TABLE OF CONTENTS

Sr No.	Chapters	Page No.
1.	1. Introduction	1-4
2.	2. Review of literature	5-12
3.	2.1. Plant description	5
4.	2.2. Chemical Constituents	6
5.	2.3. Biological activities of aloe vera	8
6.	2.3.1 Healing Properties	8
7.	2.3.2 Antimicrobial	8
8.	2.3.3. Antidiabetic	8
9.	2. 4. RTS drinks or Energy drinks	9
10.	2.5. Aleo vera products available in market both	10
	nationally and internationally	
11.	2.5.1. International production	10
. 12.	2.5.2. National production	10
13.	2.6. Aloe Vera as edible coating	10
·		
14	27.0	1.1
14.	2.7. Response surface methodology for	11
	optimization of aloe vera juice	
15.	2.9 Medicinal year of also year inion	11
13.	2.8. Medicinal uses of aloe vera juice	11
16.	2.9. Antimicrobial activity of aloe vera	12
17.	3. Materials and methods	13-23
18.	3.1. Collection of sample	13
19.	3.2. Extraction of gel	13
10.	3.3.Proliferation Assay (MTT Test, short 96 well	13
10.	3.3.1 Tollieration 7.33ay (1911 1 103t, Short 70 Well	15
	assay)	
11.	3.4. Estimation of different functional attributes	14
	present in the sample	• •
12.	3.4.1. Determination of fat	14
13.	3.4.2. Determination of protein	15
14.	3.4.3 Determination of ash	16
15.	3.4.4. Determination of DPPH radical scavenging	16
15.	activity	••
16.	3.4.5. Determination of moisture content	17
10.	55. Determination of molecule content	• •
17.	3.4.6. Determination of total phenolic content	17

18.	3.4.7. Determination of moisture content	17
19.	3.4.8.Determination of carbohydrates	17
20.	3.4.9. Determination of metabolizable energy content	17
21.	3.4.10. Determination of acidity	18
21.	3.4.11. pH determination	18
22.	3.5. Antimicrobial and antifungal tests of the sample	18
23.	3.6. Experimental design and statistical analysis	19
24.	3.7. Optimization	22
25.	3.8. EDX analysis of sample	22
26.	3.9. Sensory analysis	23
27.	4. Results and discussions	24-48
28.	4.1. Estimation of different functional attributes present in Aloe Vera	24
29.	4.2. Functionality activity of aloe vera	24
30.	4.2.1. Antibacterial and antifungal activity	24
	4.3 MTT assay of aloe vera sample	26
31.	4.4. Modelling	27
32.	4.5. DPPH of the samples	29
33.	4.6. Total phenolic content of samples	32
34.	4.7. pH of the samples	35
35.	4.8. Acidity of the samples	38
36.	4.9.Storage study of the formulated juice from the optimized combinations	42
37.	4.9.1. Proximate analysis of formulated juice	42
38.	4.9.2. Sensory analysis	43
39.	4.9.3 Microbial analysis	43
40.	4.9.4. pH and acidity of the samples during storage	44
41.	4.9.5. DPPH of the samples during storage	44
42.	4.9.6. Total phenolic content of the samples during storage	45
43.	4.9.7. Soluble solid contents of the samples during storage	45
44.	4.9.8. Color Measurement of samples during storage	46

45.	4.9.9. EDX analysis of the freeze dried sample	48
46.	Summary and conclusion	51-55
47.	5.1. Summary	51
48.	5.2. Conclusion	52
49.	6. References	53-55

LIST OF TABLES

Table No.	Title	Page No.
2.1	Chemical compositions of Aloe vera	6-8
3.1	Central composite face -centered design and experimental runs	19-20
3.2	Nine point hedonic score card	23
4.1	Determination of proximate analysis of aloe vera gel	24
4.2	Zone of inhibition shown by aloe vera against pathogens	25
4.3	Absorbance of aloe vera at different concentrations(MTT assay)	27
4.4	Central composite face-centered design(CCFD) with experimental values of response variables	28-29
4.5	ANOVA for DPPH of the samples	30-31
4.6	ANOVA for total phenolic content of the samples	33-34
4.7	ANOVA for pH of the samples	35-37
4.8	ANOVA for acidity of the samples	38-39
4.9	The best optimized combinations for preparation of herbal juice	41
4.10	Proximate analysis of formulated juice	42
4.11	Sensory analysis of the formulated juice	43
4.12	Bacterial count in stored juice	43
4.13	pH values of the samples during storage	44
4.14	Acidity values of the samples during storage	44
4.15	DPPH of the samples during storage	45
4.16	Total phenolic content of the samples during storage	45
4.17	Refractometer value of the samples during storage	45-46
4.18	Color values of the sample during storage	47-48
4.19	Different minerals present in orange powder, aloe vera powder, kiwi powder, formulated juice powder	48

LIST OF FIGURES

Fig No.	Title	Page No.
1.1	chemical composition of aloe vera gel (dry weight basis)	3
4.1	Zone of inhibition against pathogens	25-26
4.2	Absorbance of aloe vera sample at 570 nm(MTT assay)	26
4.3	Response surface contour plot for DPPH	32
4.4	Response surface contour plot for total phenolic content for samples	35
4.5	Response surface contour plot for pH of the samples	37
4.6	Response surface contour plot for acidity of samples	40
4.7	Response surface contour plot for the effect of aloe vera and orange on desirability	41
4.8	kiwi juice,orange juice, aloe vera juice, formulated juice	42
4.9	EDX analysis of orange powder	49
4.10	EDX analysis of Aloe vera powder	49
4.11	EDX analysis of kiwi powder	50
4.12	EDX analysis of formulated juice powder	5

LIST OF ABBREVIATIONS

- 1. ATCC: American Type Culture Collection
- 2. AOAC: Association of Official Analytical Chemist
- 3. CFU: Colony Forming Unit
- 4. DPPH: 2,2-diphenyl-2-picrylhydrazyl
- 5. MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- 6. PBMC: Peripheral Blood Mononuclear Cells