CONTENTS

stract	
ntents	i
List of tables	
t of figures	v
List of abbreviations	
Introduction	1
1.1. Introduction	1
1.2. Objectives	3
Review of literature	4
Materials and methods	7
3.1. Materials.	7
3.2. Initial moisture content of the sample	7
3.3. Drying equipment	7
3.4. Experimental design	7
3.5. Measurement of quality attributes	8
3.5.1 Colour	8
3.5.2 Rehydration ratio	8
3.5.3 Drying efficiency	9
3.5.4 DPPH radial scavenging activity	9
3.6. Optimization of the MVD of the banana slices	10
3.7. Development of banana flour incorporated biscuit	10
3.7.1 Material	11
3.7.2 Formulation	11
3.7.3 Biscuit making procedure	12
3.7.4 Sensory evaluation of the biscuit	12
3.7.4.1 Fuzzy analysis of sensory data	13
3.7.4.2 Triplets associated with sensory scales	13
3.7.4.3 Calculation of triplets for sensory scores of the	14
Kachkal biscuit	
3.7.4.4 Triplets for relative weightage of quality attribute	15
3.7.4.5 Triplets for overall sensory score of Kachkal biscuit	15
3.7.4.6 Estimation of membership functions of standard	15

i

fuzzy scale

	3.7.4.7 Computation of overall membership functions of	16
	Sensory scores on standard fuzzy scale	
	3.7.4.8 Estimation of similarity values and ranking of the	17
	kachkal biscuit	
	3.7.5 Hardness	17
	3.7.6 Colour	17
	3.8. Effective moisture diffusivity of the banana	18
	3.9. Mathematical modeling of moisture sorption isotherm of the	20
	different kachkal banana products	
	3.9.1 Materials	20
	3.9.2 Determination of adsorption isotherm	21
	3.9.3 Sorption models and statistical analysis	21
4.	Results and discussion	23
	4.1. Optimization of the process parameters of the microwave	24
	vacuum drying of Kachkal banana	
	4.1.1 Modeling of microwave vacuum drying by Artificial Neural	25
	network	
	4.1.2 Optimization by Genetic algorithm	27
	4.1.3 Effect of independent variables on the responses	27
	4.1.3.1 Effect on Rehydration ratio.	28
	4.1.3.2 Effect on Colour	28
	4.1.3.3 Effect on drying efficiency (%)	32
	4.1.3.4 Effect on % scavenging activity	33
	4.2. Physical and sensory characteristic of the biscuit	34
	4.2.1 Hardness of the biscuit	35
	4.2.2 Colour of the biscuit	35
	4.2.3. Sensory evaluation of the biscuit	35
	4.3. Effective moisture diffusivity of the banana slices	38
	4.3.1. Effect of MVD process parameters on effective moisture	38
	diffusivity	
	4.3.2 Effect of moisture content on effective moisture diffusivity	39
	4.3.3 Modelling the moisture diffusivity with MVD process	41
	parameters	

References		
5. Summary and conclusions	44	
4.4.2 Fitting of sorption models	43	
4.4.1 Sorption curve	42	
4.4 Mathematical modelling of moisture sorption isotherm of the Bis	scuit 42	

LIST OF TABLES

		Page
Table 3.1:	Coded and real values of the independent variables	8
Table 3.2:	Formulation of the biscuit	12
Table 3.3:	Triplets associated with 5-point sensory scales.	14
Table3.4:	Experimental design for drying kinetics study	18
Table 3.5:	Different salt solution with their corresponding water activity	21
Table3.6:	Different sorption models fitted to the experimental data	22
Table 4.1:	Relative deviation of the predicted and the experimental data	24
Table 4.2:	The experimental design and data for optimization	26
Table 4.3	The optimum value for microwave Vacuum drying of Kachkal	27
Table 4.4:	Relative influence of the independent variables on the	27
dependant		
	variables	
Table 4.5:	Sum of sensory scores for quality attributes of eleven biscuit	36
	samples.	
Table 4.6:	Sum of sensory scores for quality attributes of biscuit in general	38
Table 4.7:	Similarity values for overall ranking of samples 1 to 5.	38
Table 4.8:	Similarity values for overall ranking of samples 6 to 11.	38
Table 4.9:	Regression coefficient of Deff at different MVD conditions.	40
Table 4.10:	ANOVA table showing the significance of power and vacuum	41
	level on effective diffusivity	
Table 4.11	Parameters of proposed models for moisture sorption isotherms	44
	at 40° C	
Table 4.12	Statistical tests for the selected models of sorption isotherms	45
	at 40°C	

LIST OF FIGURES

		Page
Fig 3.1:	Biscuit preparation process	11
Fig. 3.2	Triangular membership function distribution for five point	14
	sensory scale	
Fig 3.3	Standard fuzzy scale	16
Fig. 3.4	Graphical representation of triplet (a, b, c) and its membership	16
	function	
Fig 4.1:	Correlation between experimental and predicted values of RR.	24
Fig 4.2:	Correlation between experimental and predicted values of	25
	colour difference	
Fig 4.3:	Correlation between experimental and predicted values of	25
	drying efficiency	
Fig 4.4:	Correlation between experimental and predicted values of %	25
	Scavenging activity	
Fig 4.5:	Rehydration ratio of different samples, data ± SD	28
Fig 4.6:	Effect of vacuum level on rehydration ratio at different power	29
Fig 4.7:	Effect of thickness on rehydration ratio at different vacuum	29
Fig 4.8:	'L' value of the samples, data ± SD	39
Fig 4.9:	'a' value of the samples, data ± SD	30
Fig 4.10:	ΔE value of the samples, data $\pm SD$	31
Fig 4.11:	Effect of thickness on ΔE vales at different vacuum level	31
Fig 4.12:	Drying efficiency of the sample	32
Fig 4.13:	Effect of thickness on drying efficiency at different vacuum	33
level		
Fig 4.14:	% Scavenging activity of samples, data ± SD	34
Fig 4.15:	Average hardness of biscuit samples, data ± SD	34
Fig 4.16:	ΔE values of the biscuit samples, data \pm SD	35
Fig 4.17:	Effect of power on Deff of the banana slices at 680 mm Hg	39
	vacuum level	

LIST OF FIGURES

	•	
		Page
Fig 4.18:	Effect of vacuum level on Deff of the banana slices at 700 W	39
	power	
Fig 4.19:	Effect of microwave power and vacuum pressure on moisture diffusivity	42
Fig 4.20:	Adsorption isotherms of Kachkal biscuit at 40 °C	43
Fig 4.21:	Fitted models curve	46

LIST OF ABBREVIATIONS

MVD Microwave vacuum drying

MV Microwave vacuum

Q Power

P Vacuum level

T Thickness

db Dry Basis (kg moisture/kg dry matter)

K.P. Kachkal powder

R.W.F. Refined wheat flour

RR Rehydration ratio

ΔE Colour difference

% SA %Scavenging activity.

Me Equilibrium moisture content (kg moisture/kg dry matter)

M_o Initial moisture content

MR Moisture Ratio

RMSE Root mean square error

SSE Sum of square error

R² Determination Coefficient

ANN Artificial Neural Network