TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO.
1	INTRODUCTION	1-5
2	REVIEW OF LITERATURE	5-24
3	MATERIALS AND METHODS	25-37
3.1	Isolation of starch	25
3.1.1.	Study of physiochemical properties of	25-28
	starch	
3.1.1.1	Proximate analysis of the starch	25-27
3.1.1.2	DSC analysis	27
3.1.1.3	Amylose content	28
3.2	Preparation of films	28
3.2.1	Starch film	28
3.2.2	Agar film	29
3.2.3	Starch & agar film	29
3.2.4	Starch and agar film with lipid	29
3.3	Properties studied for the different types of	29
	films prepared	
3.3.1	Film Conditioning	29
3.3.2	Film thickness	29
3.3.3	Solubility	30
3.3.4	Color measurement	30
3.3.5	Tensile properties	30
3.3.6	Moisture content	31
3.3.7	Water vapor transmission rate	31
3.3.8	Transparency	31
3.3.9	Swelling ratio &swelling degree	32
3.3.10	Fourier transforms infrared spectroscopy	32
	(FTIR) analysis of the starch powder and	
	the films	

3.3.11	X-Ray Diffraction Analysis of the starch	33
	powder and the films	
3.3.12	Scanning Electron Microscopy(SEM)	33
	analysis	
3.3.13	Biological degradation	33
3.4	Storage study of the tomatoes coated with	33
	the different film forming solutions	
3.4.1	Sample collection	34
3.4.2	Physiological changes over during the 15	34
	days study	
3.4.2.1	Weight loss	34
3.4.2.2	pH	35
3.4.2.3	Total soluble solids	35
3.4.2.4	Titrable acidity	35
3.4.2.5	Color change of the tomatoes	35
3.4.2.6	Texture change of the tomatoes	35
3.4.2.7	Yeast and mold count	36
3.5	Statistical analysis	37
4	RESULTS AND DISCUSSION	38-64
4.1	Starch yield	38
4.2.	Physiochemical properties of the starch	38-40
4.2.1	Proximate analysis of the starch	38
4.2.2	DSC analysis	39
4.2.3	Amylose content	40
4.3	Film prepared	41
4.3.1	Film thickness	41
4.3.2	Solubility	42
4.3.3	Color measurement	43-44
4.3.4	Transparency	45
4.3.5	Tensile properties	45

4.3.6	Moisture content	46
4.3.7	Water vapor transmission rate	47
4.3.8	Swelling ratio &swelling degree	48
4.3.9	X-Ray Diffraction Analysis of the starch	49
	powder and the films	
4.3.10	FTIR of the starch powder and the films	50
4.3.11	Scanning Electron Microscopy(SEM)	51
	analysis	
4.3.12	Biological degradation	52-53
4.4	Storage study of the tomatoes coated with	54-64
	the different film forming solutions	
4.4.1	Weight loss	56
4.4.2	pH	57
4.4.3	Total soluble solids	58
4.4.4	Titrable acidity	59
4.4.5	Color change of the tomatoes	60
4.4.6	Texture change of the tomatoes	61
4.4.7	Yeast and mold count	63
5	SUMMARY	65-67
6	CONCLUSION	68
7	FUTURE PROSPECTIVES	69
8	REFERENCES	70-74

.

.

LIST OF FIGURES

Figure no.	Title	Page no.
Fig. 2.1	Types of film forming materials.	12
Fig: 4.1	Whole water chestnut and Water chestnut kernel.	38
Fig 4.2	DSC Thermogram of the starch sample	39
Fig. 4.3	Photographs of the films prepared from the different combinations.	41
Fig 4.3	Yellowness Index of the film	44
Fig.4.4.	Transparency of the films	45
Fig 4.5	XRD analysis of the starch powder (Fa), starch film (F1), agar film	49
	(F2), agar starch film (F3) and the palmatic acid film (F4)	
Fig 4.6	FTIR analysis of the starch powder, starch film, agar film, agar	50
	starch film and the palmatic acid film.	
Fig 4.7	Scanning electron Microscopy analysis of the starch powder and the	52
	films produced from it.[(a)represents the starch powder, (b)	
	represents starch film, (c) lipid film, (d) Agar film, (e) & (f) Starch-	
	Agar films]	
Fig 4.8	Plates kept for biodegradation of the film of different combination	53
	of film in incubation in the 1 st day [(a) plate kept for the study of the	
	microbial growth, (b) LDPE plastic as control, (c) starch film, (d)	{
	Agar film, (e) agar & starch (1:1) film, (f) Lipid added film.]	
Fig 4.9	Plates kept for biodegradation of the film of different combination	54
	of film in incubation in the 30 th day [(a) plate kept for the study of	
	the microbial growth, (b) LDPE plastic as control, (c) starch film,	
	(d) Agar film, (e) agar & starch (1:1) film, (f) Lipid added film.]	
Fig 4.10	Photographs of the tomato during the 15 days of storage study	55-56
Fig 4.11	Weight loss of the tomatoes (control & coated) during 15 days	57
Fig 4.12	Change in pH of the tomatoes (control & coated) during 15 days	58
Fig 4.13	Change in TSS content during the study	58
Fig 4.14	Titrable acidity change in the tomatoes	59
Fig 4.15	Change in the color during the storage [(i) L value, (ii) a values, (iii)	60-61

	b values]	
Fig 4.16	Change in the	62
	(a) skin firmness &	
	(b)elasticity of the tomatoes	

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
Table 2.1	Different source of starch its types, size and shapes	10
Table 2.2	Functions of starch in different industries	10
Table 3.1	Texture Analyzer settings for the study of	31
	tensile properties	
Table 3.2	Texture Analyzer settings for the texture	36
	analysis of the tomato (both coated and	
	uncoated)	
Table 4.1	Table showing the proximate analysis of the	39
	water chestnut starch powder	
Table 4.2	The melting temperatures and enthalpy of	39
	transition of starch	
Table 4.3	Thickness of the films	42
Table 4.4	Solubility of the different film combinations	42
Table 4.5	L, a and b of the different combination of the	43
	films.	
Table 4.6	Tensile strength and extension of the films	46
Table 4.7	Percentage elongation of the films	46
Table 4.8	Moisture content of the films	47
Table 4.9	WVTR of the different films	47
Table 4.10	Swelling ratio & swelling degree of the films	48
Table 4.11	(a) Yeast count	63-64
	(b) Mold count	

List of Abbreviations

- 1. DSC: Differential Scanning Calorimetry.
- 2. FTIR: Fourier Transform Infra Red.
- 3. WVTR: Water Vapor Transmission Rate.
- 4. XRD: X-ray Diffractogram.
- 5. SEM: Scanning Electron Microscopy.
- 6. TSS: Total Soluble Solids
- 7. TA: Titrable acidity.
- 8. ANOVA: Analysis Of Variance.
- 9. AOAC: Association of Analytical Chemists.
- 10. CFU: Colony Forming Unit.
- 11. Δ H: Enthalpy of Transition.
- 12. AS Film: Agar & starch Films.
- 13. PA Film: Palmatic acid added films.
- 14. dB: Dry basis of moisture content.
- 15. LDPE: Low Density Poly ethylene.