List of figures

4.9	:	Finite element model validation with an experimental study	52
4.10(a)	:	Variation of A_{my} versus L and $W(D=0.3)$	54
4.10(b)	:	Variation of A_{my} versus L and $W(D=0.4)$	55
4.10(c)	:	Variation of A_{my} versus L and W (D=0.6)	55
4.10(d)	:	Variation of A_{my} versus L and W (D=1.0)	56
4.10(e)	:	Variation of A_{my} versus L and $W(D=1.5)$	56
4.11(a)	:	Variation of A_{my} versus L and D (W=0.2)	57
4.11(b)	:	Variation of A_{my} versus L and D (W=0.4)	57
4.11(c)	:	Variation of A_{my} versus L and D (W=0.6)	58
4.12(a)	:	Variation of A_{mx} versus L and $W(D=0.3)$	60
4.12(b)	:	Variation of A_{mx} versus L and W (D=0.4)	60
4.12(c)	:	Variation of A_{mx} versus L and $W(D=0.6)$	61
4.12(d)	:	Variation of A_{mx} versus L and $W(D=1.0)$	61
4.12(e)	:	Variation of A_{mx} versus L and $W(D=1.5)$	62
4.13(a)	:	Variation of A_{mx} versus L and D (W=0.2)	62
4.13(b)	:	Variation of A_{mx} versus L and D (W=0.4)	63
4.13(c)	:	Variation of A_{mx} versus L and D (W=0.6)	63
4.14(a)	:	Simplified model for estimating A_{my} in active case	65
4.14(b)	:	Simplified model for estimating A_{my} in passive case	66
4.14(c)	:	Simplified model for estimating A_{mx} in active case	66
4.14(d)	:	Simplified model for estimating A_{mx} in passive case	67
5.1	:	Typical finite element model of an in-filled trench	71
5.2	:	Finite element model validation	72
5.3	:	Comparative study on vibration isolation by a softer barrier	73
5.4(a)	:	Effect of backfill shear wave velocity ratio on A_{my}	74
5.4(b)	:	Effect of backfill shear wave velocity ratio on A_{mx}	75
5.5(a)	:	Variation of A_{my} versus L and D (W=0.3)	76
5.5(b)	:	Variation of A_{my} versus L and D (W=0.5)	76
5.6(a)	:	Variation of A_{mx} versus L and D (W=0.3)	77
5.6(b)	:	Variation of A_{mx} versus L and D (W=0.5)	77
5.7(a)	:	Effect of D and W on A_{my} in active case (L=1)	78
5.7(b)	:	Effect of D and W on A_{my} in passive case (L=5)	79

List of figures

5.8(a)	:	Effect of <i>D</i> and <i>W</i> on A_{mx} in active case (<i>L</i> =1)	79
5.8(b)	:	Effect of D and W on A_{mx} in passive case (L=5)	80
5.9(a)	:	Effect of D/W on A_{my} in active case ($L=1$)	81
5.9(b)	:	Effect of D/W on A_{my} in passive case ($L=5$)	81
5.10(a)	:	Variation of A_{my} with V_b/V_s and W in active case (D=0.5)	83
5.10(b)	:	Variation of A_{my} with V_b/V_s and W in active case (D=0.75)	83
5.10(c)	:	Variation of A_{my} with V_b/V_s and W in active case (D=1.0)	84
5.10(d)	:	Variation of A_{my} with V_b/V_s and W in active case (D=1.25)	84
5.10(e)	:	Variation of A_{my} with V_b/V_s and W in active case (D=1.5)	85
5.11(a)	:	Variation of A_{my} with V_b/V_s and W in passive case (D=0.5)	85
5.11(b)	:	Variation of A_{my} with V_b/V_s and W in passive case (D=0.75)	86
5.11(c)	:	Variation of A_{my} with V_b/V_s and W in passive case (D=1.0)	86
5.11(d)	:	Variation of A_{my} with V_b/V_s and W in passive case (D=1.25)	87
5.11(e)	:	Variation of A_{my} with V_b/V_s and W in passive case (D=1.25)	87
5.12(a)	:	Variation of A_{mx} with V_b/V_s and W in active case (D=0.5)	88
5.12(b)	:	Variation of A_{mx} with V_b/V_s and W in active case (D=0.75)	88
5.12(c)	:	Variation of A_{mx} with V_b/V_s and W in active case (D=1.0)	89
5.12(d)	:	Variation of A_{mx} with V_b/V_s and W in active case (D=1.25)	89
5.12(e)	:	Variation of A_{mx} with V_b/V_s and W in active case (D=1.5)	90
5.13(a)	:	Variation of A_{mx} with V_b/V_s and W in passive case (D=0.5)	90
5.13(b)	:	Variation of A_{mx} with V_b/V_s and W in passive case (D=0.75)	91
5.13(c)	:	Variation of A_{mx} with V_b/V_s and W in passive case (D=1.0)	91
5.13(d)	:	Variation of A_{mx} with V_b/V_s and W in passive case (D=1.25)	92
5.13(e)	:	Variation of A_{mx} with V_b/V_s and W in passive case (D=1.5)	92
6.1	:	Normalized geometric features of a dual trench barrier	96
6.2(a)	:	Typical finite element model of a dual open trench barrier	97
6.2(b)	:	Typical finite element model of a dual in-filled trench barrier	97
6.3	:	Variation of A_{my} and A_{mx} with trench locations	98
6.4(a)	:	Variation of A_{my} versus D_d and W_d in active case	99
6.4(b)	:	Variation of A_{my} versus D_d and W_d in passive case	100
6.5(a)	:	Variation of A_{mx} versus D_d and W_d in active case	100
6.5(b)	:	Variation of A_{mx} versus D_d and W_d in passive case	101

List of figures

6.6	:	Effect of barrier location on A_{my} and A_{mx}	103
6.7(a)	:	Variation of A_{my} against D_d and V_b/V_s ($W_d=0.3$)	104
6.7(b)	:	Variation of A_{my} against D_d and V_b/V_s ($W_d=0.4$)	104
6.7(c)	:	Variation of A_{my} against D_d and V_b/V_s ($W_d=0.5$)	105
6.8(a)	:	Variation of A_{mx} against D_d and V_b/V_s ($W_d=0.3$)	105
6.8(b)	:	Variation of A_{mx} against D_d and V_b/V_s ($W_d=0.4$)	106
6.8(c)	:	Variation of A_{mx} against D_d and V_b/V_s ($W_d=0.5$)	106
6.9(a)	:	Variation of A_{my} against W_d and V_b/V_s ($D_d=0.2$)	108
6.9(b)	:	Variation of A_{my} against W_d and V_b/V_s ($D_d=0.3$)	109
6.9(c)	:	Variation of A_{my} against W_d and V_b/V_s ($D_d=0.4$)	109
6.9(d)	:	Variation of A_{my} against W_d and V_b/V_s ($D_d=0.5$)	110
6.9(e)	:	Variation of A_{my} against W_d and V_b/V_s ($D_d=0.6$)	110
6.10(a)	:	Variation of A_{mx} against W_d and V_b/V_s ($D_d=0.2$)	111
6.10(b)	:	Variation of A_{mx} against W_d and V_b/V_s ($D_d=0.3$)	111
6.10(c)	:	Variation of A_{mx} against W_d and V_b/V_s ($D_d=0.4$)	112
6.10(d)	:	Variation of A_{mx} against W_d and V_b/V_s ($D_d=0.5$)	112
6.10(e)	:	Variation of A_{mx} against W_d and V_b/V_s ($D_d=0.6$)	113
6.11(a)	:	Dual and single open trench isolation in active case	114
6.11(b)	:	Dual and single open trench isolation in passive case	115
6.12(a)	:	Dual and single in-filled trench isolation $(V_b/V_s=0.1)$	116
6.12(b)	:	Dual and single in-filled trench isolation $(V_b/V_s=0.2)$	116
A.1	:	Basic project properties	137
A.2	:	Selecting basic units and maximum coordinates of the model	138
A.3	:	Creating model geometry of a half-space with an open trench	139
A.4	:	Assigning loads and model boundaries	140
A.5	:	Creating material data set for half-space soil	141
A.6	:	Assigning elastic parameters to half-space soil	142
A.7	:	Mesh generation	143
A.8	:	Calculation program	144
A.9	:	Defining parameters for dynamic analysis	145
A.10	:	Defining dynamic load parameters in calculation program	146
A.11	:	Node selection for displacement-time histories	147

LIST OF FIGURES

FIGURE TITLE

2.1	:	Variation of V_p/V_s and V_R/V_s against Poisson's ratio (redrawn after Kramer, 1996)	9
2.2	:	Variation of vertical and horizontal displacement components of R-wave with depth (redrawn after Das, 1990; Das and Ramana, 2011)	10
2.3(a)	:	Active isolation by a circular trench (redrawn after Woods, 1968a)	14
2.3(b)	:	Passive isolation by a straight trench (redrawn after Woods, 1968a)	14
3.1	:	Coordinate system in PLAXIS	30
3.2	:	Positions of nodes and stress points in 15-node triangular elements (after Brinkgreve et al., 2010)	31
3.3	:	(a) A 2-D schematic of an open trench isolation (b) An axisymmetric idealization of the scheme	32
3.4	:	Schematic of an axisymmetric model with boundary conditions	34
3.5	:	Example showing estimation of average amplitude reduction factor	41
4.1	:	An open trench isolation showing normalized barrier features	44
4.2	:	Schematic of a model depicting dimensions and boundary conditions	46
4.3	:	Finite element model of a barrier-free half-space	47
4.4	:	Displacement-time history of vertical vibration component in a barrier-free half-space (at $x=7L_R$)	48
4.5(a)	:	Convergence study to ensure adequacy of model length $(H_m=5L_R)$	48
4.5(b)	:	Convergence study to ensure adequacy of model depth $(L_m=35m)$	49
4.6	:	Typical finite element model of an open trench	50
4.7	:	Displacement-time histories of vertical vibration component with and without barrier (at $x=7L_R$)	51
4.8	:	Finite element model validation with numerical studies	52

A.12	:	Starting calculation phase	148
A.13	:	End of calculation phase	149
A.14	:	Deformed mesh	150
A.15	:	Contour map showing vertical displacement components	151
A.16	:	Contour map showing horizontal displacement components	152
A.17	:	Curve generation at a pre-selected node	153
A.18	:	Displacement-time curve for vertical component of surface displacement at the desired node	154
A.19	:	Displacement-time curve for horizontal component of surface displacement at the desired node	155
B.1	:	Peak surface displacement amplitudes with and without barrier measured at different points beyond barrier	156
B.2	:	Amplitude reduction factors versus normalized distances from barrier	157

LIST OF TABLES

TABLE TITLE

PAGE

2.1	:	Absorption coefficients for different soil types (after Woods, 1997)	11
2.2	:	Characteristics of body waves (P and S-waves) and R-waves	13
3.1	:	Global coarseness settings and mesh elements (after Brinkgreve et al., 2010)	37
4.1	:	Input parameters of material model	42
4.2	:	Ground motion parameters of half-space soil	43
4.3	:	Parameters chosen for open trench isolation study	53
5.1	:	Values of parameters adopted in design charts	82
5.2	:	Comparison with published results	93
7.1	:	Simplified design formulae and their applicability	120
C.1	:	Estimating average A_{my} against D	158
C.2	:	Fitting regression curve	159

LIST OF ABBREVIATIONS

ABBREVIATION SIGNIFICANCE

Primary wave
Shear wave
Rayleigh wave
Two-dimensional
Three-dimensional
Boundary element method
Finite element method

LIST OF SYMBOLS AND NOTATIONS

SYMBOL/ SIGNIFICANCE

NOTATION

λ	:	Lami's constant
G	:	Shear modulus
Ε	:	Elastic modulus of an elastic medium/half-space soil
ρ	:	Density of an elastic medium/ half-space soil
V	:	Poisson's ratio
V_p	:	Primary wave velocity
V_s	:	Shear wave velocity
V_R	:	Rayleigh wave velocity
Κ	:	Dimensionless quantity signifying the ratio between R-wave and S-wave velocities
α	:	Dimensionless quantity indicating the ratio between S-wave and P-wave velocities
L_R	:	Rayleigh wavelength
r	:	Radial distance of a point from source of excitation
β	:	Absorption coefficient
f_1, f_2	:	Excitation frequencies corresponding to β_1 and β_2
A_1	:	Amplitude at distance r_1 from source
A_2	:	Amplitude at distance r_2 from source
n	:	Exponent whose value depends on the type of seismic wave
В	:	Width of the imaginary footing
b	:	One-half of the width of imaginary footing
G_{max}	:	Maximum shear modulus
$\alpha_{_R}$ and $\beta_{_R}$:	Rayleigh mass and stiffness matrix coefficients
f	:	Frequency of excitation
ξ	:	Material damping (fractional value is termed as damping ratio)
ω	:	Angular frequency of excitation
P(t)	:	Harmonic load
ϕ	:	Phase angle in degrees
Pi	:	Default input value of harmonic load magnitude

М	:	Amplitude multiplier
P_0	:	Magnitude of harmonic load
A_R	:	Amplitude reduction factor
S	:	Extent of zone of investigation over which amplitude reduction factors are estimated
A_m	:	Average amplitude reduction factor
d and D	:	Absolute and normalized depths of an open/in-filled trench
w and W	:	Absolute and normalized widths of an open/in-filled trench
<i>l</i> and <i>L</i>	:	Absolute and normalized distances of an open/in-filled trench from source of excitation
$\sigma_{_n}$ and $ au_{_s}$:	Normal and shear stress components of dynamic stress
C_1 and C_2	:	Wave relaxation coefficients (associated with absorption of pressure waves and shear waves respectively) assigned to absorbent boundaries
u_x and u_y	:	Particle velocities in normal and tangential directions of a model boundary
Δt	:	Time interval taken for dynamic analyses
т	:	Number of additional steps
n	:	Number of dynamic sub-steps
δt	:	Time-step of integration
L_m and H_m	:	Length and depth of finite element model chosen for analysis
x and X	:	Absolute and dimensionless distances of a point from source of vibration
U_y and U_x	:	Notations indicating vertical and horizontal vibration cases
A_{my} and A_{mx}	:	Average amplitude reduction factors of vertical and horizontal components of vibration
E_b	:	Elastic modulus of backfill material
$ ho_{\scriptscriptstyle b}$:	Density of backfill material
V_{b}	:	Poisson's ratio of backfill material
${\boldsymbol{\xi}}_b$:	Material damping of backfill material
V_b	:	Backfill shear wave velocity
V_b/V_s	:	Ratio between shear wave velocities of backfill and parent soil
D/W	:	Ratio between normalized depth and width of a trench
l_1 and l_2	:	Absolute distances of first and second trench from source in case of dual trench barriers
L_1 and L_2	:	Normalized distances of first and second trench from source in case of dual trench barriers

- w_d and W_d : Absolute and normalized widths of each trench in case of dual trench barriers
- d_d and D_d : Absolute and normalized depths of each trench in case of dual trench barriers