4.9 : Finite element model validation with an experimental study 52
4.10(a) : Variation of $A_{m y}$ versus L and $W(D=0.3)$ 54
4.10(b) : Variation of $A_{m y}$ versus L and $W(D=0.4)$ 55
4.10(c) : Variation of $A_{m y}$ versus L and $W(D=0.6)$ 55
4.10(d) : Variation of $A_{m y}$ versus L and $W(D=1.0)$ 56
4.10(e) : Variation of $A_{m y}$ versus L and $W(D=1.5)$ 56
4.11(a) : Variation of $A_{m y}$ versus L and $D(W=0.2)$ 57
4.11(b) : Variation of $A_{m y}$ versus L and $D(W=0.4)$ 57
4.11(c) : Variation of $A_{m y}$ versus L and $D(W=0.6)$ 58
4.12(a) : Variation of $A_{m x}$ versus L and $W(D=0.3)$ 60
4.12(b) : Variation of $A_{m x}$ versus L and $W(D=0.4)$ 60
4.12(c) : Variation of $A_{m x}$ versus L and $W(D=0.6)$ 61
4.12(d) : Variation of $A_{m x}$ versus L and $W(D=1.0)$ 61
4.12(e) : Variation of $A_{m x}$ versus L and $W(D=1.5)$ 62
4.13(a) : Variation of $A_{m x}$ versus L and $D(W=0.2)$ 62
4.13(b) : Variation of $A_{m x}$ versus L and $D(W=0.4)$ 63
4.13(c) : Variation of $A_{m x}$ versus L and $D(W=0.6)$ 63
4.14(a) : Simplified model for estimating $A_{m y}$ in active case 65
4.14(b) : Simplified model for estimating $A_{m y}$ in passive case 66
4.14(c) : Simplified model for estimating $A_{m x}$ in active case 66
4.14(d) : Simplified model for estimating $A_{m x}$ in passive case 67
5.1 : Typical finite element model of an in-filled trench 71
5.2 : Finite element model validation 72
5.3 : Comparative study on vibration isolation by a softer barrier 73
5.4(a) : Effect of backfill shear wave velocity ratio on $A_{m y}$ 74
5.4(b) : Effect of backfill shear wave velocity ratio on $A_{m x}$ 75
5.5(a) : Variation of $A_{m y}$ versus L and $D(W=0.3)$ 76
5.5(b) $\quad: \quad$ Variation of $A_{m y}$ versus L and $D(W=0.5)$ 76
5.6(a) : Variation of $A_{m x}$ versus L and $D(W=0.3)$ 77
5.6(b) : Variation of $A_{m x}$ versus L and $D(W=0.5)$ 77
5.7(a) : Effect of D and W on $A_{m y}$ in active case $(L=1)$ 78
5.7(b) : Effect of D and W on $A_{m y}$ in passive case $(L=5)$ 79
5.8(a) : Effect of D and W on $A_{m x}$ in active case ($L=1$) 79
5.8(b) : Effect of D and W on $A_{m x}$ in passive case $(L=5)$ 80
5.9(a) : Effect of D / W on $A_{m y}$ in active case $(L=1)$ 81
5.9(b) : Effect of D / W on $A_{m y}$ in passive case ($L=5$) 81
5.10(a) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in active case $(D=0.5)$ 83
5.10(b) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in active case $(D=0.75)$ 83
5.10(c) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in active case $(D=1.0)$ 84
5.10(d) $\quad: \quad$ Variation of $A_{m y}$ with V_{b} / V_{s} and W in active case $(D=1.25)$ 84
5.10(e) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in active case $(D=1.5)$ 85
5.11(a) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in passive case $(D=0.5)$ 85
5.11(b) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in passive case $(D=0.75)$ 86
5.11(c) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in passive case ($D=1.0$) 86
5.11(d) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in passive case $(D=1.25)$ 87
5.11(e) : Variation of $A_{m y}$ with V_{b} / V_{s} and W in passive case $(D=1.25)$ 87
5.12(a) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in active case ($D=0.5$) 88
5.12(b) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in active case ($D=0.75$) 88
5.12(c) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in active case $(D=1.0)$ 89
5.12(d) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in active case ($D=1.25$) 89
5.12(e) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in active case $(D=1.5)$ 90
5.13(a) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in passive case $(D=0.5)$ 90
5.13(b) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in passive case $(D=0.75)$ 91
5.13(c) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in passive case ($D=1.0$) 91
5.13(d) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in passive case $(D=1.25)$ 92
5.13(e) : Variation of $A_{m x}$ with V_{b} / V_{s} and W in passive case ($D=1.5$) 92
6.1 : Normalized geometric features of a dual trench barrier 96
6.2(a) : Typical finite element model of a dual open trench barrier 97
6.2(b) : Typical finite element model of a dual in-filled trench barrier 97
$6.3 \quad$: Variation of $A_{m y}$ and $A_{m x}$ with trench locations 98
6.4(a) : Variation of $A_{m y}$ versus D_{d} and W_{d} in active case 99
6.4(b) : Variation of $A_{m y}$ versus D_{d} and W_{d} in passive case 100
6.5(a) : Variation of $A_{m x}$ versus D_{d} and W_{d} in active case 100
6.5(b) $\quad: \quad$ Variation of $A_{m x}$ versus D_{d} and W_{d} in passive case 101
6.6 : Effect of barrier location on $A_{m y}$ and $A_{m x}$ 103
6.7(a) : Variation of $A_{m y}$ against D_{d} and $V_{b} / V_{s}\left(W_{d}=0.3\right)$ 104
6.7(b) : Variation of $A_{m y}$ against D_{d} and $V_{b} / V_{s}\left(W_{d}=0.4\right)$ 104
6.7(c) : Variation of $A_{m y}$ against D_{d} and $V_{b} / V_{s}\left(W_{d}=0.5\right)$ 105
6.8(a) : Variation of $A_{m x}$ against D_{d} and $V_{b} / V_{s}\left(W_{d}=0.3\right)$ 105
6.8(b) : Variation of $A_{m x}$ against D_{d} and $V_{b} / V_{s}\left(W_{d}=0.4\right)$ 106
6.8(c) : Variation of $A_{m x}$ against D_{d} and $V_{b} / V_{s}\left(W_{d}=0.5\right)$ 106
6.9(a) : Variation of $A_{m y}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.2\right)$ 108
6.9(b) : Variation of $A_{m y}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.3\right)$ 109
6.9(c) : Variation of $A_{m y}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.4\right)$ 109
6.9(d) : Variation of $A_{m y}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.5\right)$ 110
6.9(e) : Variation of $A_{m y}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.6\right)$ 110
6.10(a) : Variation of $A_{m x}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.2\right)$ 111
6.10(b) : Variation of $A_{m x}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.3\right)$ 111
6.10(c) : Variation of $A_{m x}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.4\right)$ 112
6.10(d) : Variation of $A_{m x}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.5\right)$ 112
6.10(e) : Variation of $A_{m x}$ against W_{d} and $V_{b} / V_{s}\left(D_{d}=0.6\right)$ 113
6.11(a) : Dual and single open trench isolation in active case 114
6.11(b) : Dual and single open trench isolation in passive case 115
6.12(a) : Dual and single in-filled trench isolation $\left(V_{b} / V_{s}=0.1\right)$ 116
6.12(b) : Dual and single in-filled trench isolation $\left(V_{b} / V_{s}=0.2\right)$ 116
A. 1 : Basic project properties 137
A. 2 : Selecting basic units and maximum coordinates of the model 138
A. $3:$ Creating model geometry of a half-space with an open trench 139
A. $4 \quad:$ Assigning loads and model boundaries 140
A. $5 \quad$: Creating material data set for half-space soil 141
A. 6 : Assigning elastic parameters to half-space soil 142
A. 7 : Mesh generation 143
A. 8 : Calculation program 144
A. 9 : Defining parameters for dynamic analysis 145
A. 10 : Defining dynamic load parameters in calculation program 146
A. 11 : Node selection for displacement-time histories 147

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Variation of V_{p} / V_{s} and V_{R} / V_{s} against Poisson's ratio (redrawn after Kramer, 1996)	9
2.2	Variation of vertical and horizontal displacement components of R-wave with depth (redrawn after Das, 1990; Das and Ramana, 2011)	10
2.3(a)	Active isolation by a circular trench (redrawn after Woods, 1968a)	14
2.3(b)	Passive isolation by a straight trench (redrawn after Woods, 1968a)	14
3.1	Coordinate system in PLAXIS	30
3.2	Positions of nodes and stress points in 15 -node triangular elements (after Brinkgreve et al., 2010)	31
3.3	(a) A 2-D schematic of an open trench isolation (b) An axisymmetric idealization of the scheme	32
3.4	Schematic of an axisymmetric model with boundary conditions	34
3.5	Example showing estimation of average amplitude reduction factor	41
4.1	An open trench isolation showing normalized barrier features	44
4.2	Schematic of a model depicting dimensions and boundary conditions	46
4.3	Finite element model of a barrier-free half-space	47
4.4	Displacement-time history of vertical vibration component in a barrier-free half-space (at $x=7 L_{R}$)	48
4.5(a)	Convergence study to ensure adequacy of model length ($H_{m}=5 L_{R}$)	48
4.5(b)	Convergence study to ensure adequacy of model depth ($L_{m}=35 \mathrm{~m}$)	49
4.6	Typical finite element model of an open trench	50
4.7	Displacement-time histories of vertical vibration component with and without barrier (at $x=7 L_{R}$)	51
4.8	n	5

A. 12 : Starting calculation phase 148
A. 13 : End of calculation phase 149
A. 14 : Deformed mesh 150
A. 15 : Contour map showing vertical displacement components 151
A. 16 : Contour map showing horizontal displacement components 152
A. 17 : Curve generation at a pre-selected node 153
A. 18 : Displacement-time curve for vertical component of surface 154 displacement at the desired node
A. 19 : Displacement-time curve for horizontal component of surface 155 displacement at the desired node
B. 1 : Peak surface displacement amplitudes with and without 156 barrier measured at different points beyond barrier
B. 2 : Amplitude reduction factors versus normalized distances from 157 barrier

LIST OF TABLES

TABLE TITLE PAGE
2.1 : Absorption coefficients for different soil types (after Woods, $\begin{aligned} & \text { 1997) }\end{aligned}$
2.2 : Characteristics of body waves (P and S-waves) and R-waves 13
3.1 : Global coarseness settings and mesh elements (after 37 Brinkgreve et al., 2010)
4.1 : Input parameters of material model 42
$4.2:$ Ground motion parameters of half-space soil 43
$4.3: \quad$ Parameters chosen for open trench isolation study 53
$5.1:$ Values of parameters adopted in design charts 82
$5.2:$ Comparison with published results 93
$7.1:$ Simplified design formulae and their applicability 120
C. $1 \quad$: Estimating average $A_{m y}$ against $D \quad 158$
$\begin{array}{lll}\text { C. } 2 & \text { Fitting regression curve } & 159\end{array}$

LIST OF ABBREVIATIONS

ABBREVIATION SIGNIFICANCE

P-wave	Primary wave
S-wave	Shear wave
R-wave	Rayleigh wave
2-D	Two-dimensional
3-D	Three-dimensional
BEM	Boundary element method
FEM	Finite element method

LIST OF SYMBOLS AND NOTATIONS

SYMBOL/ SIGNIFICANCE
 NOTATION

λ	$:$	Lami's constant
G	$:$	Shear modulus

$E \quad: \quad$ Elastic modulus of an elastic medium/half-space soil
$\rho \quad:$ Density of an elastic medium/ half-space soil
$v \quad:$ Poisson's ratio
$V_{p} \quad:$ Primary wave velocity
$V_{s} \quad:$ Shear wave velocity
$V_{R} \quad:$ Rayleigh wave velocity
$K \quad: \quad$ Dimensionless quantity signifying the ratio between R-wave and S-wave velocities
$\alpha \quad: \quad$ Dimensionless quantity indicating the ratio between S-wave and P-wave velocities
$L_{R} \quad:$ Rayleigh wavelength
$r \quad: \quad$ Radial distance of a point from source of excitation
$\beta \quad:$ Absorption coefficient
$f_{1}, f_{2} \quad:$ Excitation frequencies corresponding to β_{1} and β_{2}
$A_{1} \quad:$ Amplitude at distance r_{1} from source
$A_{2} \quad:$ Amplitude at distance r_{2} from source
$n \quad: \quad$ Exponent whose value depends on the type of seismic wave
$B \quad:$ Width of the imaginary footing
$b \quad: \quad$ One-half of the width of imaginary footing
$G_{\max } \quad: \quad$ Maximum shear modulus
α_{R} and $\beta_{R} \quad: \quad$ Rayleigh mass and stiffness matrix coefficients
$f \quad:$ Frequency of excitation
$\xi \quad: \quad$ Material damping (fractional value is termed as damping ratio)
$\omega \quad: \quad$ Angular frequency of excitation
$P(t) \quad: \quad$ Harmonic load
$\phi \quad: \quad$ Phase angle in degrees
Pi : Default input value of harmonic load magnitude

M	$:$	Amplitude multiplier
P_{0}	$:$	Magnitude of harmonic load
A_{R}	$:$	Amplitude reduction factor
s	$:$	Extent of zone of investigation over which amplitude reduction
		factors are estimated
A_{m}	$:$	Average amplitude reduction factor
d and D	$:$	Absolute and normalized depths of an open/in-filled trench
w and W	$:$	Absolute and normalized widths of an open/in-filled trench
l and L	$:$	Absolute and normalized distances of an open/in-filled trench
		from source of excitation
σ_{n} and τ_{s}	$:$	Normal and shear stress components of dynamic stress
C_{1} and C_{2}	$:$	Wave relaxation coefficients (associated with absorption of
		pressure waves and shear waves respectively) assigned to

w_{d} and $W_{d} \quad: \quad$ Absolute and normalized widths of each trench in case of dual trench barriers
d_{d} and $D_{d} \quad: \quad$ Absolute and normalized depths of each trench in case of dual trench barriers

