CONTENTS

1.	INTRODUCTION	1-4
2.	REVIEW OF LITERATURES	5-19
3.	MATERIALS AND METHODS	20-29
	3.1.1 Research material	
	3.1.2 Osmotic dehydration kinetics	
	3.1.3 Experimental design and statistical analysis	
	3.2 Determination of moisture and solute diffusivity	
	3.3 Preparation of osmotic dehydrated carambola powder	
	3.4 Physico-chemical analysis of sample	
	3.4.1 Determination of moisture content	
	3.4.2 Determination of Water Activity	
	3.4.3 Determination of ash	
	3.4.4 Determination of ascorbic acid	
	3.4.5 Total Antioxidant Activity assay by DPPH scavenging assay	
	3.4.6 Total phenolic content by Folin–Ciocalteau assay	
	3.4.7 Sensory Analysis	
4.	RESULTS AND DISCUSSION	30-56
	4.1 Analysis of osmotic dehydration of Carambola using RSM	
	4.1.1 Water loss	

	4.1.2 Solid gain
	4.1.3 Water activity
	4.1.4 Weight reduction
	4.2 Optimization of Osmotic dehydration of Carambola using RSM
	4.3 Results on moisture and solute diffusion studies
	4.4 Physicochemical determinations
	4.4.1 Moisture content
	4.4.2 Ash content
	4.4.3 Ascorbic acid content
	4.4.4 Total phenolic compounds content
	4.4.5 DPPH free radical scavenging activity
	4.4.3 Sensory evaluation
5.	CONCLUSIONS 57-59
6.	BIBLIOGRAPHY 60-66
	APPENDIX I
	APPRINTER

Hedonic score card

LIST OF TABLES

SL.NO.	CONTENT	PAGE NO.
2.1	Nutritional composition of Averrhoa carambola L.	6
3.1	Definition of the levels of the independent variables used in the osmotic dehydration	23
4.1	Results of various responses corresponding to different independent factors using CCRD	30
4.2	ANOVA for water loss parameter during osmotic dehydration	33
4.3	ANOVA for solid gain parameter during osmotic dehydration	34
4.4	ANOVA for water activity parameter during osmotic dehydration	35
4.5	ANOVA for weight reduction parameter during osmotic dehydration	37
4.6	Moisture and solute diffusivity corresponding to different temperatures and corresponding R ² value	47
4.7	Results of physicochemical of dried Carambola powder	53
4.8	Results of the sensory evaluation of reconstituted Carambola powder	56

LIST OF FIGURES

SL.NO.	CONTENT	PAGE NO.
3.1	Image of mature carambola	26
3.2	Image for osmotic dehydration process of carambola inside incubation shaker	26
3.3	Slices of fresh carambola for diffusion study	26
3.4	Osmotically dehydrated samples	26
4.1(a)	Effect of temperature and time on weight reduction	38
4.1(b)	Effect of solute conc. and time on water loss	38
4.1(c)	Effect of fruit: syrup ratio and time on water loss	38
4.1(d)	Effect of solute conc. and temperature on water loss	38
4.1(e)	Effect of fruit: syrup ratio and temperature on water loss	39
4.1(f)	Effect of fruit: syrup ratio and solute conc. on water loss	39
4.2(a)	Effect of temperature and time on solid gain	40
4.2(b)	Effect of solute conc. and time on solid gain	40 _
4.2(c)	Effect of fruit: syrup ratio and time on solid gain	40
4.2(d)	Effect of solute conc. and temperature on solid gain	40
4.2(e)	Effect of fruit: syrup ratio and temperature on solid gain	41
4.2(f)	Effect of fruit: syrup ratio and solute conc. on solid gain	41
4.3(a)	Effect of temperature and time on water activity	42
4.3(b)	Effect of solute conc. and time on water activity	42
4.3(c)	Effect of fruit: syrup ratio and time on water activity	42
4.3(d)	Effect of solute conc. and temperature on water activity	42

•	·	
4.3(e)	Effect of fruit: syrup ratio and temperature on water activity	42
4.3(f)	Effect of fruit: syrup ratio and solute conc. on water activity	42
4.4(a)	Effect of solute conc. and time on weight reduction	43
4.4(b)	Effect of temperature and time on weight reduction	43
4.4(c)	Effect of fruit: syrup ratio and temperature on water activity	43
4.4(d)	Effect of solute conc. and temperature on weight reduction	43
4.4(e)	Effect of fruit: syrup ratio and temperature on weight reduction	44
4.4(f)	Effect of fruit: syrup ratio and solute conc. on weight reduction	44
4.5	Plot of -ln(Mr/A) as related to time	46
4.6	Plot of -ln(Sr/A) as related to time	46
4.7	Plot of -ln(Mr/A) against time at 30°C	48
4.8	Plot of –ln(Mr/A) against time at 40°C	48
4.9	Plot of –ln(Mr/A) against time at 50°C	48
4.10	Plot of –ln(Mr/A) against time at 60°C	48
4.11	Plot of –ln(Mr/A) against time at 70°C	48
4.12	Plot of –ln(Sr/A) against time at 30°C	49
4.13	Plot of -ln(Sr/A) against time at 40°C	49
4.14	Plot of –ln(Sr/A) against time at 50°C	49
4.15	Plot of –ln(Sr/A) against time at 60°C	49
4.16	Plot of –ln(Sr/A) against time at 70°C	49
4.17	Plot of -ln(D _e) against 1/T	51
4.18	Plot of -ln(D _{es}) against 1/T	51
4.19	Osmotically dehydrated Carambola powder	52
4.20	Rehydrated samples of OD carambola powder	52

4.21	Plot of ascorbic acid content in raw carambola, OD tray and OD vacuum dried	54
- 4.22	Plot of Total phenolic content in raw carambola, OD tray and OD vacuum dried samples	54
4.23	Plot of DPPH activity in raw carambola, OD tray and OD vacuum dried samples	55

·

ABBREVIATIONS

1	O.D.	Osmotic dehydration
2	DPPH	2, 2-diphenyl-1-picrylhydrazyl
3	SS ratio	Fruit: Syrup ratio
4	WL	Water loss
5	SG	Solid gain
6	WR	Weight reduction
7	m_i	Initial weight
8	m_{f}	final weight
9	y _i	Initial mass fraction of total solids (g total solids/g sample)
10	Уf	Final mass fraction of total solids (g total solids/g sample)
11	Xi	Initial mass fraction of water (g water/g sample)
12	Xf	Final mass fraction of water (g water/g sample)
13	$M_{\rm r}$	Moisture ratio
14	S _r	Solute ratio
	m _t , m ₀ and	Moisture concentrations at initial conditions, at equilibrium, and at
15	m_{∞}	any time (g water/g sample)
16	s_t , s_0 and s_∞	Solute concentrations at initial conditions, at equilibrium, and at any time(g total solids/g sample)
17	D _e and D _{es}	Effective diffusivities of water and solute (m ² /s)
18	α	ratio of volume of solution to that of fruit
19	q _n	Constant
20	1	Characteristic length
21	a _w	Water activity

22	D_t , D_T , D_{sc} and D_{ss}	Independent model terms for time, temperature, solute concentration and fruit: solute ratio respectively
23	Fow and Fos	Fourier number of water and solid diffusion
24	D_0	diffusion when the temperature goes to infinity (m ² /s)
25	Ea	activation energy for diffusion(Joule/ mole)
26	T	Temperature (Kelvin)
		· · · · · · · · · · · · · · · · · · ·