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irradiated PPy nanofibers at ion fluences of (b) 10
10
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(c) 5×10
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, (d) 10
11

, (e) 5×10
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 and (f) 10
12 

ions/cm
2
 at 

room temperature (303 K). 
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Figure 6.1 HRTEM micrographs of PPy nanotubes synthesized at 

CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and 

(d) 2:1. 
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Figure 6.2 Schematic of formation of PPy nanotubes by self-
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Figure 6.3 XRD patterns of PPy nanotubes synthesized at 

CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and 

(d) 2:1. 
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Figure 6.4 Plots of (i) FTIR spectra and (ii) peak area ratio of 
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(a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1. 
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Figure 6.5 UV-vis absorption spectra of PPy nanotubes at 

CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and 

(d) 2:1. 
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molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1. 
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Figure 6.7 Plots of TGA thermographs of PPy nanotubes at 

CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1 (c) 1:1 and 

(d) 2:1. 
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Figure 6.8 Derivative plots of TGA thermographs for PPy 
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0.5:1, (c) 1:1 and (d) 2:1. 
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Figure 6.9 Room temperature plots of dielectric permittivity )(   
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ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1. 
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0.5:1, (c) 1:1 and (d) 2:1 at room temperature. 

185 
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Figure 6.13 Plots of imaginary part of modulus )(M   vs. 

frequency )(  of PPy nanotubes at CSA/Py ratios of 

(a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1 at room 
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Figure 6.23 HRTEM micrographs of (a) pristine and irradiated 
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 and (c) 
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Figure 6.24 XRD diffraction patterns of (a) pristine and irradiated 
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, (e) 5×10
11

 and (f) 10
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, (e) 5×10
11
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Figure 6.26  UV-vis absorption spectra of (a) pristine and 
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Figure 6.27 Plots of variation of (i) 2)( h  vs. h  and (ii) 
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Figure 6.28 Comparison of direct and indirect band gap energies 
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Figure 6.29  TGA thermographs of (a) pristine and irradiated PPy 
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, (d) 
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11

, (e) 5×10
11

 and (f) 10
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Derivative plots of TGA thermographs for (a) 
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, (e) 5×10
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and (f) 10
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Figure 6.31 Plots of dielectric permittivity )(   vs. frequency )(  

of (a) pristine and irradiated PPy nanotubes at ion 

fluences of (b) 10
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, (c) 5×10
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, (d) 10
11

, (e) 5×10
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and (f) 10
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at room temperature (303 K). 
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Figure 6.32 Plots of dielectric loss )(   vs. frequency )(  of (a) 

pristine and irradiated PPy nanotubes at ion fluences 

of (b) 10
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, (c) 5×10
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 and (f) 

10
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 ions/cm
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at room temperature (303 K). 
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Figure 6.34 Plots of imaginary part of modulus )(M   vs. 

frequency )(  of (a) pristine and irradiated PPy 

nanotubes at ion fluences of (b) 10
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, (c) 5×10
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, (d) 

10
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, (e) 5×10
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 and (f) 10
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 ions/cm
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at room 

temperature (303 K). 
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Figure 6.35 Room temperature scaling plots of imaginary part of 
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 and (f) 10
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Figure 6.36 Room temperature plots of total conductivity )(   of 
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, (d) 10
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, (e) 5×10
11

 

and (f) 10
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Figure 6.37 Temperature variation of frequency exponent ‘s’ of 
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fluences of (b) 10
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, (c) 5×10
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, (d) 10
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, (e) 5×10
11

 

and (f) 10
12

 ions/cm
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fluences of (b) 10
10
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1-D One dimensional 

ABSA Alkylbenzenesulfonic acids 

APL Antibonding polaron level 

APS Ammonium peroxydisulfate 

BB Bethe-Bloch 

BJT Bipolar junction transistors 

BNN Barton-Nakajima-Namikawa 

BPL Bonding polaron level 

CBH Correlated barrier hopping 

CC Cole-Cole 

CCD Charge-coupled device 

cm Centimetre 

CMC Critical micelle concentration 

CSA Camphorsulfonic acid 

DBSA Dodecylbenzenesulfonic acid 

DC Davison-Cole 

DeTAB Decyltrimethylammonium bromide 

DTAB Dodecyltrimethyl ammmonium bromide 

EMI Electromagnetic interference 

eV Electron volt 

FD Frequency-domain 

FET Field effect transistor  

FTIR Fourier transform infrared spectroscopy 

FWHM Full width at half maximum 

HEDS High energy dead section 

HN Havriliak-Nigami 

HOMO Highest occupied molecular orbital 

HRTEM High resolution transmission electron microscopy 
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Abbreviation 

 

Hz 

Meaning 

 

Hertz 

ICP Intrinsically conducting polymers 

ITO Indium-tin oxide 

IUAC Inter University Accelerator Centre 

KeV Kilo electron volt 

KPS Potassium persulfate 

KWW Kohlrausch-Williams-Watts 

LEDS Low energy dead section 

LSS Lindhard-Scharff-Schiøtt 

LUMO Lowest unoccupied molecular orbital 

MHz Mega Hertz 

MIS Metal/insulator/semiconductor 

MISFET Metal-insulator-semiconductor field effect transistor 

MO Methyl orange 

MS Materials Science 

MWS Maxwell-Wagner-Sillars 

NIR Near infrared 

NSPT Non-overlapping small polarons tunnelling 

OBSA Octylbenzenesulfonic acid 

OFET Organic field-effect transistor 

OLPT Overlapping large polaron tunnelling 

OTAB Octyltrimethylammonium bromide 

PA Polyacetylene 

PAni Polyaniline 

PC Polycarbonate 

PEDOT Poly (3,4-ethylenedioxythiophene)  

PPV Poly(phenylene vinylene) 

PPy Polypyrrole 

PTh Polythiophene 

p-TSA para-Tolunesulfonic acid 

PVA Poly-vinyl alcohol 
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Abbreviation 

 

QMT 

Meaning 

 

Quantum mechanical tunnelling 

SDS Sodium dodecylsulfate 

SHI Swift heavy ion 

SNICS Source of negative ions by cesium sputtering 

SRIM Stopping ranges of Ions in matter 

TD Time-domain 

TGA Thermo-gravimetric Analysis 

UV-vis UV-visible spectroscopy 

XRD X-ray diffraction 
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Symbols Meanings 

e Electronic charge 

)(   Total electrical conductivity 

dc  DC conductivity 

ac  AC conductivity 

s Frequency exponent 

  Angular frequency 

)( FEN  Density of states at Fermi level 

R  Hopping distance at a particular frequency 

0  Relaxation time 

p  Effective dielectric constant 

  Exponential decay parameter 

pr  Polaron radius 

0  Dielectric permittivity at free space 

Bk  Boltzman constant 

T  Temperature 

0f  Relaxation frequency 

G  Conductance 

C  Capacitance 

  Complex permittivity 

   Real part of permittivity 

   Imaginary part of permittivity 

s  Static dielectric permittivity in the limit of zero frequencies 

  Permittivity in the limit of infinite frequencies 

  Dielectric relaxation strength 

  Symmetrical distribution of relaxation times 

  Asymmetric distribution of relaxation times 

M  Complex modulus 

M   Real part of modulus 
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Symbols 

 

M   

Meanings 

 

Imaginary part of modulus 

)(t  Kohlrausch-Williams-Watts (KWW) decay function 

Z  Complex impedance 

Z   Real part of impedance 

Z   Imaginary part of impedance 

0N  Avogadro’s number 

a  Bohr radius 

v  Bohr velocity 

nS  Nuclear energy loss 

eS  Electronic energy loss 

  Density 

φ Fluence 

Q Total charge 

D Dose 

q Charge state 

XC Degree of crystallinity 

L Extent of polymer chain order 

R Interchain separation or hopping distance 

gE  Optical band gap energy 

M0  High temperature limit of relaxation time 

aME  Activation energy for relaxation of charge carriers 

  Formation (or damage) cross section 

aE  Hopping activation energy 

HW  Barrier activation energy 

 

 

 

 


