,24(24n + 7) - d23,24(24n + 7))(]"

n>0

(5.7.4)

Employing (5.2.7) in (5.7.4), we get

(F(d®,¢%) + af (4%, ¢*) + ¢ f(¢"%, 6°*) + ¢°G1s(¢*)) G5 (q*)

= Z(d1‘24(24n + 7) + d19’24(24n + 7) - d5,24(24n + 7) - d23,24(24n + 7))qn

n>0
(5.7.5)
Extracting those terms in (5.7.5) in which the powers of ¢ are congruent to 2 modulo

4, we obtain

qG18(9))Gs(q)

= Z(d1,24(96n + 55) + d19,24(96n + 55) — d5,24(96n + 55) — d23,24(96n + 55))(]",

n>0
which gives the identity (5.7.1).

Again, the identity (5.2.15) is equivalent to

Y(w(q*) = % > (dra(8n +5) — d34(8n + 5))g™. (5.7.6)

n>0
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Using (5.2.7) in (5.7.6), we have

(f(d®,0*) + af (¢ ¢*) + ¢ £(a", ¢*) + ¢°Grs(g"))¥(q")

_ % S (d1.a(8n + 5) — daa(8n + 5))g" (5.7.7)

n>0
We collect the terms involving ¢***2 in (5.7.7) to obtain

WGis(@)0la) = 5 Y (dra(32n+21) = ds (320 +21))0",
n>0

from which we easily arrive at (5.7.2).

The identity (5.2.19) is equivalent to

GNblg") = 5 S (dho(8n+7) — dos(Bn + T)a" (5.7.8)

n>0

With the help of (5.2.7) and (5.2.9), we rewrite (5.7.8) as

(f(8*, ¢'%®) + ¢ F (g%, ") + ¢° F(d°%, 4"°) + ¢*2Grs(¢"))(Gs(a"®) + a*¥(d*®))

- % S (d1s(8n +7) = daa(8n +T))g" (5.7.9)

n>0

Extracting the terms involving ¢!'*"*10 in (5.7.9), we obtain

1

9G1s(9)¥(q%) = 5 > (d13(96n + 87) ~ da3(96n + 87))q™ (5.7.10)

n>0
Equating the coeflicients of ¢"*! on both sides of (5.7.10) and noting that d; 3(96n+
87) = d1,3(32n + 29) and d» 3(96n + 87) = d33(32n + 29), we deduce (5.7.3). O
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