List of Tables

Table	Caption	Page No.
Table 1.1	Typical properties of solitons, polarons and bipolarons.	8
Table 3.1	Physical properties of the pyrrole monomer.	50
Table 3.2	Physical properties of dopants, oxidant and plasticizer	51
	used in synthesis.	
Table 3.3	Physical properties of oxidant.	51
Table 3.4	Physical properties of plasticizer.	52
Table 3.5	Physical properties of solvents.	52
Table 3.6	SRIM data for 160 MeV Ni ¹²⁺ ions in polypyrrole	61
	nanostructures.	
Table 4.1	Values of angle of diffraction (2 θ), ordering of chains	78
	(X_C) , extent of chain order (L), interplanar spacing (d)	
	and hopping distance (R) of PPy nanoparticles at	
	different SDS concentrations.	
Table 4.2	Degradation temperatures at different percentage weight	84
	losses for PPy nanoparticles at different SDS molar	
	concentrations.	
Table 4.3	Onset decomposition temperature (T_{onset}) , maximum	85
	decomposition temperature (T_m) and maximum	
	decomposition rate $(dW/dT)_m$ for PPy nanoparticles at	
	different SDS molar concentrations.	
Table 4.4	Room temperature (303 K) values of maximum of	92
	imaginary part of modulus (M''_{max}) , relaxation	
	frequency (ω_{\max}) , relaxation time (τ) and Kohlrausch	
	stretched parameter (β) of charge carriers in PPy	
	nanoparticles at different SDS concentrations.	
Table 4.5	Room temperature (303 K) dc conductivity (σ_{dc}) and	95
	frequency exponent (s) of PPy nanoparticles at	
	different SDS concentrations.	

Table	Caption	Page No.
Table 4.6	Values of barrier activation energy (W_H) for charge	96
	carriers in PPy nanoparticles at different SDS	
	concentrations at room temperature (303 K).	
Table 4.7	Values of ordering of polymer chains (X _C), full width at	101
	half maximum (β) , interplanar spacing (d), extent of	
	ordering (L) and hopping distance (R) of pristine and	
	irradiated PPy nanoparticles at different ion fluences.	
Table 4.8	Values of optical band gap energies (E_g) of pristine and	105
	irradiated PPy nanoparticles at different ion fluences.	
Table 4.9	Degradation temperatures at different percentage weigh	108
	losses, onset decomposition temperature, T_{onset} and	
	maximum decomposition rate, $(dW/dT)_m$ for both pristine	
	and irradiated PPy nanoparticles at different irradiation	
	fluences.	
Table 4.10	Values of relaxation time (τ) and hopping activation	114
	energy (E_{aM}) of both pristine and irradiated PPy	
	nanoparticles at different ion fluences.	
Table 4.1 1	Values of frequency exponent (s) and barrier activation	116
	energy (W_H) for charge carriers in both pristine and	
	irradiated PPy nanoparticles at room temperature (303 K).	
Table 5.1	Values of diffraction peak position (2 θ), ordering of chains	125
	(X_C) , interplanar spacing (d) and hopping distance (R) of	
	different ABSA doped PPy nanofibers.	
Table 5.2	Values of integrated peak area ratio of I_{1464}/I_{1544} (I_{1464}/I_{1550} ,	127
	I_{1464}/I_{1555} , I_{1460}/I_{1542}) of different ABSA doped PPy nanofibers.	
Table 5.3	Degradation temperature at different percentage weight	132
	losses for PPy nanofibers doped with different ABSA	
	dopants.	

Table	Caption	Page No.
Table 5.4	Onset decomposition temperature, T_{onset} and maximum	132
	decomposition temperature, $T_{\rm m}$ for PPy nanofibers doped	
	with different ABSA dopants.	
Table 5.5	Values of maximum of imaginary part of modulus (M''_{max}) ,	138
	relaxation frequency (ω_{\max}) , relaxation time (τ) and	
	Kohlrausch stretched parameter (β) for charge carriers of	
	different ABSA doped PPy nanofibers at room temperature	
	(303 K).	
Table 5. 6	Values of frequency exponent (s) and barrier activation	144
	energy $(W_{\rm H})$ of different ABSA doped PPy nanofibers at	
	room temperature (303 K).	
Table 5.7	Values of diffraction peak (2θ) , chain ordering (X_C) ,	148
	interplanar spacing (d) and hopping distance (R) of pristine	
	and irradiated PPy nanofibers at ion fluences of 10^{10} ,	
	5×10^{10} , 10^{11} , 5×10^{11} and 10^{12} ions/cm ² .	
Table 5.8	Values of optical band gap energy (E_g) , number of carbon	153
	atoms per conjugation length (N) and number of carbon	
	atoms per cluster (M) of the pristine and irradiated PPy	
	nanofibers at ion fluences of 10^{10} , 5×10^{10} , 10^{11} , 5×10^{11} and	
	10^{12} ions/cm ² .	
Table 5.9	Degradation temperature at different percentage weight	156
	losses and maximum decomposition rate, $(dW/dT)_m$ for	
	pristine and irradiated PPy nanofibers at different ion	
	fluences.	1 - 60
Table 5.10	Relaxation frequency (ω) and relaxation time (τ) for	160
	charge carriers in both pristine and irradiated PPy	
	nanofibers at different ion fluences.	

Table	Caption	Page No.
Table 5.1 1	Room temperature (303 K) values of frequency exponent	163
	(s) and barrier activation energy (W_H) of pristine and	
	irradiated PPy nanofibers at different ion fluences.	
Table 6.1	Values of angle of diffraction (2θ) , full width at half-	173
	maximum (β), ordering of chains (X_c), extent of chain	
	order (L) and hopping distance (R) of PPy nanotubes at	
	different CSA/Py molar ratios.	
Table 6.2	Values of integrated peak area ratios of I_{1476}/I_{1563} of PPy	176
	nanotubes synthesized at different CSA/Py molar ratios.	
Table 6.3	Values of optical band gap energies (E_g) of PPy	179
	nanotubes at different CSA/Py molar ratios.	
Table 6.4	Degradation temperatures at different percentage weight	181
	losses (%), maximum decomposition temperature, (T_m) and	
	maximum decomposition rate, $(dW/dT)_m$ for PPy	
Table 6.5	nanotubes at various CSA/Py molar ratios. Different dielectric relaxation parameters for PPy	184
1 able 0.5	Different dielectric relaxation parameters for PPy nanotubes using Havriliak-Nigami (HN) equation.	104
Table 6.6	Values of relaxation frequency (ω_{max}) and relaxation time	190
	(τ) of PPy nanotubes for CSA/Py molar ratio of 2:1 at	
	different temperatures.	
Table 6.7	Values of maximum imaginary modulus (M''_{max}) ,	191
	relaxation frequency (ω_{max}) , relaxation time (τ) and	
	stretched exponent (β) of PPy nanotubes at various	
Table 6.8	CSA/Py molar ratios at room temperature (303 K).	195
1 abic 0.0	Room temperature values of dc conductivity (σ_{dc}) ,	175
	hopping frequency (ω_H) , frequency exponent (s) and	
	barrier activation energy (W_H) for PPy nanotubes at	
	different CSA/Py molar ratios.	

Table	Caption	Page No.
Table 6.9	Angle of diffraction (2θ) , crystallinity (X_c) , inter-planar	204
	spacing (d) , hopping distance (R) and extent of chain order	
	(L) of pristine and irradiated PPy nanotubes at different ion	
	fluences.	
Table 6.10	Direct and indirect band gap energies (E_g) , number of	209
	carbon atoms per conjugation length (N) of the pristine and	
	irradiated PPy nanotubes at different ion fluences.	
Table 6.11	Values of maximum decomposition rate, $(dW/dT)_m$ for	211
	pristine and irradiated PPy nanotubes at irradiation fluences	
	of 10^{10} , 5×10^{10} , 10^{11} , 5×10^{11} and 10^{12} ions/cm ² .	
Table 6.12	Relaxation frequency ($\omega_{\rm max})$ and relaxation time ($\tau)$ for	216
	charge carriers in the pristine and irradiated PPy nanotubes	
	at room temperature (303 K).	
Table 6.13	Frequency exponent (s) and barrier activation energy (W_H)	219
	of pristine and irradiated PPy nanotubes at different	
	irradiation fluences at room temperature (303 K).	

List of Figures

Figure Figure 1.1	Caption Chemical structure of some mostly studied conducting	Page No. 2
	polymers.	
Figure 1.2	Diagram showing range of conductivity for various	2
	materials including conducting polymers.	
Figure 1.3	Different applications of conducting polymers as smart	3
	window, solar cell, actuator, organic light emitting	
	diodes and organic thin film transistor.	
Figure 1.4	Action of a dopant on polymer	8
Figure 1.5	Energy level diagrams for metal, semiconductor and	10
	insulator.	
Figure 1.6	HOMO-LUMO theory in organic semiconductor	11
	polymers.	
Figure 1.7	Chemical oxidative polymerization and doping process	13
	in pyrrole.	
Figure 1.8	Oxidation states of pyrrole.	13
Figure 1.9	Electronic energy diagrams for (a) neutral, (b) polaron	14
	(c) bipolaron and (d) fully doped polypyrrole.	
Figure 1.10	Reduced (top) and oxidized (bottom) states of	15
	polypyrrole.	
Figure 1.11	Conduction mechanism for the oxidative	15
	polymerization of polypyrrole.	
Figure 1.12	Pictorial representation of soft-template synthesis of	18
	different nanostructures of conducting polymers.	

Figure	Caption	Page No.
Figure 1.13	Schematic of hard template synthesis of different conducting polymer nanostructures: (a) porous membrane as the hard template to produce conducting polymer nanotubes and nanowires. At first the growth of the conducting polymer is guided within the pores or channels of the membrane and then the template is removed after the polymerization; (b) Colloidal particles as the hard template to produce nanoporous membranes. The monomer is polymerized in the voids between the colloidal particles. When the colloidal particles are removed, a 3-D particle structure results.	20
Figure 1.14	Block diagram for SHI irradiation in materials.	27
Figure 3.1	Block diagram for synthesis of polypyrrole nanoparticles using micro-emulsion polymerization method.	54
Figure 3.2	Block diagram for synthesis of polypyrrole nanofibers using novel interfacial polymerization method.	55
Figure 3.3	Block diagram for synthesis of polypyrrole nanotubes by self-assembly polymerization method.	57
Figure 3.4	Schematic block diagram showing the principle of acceleration of ions in a Pelletron.	57
Figure 3.5	Photographs of (a) Materials Science (MS) beam line and (b) the high vacuum irradiation chamber.	59
Figure 3.6	Transmission electron microscope (JEOL, JEM-2100, 200 kV) at SAIF, NEHU, Shillong.	63
Figure 3.7	Rigaku Miniflex X-ray diffractometer installed at the Department of Physics, Tezpur University.	64
Figure 3.8	Perkin Elmer Spectrum 100 spectrophotometer installed at Department of Chemical Sciences, Tezpur University, Assam, India.	65

Figure	Caption	Page No.
Figure 3.9	UV-visible spectrophotometer (ShimadzuUV-2450) installed at Department of Physics, Tezpur University,	67
	India.	
Figure 3.10	Thermogravimetric analyzer, Perkin Elmer STA 6000	68
	installed at Materials Research Laboratory, Dept. of	
	Physics, Tezpur University.	
Figure 3.11	HIOKI 3532-50 LCR HiTESTER installed at Materials	69
	Research Laboratory, Department of Physics, Tezpur	
	University.	
Figure 4.1	HRTEM micrographs of PPy nanoparticles synthesized	76
	at (a) 0.01 M, (b) 0.05 M, (c) 0.1 M and (d) 0.2 M SDS	
	concentration.	
Figure 4.2	Histograms of PPy nanoparticles synthesized at (a) 0.01	76
	M, (b) 0.05 M, (c) 0.1 M and (d) 0.2 M SDS	
	concentration.	
Figure 4.3	XRD patterns of PPy nanoparticles synthesized at (a)	77
	0.01 M (b) 0.05 M (c) 0.1 M and (d) 0.2 M SDS	
	concentration.	
Figure 4.4	Plots of (i) FTIR spectra and (ii) integrated peak area	80
	ratio I_{1465}/I_{1550} (I_{1460}/I_{1550} , I_{1458}/I_{1550} , I_{1450}/I_{1550}) of PPy	
	nanoparticles synthesized at SDS concentrations of (a)	
	0.01 M (b) 0.05 M (c) 0.1 M and (d) 0.2 M.	01
Figure 4.5	UV-vis absorption spectra of PPy nanoparticles at SDS	81
	concentrations of (a) 0.01 M (b) 0.05 M (c) 0.1 M and	
F ' A ((d) 0.2 M.	92
Figure 4.6	Plots of $(\alpha hv)^2$ vs. hv of PPy nanoparticles at SDS	82
	concentrations of (a) 0.01 M (b) 0.05 M (c) 0.1 M and	
	(d) 0.2 M.	
Figure 4.7	TGA thermographs of PPy nanoparticles at SDS molar	83
	concentrations of (a) 0.01 M (b) 0.05 M (c) 0.1 M and	
	(d) 0.2 M.	

Figure	Caption	Page No.
Figure 4.8	Derivative plots of TGA thermographs for PPy	83
	nanoparticles at SDS molar concentrations of (a) 0.01 M	
	(b) 0.05 M (c) 0.1 M and (d) 0.2 M.	
Figure 4.9	Room temperature (303 K) plots of dielectric	86
	permittivity (ε') vs. frequency (ω) of PPy	
	nanoparticles at SDS concentrations of (a) 0.01 M (b)	
	0.05 M (c) 0.1 M and (d) 0.2 M.	
Figure 4.10	Room temperature (303 K) plots of dielectric loss (ε'')	87
	vs. frequency (ω) of PPy nanoparticles at SDS	
	concentrations of (a) 0.01 M (b) 0.05 M (c) 0.1 M and	
	(d) 0.2 M.	
Figure 4.11	Plots of real part of modulus (M') vs. frequency (ω) of	88
	PPy nanoparticles at SDS molar concentrations of (a)	
	0.01, (b) 0.05, (c) 0.1 M and and (d) 0.2 M at room	
	temperature (303 K).	
Figure 4.12	Plots of imaginary part of modulus (M'') vs. frequency	89
	(ω) of PPy nanoparticles at SDS molar concentrations	
	of (a) 0.01, (b) 0.05, (c) 0.1 M and and (d) 0.2 M at	
	room temperature (303 K).	
Figure 4.13	Temperature dependence plots of M'' vs. ω of PPy	90
	nanoparticles at 0.2 M SDS concentration.	
Figure 4.14	Plots of $\ln(\tau)$ vs. $1000/T$ of PPy nanoparticles at SDS	91
	concentration of 0.2 M SDS.	
Figure 4.15	Plots of frequency dependence of total conductivity	93
	$\sigma'(\omega)$ of PPy nanoparticles at SDS molar	
	concentrations of (a) 0.01 M (b) 0.05 M (c) 0.1 M and	
	(d) 0.2 M at room temperature (303 K).	
Figure 4.16	Plots of frequency exponent (s) vs. temperature of PPy	95
	nanoparticles at different SDS concentrations.	

Figure	Caption	Page No.
Figure 4.17	HRTEM micrographs for (a) pristine and irradiated PPy nanoparticles at irradiation fluences of (b) 5×10^{10} and (c) 10^{12} ions/cm ² .	98
Figure 4.18	XRD patterns of (a) pristine and irradiated PPy nanoparticles at ion fluences of (b) 5×10^{10} , (c) 10^{11} , (d) 5×10^{11} and (e) 10^{12} ions/cm ² .	99
Figure 4.19	FTIR spectra of (a) pristine and irradiated PPy nanoparticles at irradiation fluences of (b) 5×10^{10} , (c) 10^{11} , (d) 5×10^{11} and (e) 10^{12} ions/cm ² .	101
Figure 4.20	Plots of areas of IR active vibrational modes of pristine and irradiated PPy nanoparticles at different ion fluences.	102
Figure 4.21	Plots of $\log_{10}[I(\phi)/I_o]$ vs. ion fluence (ϕ) of the vibrational bands positioned at 3695, 2377, 1632 and 1423 cm ⁻¹ of PPy nanoparticles.	103
Figure 4.22	UV-vis absorption spectra of (a) pristine and irradiated PPy nanoparticles at irradiation fluences of (b) 5×10^{10} , (c) 10^{11} , (d) 5×10^{11} and (e) 10^{12} ion/cm ² , respectively.	104
Figure 4.2 3	Plots of $(\alpha hv)^2$ vs. hv of (a) pristine and irradiated PPy nanoparticles at irradiation fluences of (b) 5×10^{10} , (c) 10^{11} , (d) 5×10^{11} and (e) 10^{12} ion/cm ² , respectively.	105
Figure 4.24	TGA thermographs of (a) pristine and irradiated PPy nanoparticles at ion fluences of (b) 5×10^{10} , (c) 10^{11} , (d) 5×10^{11} and (e) 10^{12} ion/cm ² .	106
Figure 4.25	Derivative plots of TGA thermographs for (a) pristine and irradiated PPy nanoparticles at different irradiation fluences of (b) 5×10^{10} , (c) 10^{11} , (d) 5×10^{11} and (e) 10^{12} ions/cm ² , respectively.	107

Figure	Caption	Page No.
Figure 4.26	Plots of dielectric permittivity (ε') vs. frequency (ω)	109
	of both pristine and irradiated PPy nanoparticles at	
	different ion fluences at room temperature (303 K).	
Figure 4.27	Plots of dielectric loss (ε'') vs. frequency (ω) of both	109
	pristine and irradiated PPy nanoparticles at different	
	ion fluences at room temperature (303 K).	
Figure 4.28	Plots of real part of modulus (M') vs. frequency (ω)	110
	of pristine and irradiated PPy nanoparticles at different	
	ion fluences at room temperature (303 K).	
Figure 4.29	Plots of imaginary part of modulus (M'') vs.	111
	frequency (ω) of pristine and irradiated PPy	
	nanoparticles at different ion fluences at room	
	temperature (303 K).	
Figure 4.30	Temperature dependent plots of imaginary part of	112
	modulus (M'') vs. frequency (ω) of irradiated PPy	
	nanoparticles at ion fluence of 10^{12} ions/cm ² .	
Figure 4.31	Plots of $\ln(\tau)$ vs. $1000/T$ for both pristine and	113
	irradiated PPy nanoparticles at different fluences.	
Figure 4.32	Plots of total conductivity (σ') vs. frequency (ω) of	115
	pristine and irradiated PPy nanoparticles at ion	
	fluences of 5×10^{10} , 10^{11} , 5×10^{11} and 10^{12} ions/cm ² at	
	room temperature (303 K).	
Figure 4.33	Temperature dependence of frequency exponent (s) of	115
	(a) pristine and irradiated PPy nanoparticles at ion	
	fluences of (b) 5×10^{10} , (c) 10^{11} , (d) 5×10^{11} and (e) 10^{12}	
	ions/cm ² .	
Figure 5.1	HRTEM micrographs of (a) DBSA, (b) OBSA, (c)	122
	CSA and (d) <i>p</i> -TSA doped PPy nanofibers.	

Figure	Caption	Page No.
Figure 5.2	XRD patterns of (a) DBSA (b) OBSA (c) CSA and	123
	(d) <i>p</i> -TSA doped PPy nanofibers.	
Figure 5.3	Plots of FTIR spectra of PPy nanofibers doped with	126
	(a) DBSA (b) OBSA (c) CSA and (d) <i>p</i> -TSA.	
Figure 5.4	Plots of peak area ratio of I_{1464}/I_{1544} (I_{1464}/I_{1550} ,	126
	$I_{\rm 1464}/I_{\rm 1555},~I_{\rm 1460}/I_{\rm 1542})$ of PPy nanofibers doped with	
	(a) DBSA (b) OBSA (c) CSA and (d) <i>p</i> -TSA.	
Figure 5.5	UV-vis absorption spectra of (a) DBSA (b) OBSA	128
	(c) CSA and (d) p-TSA doped PPy nanofibers at	
	room temperature.	
Figure 5.6	Plots of $(\alpha h v)^2$ vs. hv of (a) DBSA (b) OBSA (c)	129
	CSA and (d) p-TSA doped PPy nanofibers	
Figure 5.7	TGA thermographs of PPy nanofibers doped with (a)	130
	DBSA (b) OBSA (c) CSA and (d) <i>p</i> -TSA.	
Figure 5.8	Derivative plots of TGA thermographs for PPy	130
	nanofibers doped with (a) DBSA (b) OBSA (c) CSA	
	and (d) p-TSA.	
Figure 5.9	Plots of dielectric permittivity (ε') vs. frequency	133
	(ω) of PPy nanofibers doped with (a) DBSA (b)	
	OBSA (c) CSA and (d) p-TSA at room temperature	
	(303 K).	
Figure 5.10	Plots of dielectric loss (ε'') vs. frequency (ω) of PPy	133
	nanofibers doped with (a) DBSA (b) OBSA (c) CSA	
	and (d) p -TSA at room temperature (303 K).	
Figure 5.11	Plots of real part of modulus (M') vs. frequency (ω)	136
	of PPy nanofibers doped with (a) DBSA (b) OBSA	
	(c) CSA and (d) <i>p</i> -TSA at room temperature (303 K).	

Figure	Caption	Page No.
Figure 5.12	Plots of imaginary part of modulus (M'') vs.	136
	frequency (ω) of PPy nanofibers doped with (a)	
	DBSA (b) OBSA (c) CSA and (d) p-TSA at room	
	temperature (303 K).	
Figure 5.13	Temperature dependence plots of imaginary part of	139
	modulus (M'') vs. frequency (ω) for p-TSA doped	
	PPy nanofibers.	
Figure 5.14	Plot of $\ln(\tau)$ vs. $1000/T$ for <i>p</i> -TSA doped PPy	139
	nanofibers.	
Figure 5.15	Room temperature scaling plots of imaginary part of	140
	modulus (M'') of PPy nanofibers doped with (a)	
	DBSA (b) OBSA (c) CSA and (d) <i>p</i> -TSA.	
Figure 5.16	Plots of total conductivity $\sigma'(\omega)$ vs. frequency (ω)	141
	of PPy nanofibers doped with (a) DBSA (b) OBSA	
	(c) CSA and (d) <i>p</i> -TSA at room temperature (303 K).	
Figure 5.17	Temperature dependence plots of total conductivity	142
	$\sigma'(\omega)$ vs. frequency (ω) of PPy nanofibers doped	
	with <i>p</i> -TSA.	
Figure 5.18	Plots of frequency exponent (s) vs. temperature of	143
	PPy nanofibers doped with (a) DBSA (b) OBSA (c)	
	CSA and (d) <i>p</i> -TSA.	
Figure 5.19	Scaling plots of total conductivity spectra of PPy	144
	nanofibers doped with (a) DBSA (b) OBSA (c) CSA	
	and (d) <i>p</i> -TSA at room temperature (303 K).	
Figure 5.20	HRTEM micrographs for (a) pristine and irradiated	146
	PPy nanofibers at irradiation fluences of (b) 5×10^{10}	
	(c) 10^{12} ions/cm ² .	
Figure 5.21	XRD patterns of (a) pristine and irradiated PPy	147
	nanofibers at ion fluences of (b) 10^{10} (c) 5×10^{10} (d)	
	10^{11} (e) 5×10 ¹¹ and (f) 10 ¹² ions/cm ² .	

FigureCaptionPage No.

FTIR spectra of (a) pristine and irradiated PPy Figure 5.22 149 nanofibers at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10¹¹, and (f) 10^{12} ions/cm². UV-vis absorption spectra of (a) pristine and Figure 5.23 150 irradiated PPy nanofibers at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm². Figure 5.24 Plots of $(\alpha h v)^2$ vs. hv of (a) pristine and irradiated 152 PPy nanofibers at ion fluences of (b) 10^{10} . (c) 5×10^{10} . (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm². Figure 5.25 152 Plots of $(\alpha h v)^{\frac{1}{2}}$ vs. h v of (a) pristine and irradiated PPy nanofibers at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm². Figure 5.26 TGA thermographs of pristine and irradiated PPy 155 nanofibers at different ion fluences. Figure 5.27 Derivative plots of TGA thermographs for (a) 155 pristine and irradiated PPy nanofibers at irradiation fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (e) 10^{12} ions/cm², respectively. Figure 5.28 Plots of dielectric permittivity (ε') vs. frequency (ω) 157 of both pristine and irradiated PPy nanofibers at different ion fluences at room temperature (303 K). Figure 5.29 Plots of dielectric loss (ε'') vs. frequency (ω) of 158 both pristine and irradiated PPy nanofibers at different ion fluences at room temperature (303 K). Figure 5.30 159 Plots of real part of modulus (M') vs. frequency (ω) of pristine and irradiated PPy nanofibers at different ion fluences at room temperature (303 K).

Figure	Caption	Page No.
Figure 5.31	Room temperature (303 K) plots of imaginary part of modulus (M'') vs. frequency (ω) of (a) pristine and irradiated PPy nanofibers at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² , respectively.	159
Figure 5.32	Room temperature (303 K) scaling plots of M'' spectra of (a) pristine and irradiated PPy nanofibers at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² , respectively.	160
Figure 5.33	Plots of total conductivity (σ') of (a) pristine and irradiated PPy nanofibers at ion fluences of (b) 10 ¹⁰ , (c) 5×10 ¹⁰ , (d) 10 ¹¹ , (e) 5×10 ¹¹ and (f) 10 ¹² ions/cm ² at room temperature (303 K).	162
Figure 5.34	Temperature variation of frequency exponent 's' of (a) pristine and irradiated PPy nanofibers at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	162
Figure 5.35	Scaling plots of total conductivity of (a) pristine and irradiated PPy nanofibers at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² at room temperature (303 K).	164
Figure 6.1	HRTEM micrographs of PPy nanotubes synthesized at CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1.	170
Figure 6.2	Schematic of formation of PPy nanotubes by self-assembly method.	171
Figure 6.3	XRD patterns of PPy nanotubes synthesized at CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1.	172

Figure	Caption	Page No.
Figure 6.4	Plots of (i) FTIR spectra and (ii) peak area ratio of	174
	I ₁₄₇₄ /I ₁₅₆₃ of PPy nanotubes at CSA/Py molar ratios of	
	(a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1.	. – .
Figure 6.5	UV-vis absorption spectra of PPy nanotubes at	176
	CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and	
-	(d) 2:1.	170
Figure 6.6	Plots of $(\alpha h v)^2$ vs. hv of PPy nanotubes at CSA/Py	178
	molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1.	
Figure 6.7	Plots of TGA thermographs of PPy nanotubes at	179
	CSA/Py molar ratios of (a) 0.1:1, (b) 0.5:1 (c) 1:1 and	
	(d) 2:1.	
Figure 6.8	Derivative plots of TGA thermographs for PPy	180
	nanotubes at CSA/Py molar ratios of (a) 0.1:1, (b)	
	0.5:1, (c) 1:1 and (d) 2:1.	
Figure 6.9	Room temperature plots of dielectric permittivity (ε')	183
	vs. frequency (ω) of PPy nanotubes at CSA/Py molar	
	ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1.	
Figure 6.10	Temperature dependence of dielectric permittivity	184
	(ε') of PPy nanotubes at frequencies of (i) 100 Hz and	
	(ii) 1000 Hz at different CSA/Py molar ratios of (a)	
	0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1.	
Figure 6.11	Plots of dielectric loss (ε'') vs. frequency (ω) of PPy	185
	nanotubes at CSA/Py molar ratios of (a) 0.1:1, (b)	
	0.5:1, (c) 1:1 and (d) 2:1 at room temperature.	
Figure 6.12	Plots of real part of modulus (M') vs. frequency (ω)	188
	of PPy nanotubes at CSA/Py ratios of (a) 0.1:1, (b)	
	0.5:1, (c) 1:1 and (d) 2:1 at room temperature (303 K).	

Figure	Caption	Page No.
Figure 6.13	Plots of imaginary part of modulus (M'') vs.	188
	frequency (ω) of PPy nanotubes at CSA/Py ratios of	
	(a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1 at room	
	temperature (303 K).	
Figure 6.14	Temperature dependence of M'' spectra of PPy	189
	nanotubes at CSA/Py molar ratio of 2:1.	
Figure 6.15	Plots of $\ln(\tau)$ vs. $1000/T$ of PPy nanotubes at	190
	CSA/Py molar ratio of 2:1.	
Figure 6.16	Scaling of M'' spectra of PPy nanotubes at CSA/Py	192
	molar ratios of (a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1	
	at room temperature (303 K).	
Figure 6.17	Scaling of M'' spectra of PPy nanotubes at CSA/Py	193
	molar ratio of 2:1 at different temperatures.	
Figure 6.18	Plots of total conductivity (σ') vs. frequency (ω) of	194
	PPy nanotubes at different CSA/Py molar ratios of	
	(a) 0.1:1, (b) 0.5:1, (c) 1:1 and (d) 2:1 at room	
	temperature (303 K).	
Figure 6.19	Plots of total conductivity $\sigma'(\omega)$ of PPy nanotubes at	195
	CSA/Py molar ratio of 2:1 at different temperatures.	
Figure 6.20	Plots of (i) $\ln \sigma_{dc}$ vs. $1000/T$ and (ii) $\ln \omega_{H}$ vs.	196
	1000/T of PPy nanotubes at CSA/Py molar ratio of	
	2:1.	
Figure 6.21	Temperature dependence of frequency exponent (s)	197
	of PPy nanotubes at CSA/Py ratios of (a) 0.1:1, (b)	
	0.5:1, (c) 1:1 and (d) 2:1.	
Figure 6.22	Scaling plots of total conductivity of PPy nanotubes	199
	for CSA/Py molar ratio of 2:1 at different	
	temperatures.	

Figure	Caption	Page No.
Figure 6.23	HRTEM micrographs of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 5×10^{11} and (c) 10^{12} ions/cm ² .	200
Figure 6.24	XRD diffraction patterns of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	201
Figure 6.25	FTIR spectra of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	205
Figure 6.26	UV-vis absorption spectra of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	206
Figure 6.27	Plots of variation of (i) $(\alpha hv)^2$ vs. hv and (ii) $(\alpha hv)^{1/2}$ with hv of pristine and irradiated PPy nanotubes at different ion fluences.	207
Figure 6.28	Comparison of direct and indirect band gap energies of pristine and irradiated PPy nanotubes at different irradiation fluences.	208
Figure 6.29	TGA thermographs of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	210
Figure 6.30	Derivative plots of TGA thermographs for (a) pristine and irradiated PPy nanotubes at irradiation fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	210
Figure 6.31	Plots of dielectric permittivity (ε') vs. frequency (ω) of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² at room temperature (303 K).	212

Figure	Caption	Page No.
Figure 6.32	Plots of dielectric loss (ε'') vs. frequency (ω) of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² at room temperature (303 K).	213
Figure 6.33	Plots of real part of modulus (M') vs. frequency (ω) of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10 ¹⁰ , (c) 5×10 ¹⁰ , (d) 10 ¹¹ , (e) 5×10 ¹¹ and (f) 10 ¹² ions/cm ² at room temperature (303 K).	214
Figure 6.34	Plots of imaginary part of modulus (M'') vs. frequency (ω) of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² at room temperature (303 K).	215
Figure 6.35	Room temperature scaling plots of imaginary part of modulus (M'') of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	216
Figure 6.36	Room temperature plots of total conductivity (σ') of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10 ¹⁰ , (c) 5×10 ¹⁰ , (d) 10 ¹¹ , (e) 5×10 ¹¹ and (f) 10 ¹² ions/cm ² .	217
Figure 6.37	Temperature variation of frequency exponent 's' of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	218
Figure 6.38	Room temperature scaling plots of total conductivity of (a) pristine and irradiated PPy nanotubes at ion fluences of (b) 10^{10} , (c) 5×10^{10} , (d) 10^{11} , (e) 5×10^{11} and (f) 10^{12} ions/cm ² .	220

List of Abbreviations

Abbreviation Meaning

1-D	One dimensional
ABSA	Alkylbenzenesulfonic acids
APL	Antibonding polaron level
APS	Ammonium peroxydisulfate
BB	Bethe-Bloch
BJT	Bipolar junction transistors
BNN	Barton-Nakajima-Namikawa
BPL	Bonding polaron level
СВН	Correlated barrier hopping
CC	Cole-Cole
CCD	Charge-coupled device
cm	Centimetre
CMC	Critical micelle concentration
CSA	Camphorsulfonic acid
DBSA	Dedaculhanzanagulfania agid
DBSA	Dodecylbenzenesulfonic acid
DC	Davison-Cole
	•
DC	Davison-Cole
DC DeTAB	Davison-Cole Decyltrimethylammonium bromide
DC DeTAB DTAB	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide
DC DeTAB DTAB EMI	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide Electromagnetic interference
DC DeTAB DTAB EMI eV	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide Electromagnetic interference Electron volt
DC DeTAB DTAB EMI eV FD	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide Electromagnetic interference Electron volt Frequency-domain
DC DeTAB DTAB EMI eV FD FET	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide Electromagnetic interference Electron volt Frequency-domain Field effect transistor
DC DeTAB DTAB EMI eV FD FET FTIR	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide Electromagnetic interference Electron volt Frequency-domain Field effect transistor Fourier transform infrared spectroscopy
DC DeTAB DTAB EMI eV FD FET FTIR FWHM	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide Electromagnetic interference Electron volt Frequency-domain Field effect transistor Fourier transform infrared spectroscopy Full width at half maximum
DC DeTAB DTAB EMI eV FD FET FTIR FWHM HEDS	Davison-Cole Decyltrimethylammonium bromide Dodecyltrimethyl ammmonium bromide Electromagnetic interference Electron volt Frequency-domain Field effect transistor Fourier transform infrared spectroscopy Full width at half maximum High energy dead section

Abbreviation

Meaning

Hz	Hertz
ICP	Intrinsically conducting polymers
ITO	Indium-tin oxide
IUAC	Inter University Accelerator Centre
KeV	Kilo electron volt
KPS	Potassium persulfate
KWW	Kohlrausch-Williams-Watts
LEDS	Low energy dead section
LSS	Lindhard-Scharff-Schiøtt
LUMO	Lowest unoccupied molecular orbital
MHz	Mega Hertz
MIS	Metal/insulator/semiconductor
MISFET	Metal-insulator-semiconductor field effect transistor
МО	Methyl orange
MS	Materials Science
MWS	Maxwell-Wagner-Sillars
NIR	Near infrared
NSPT	Non-overlapping small polarons tunnelling
OBSA	Octylbenzenesulfonic acid
OFET	Organic field-effect transistor
OLPT	Overlapping large polaron tunnelling
OTAB	Octyltrimethylammonium bromide
PA	Polyacetylene
PAni	Polyaniline
PC	Polycarbonate
PEDOT	Poly (3,4-ethylenedioxythiophene)
PPV	Poly(phenylene vinylene)
PPy	Polypyrrole
PTh	Polythiophene
p-TSA	para-Tolunesulfonic acid
PVA	Poly-vinyl alcohol

Abbreviation Meaning

QMT	Quantum mechanical tunnelling
SDS	Sodium dodecylsulfate
SHI	Swift heavy ion
SNICS	Source of negative ions by cesium sputtering
SRIM	Stopping ranges of Ions in matter
TD	Time-domain
TGA	Thermo-gravimetric Analysis
UV-vis	UV-visible spectroscopy
XRD	X-ray diffraction

List of Symbols

Symbols e	Meanings Electronic charge
$\sigma'(\omega)$	Total electrical conductivity
$\sigma_{_{dc}}$	DC conductivity
$\sigma_{_{ac}}$	AC conductivity
S	Frequency exponent
ω	Angular frequency
$N(E_F)$	Density of states at Fermi level
R_{ω}	Hopping distance at a particular frequency
${ au}_0$	Relaxation time
${\cal E}_p$	Effective dielectric constant
α	Exponential decay parameter
r_p	Polaron radius
${\cal E}_0$	Dielectric permittivity at free space
$k_{\scriptscriptstyle B}$	Boltzman constant
Т	Temperature
f_0	Relaxation frequency
G	Conductance
С	Capacitance
${\cal E}^{*}$	Complex permittivity
arepsilon'	Real part of permittivity
$arepsilon^{\prime\prime}$	Imaginary part of permittivity
\mathcal{E}_{s}	Static dielectric permittivity in the limit of zero frequencies
${\cal E}_{\infty}$	Permittivity in the limit of infinite frequencies
$\Delta arepsilon$	Dielectric relaxation strength
α	Symmetrical distribution of relaxation times
β	Asymmetric distribution of relaxation times
M^{*}	Complex modulus
M'	Real part of modulus

Symbols	Meanings
<i>M</i> "	Imaginary part of modulus
$\phi(t)$	Kohlrausch-Williams-Watts (KWW) decay function
Z^{*}	Complex impedance
Z'	Real part of impedance
Z''	Imaginary part of impedance
${N}_0$	Avogadro's number
a_o	Bohr radius
V _o	Bohr velocity
S_n	Nuclear energy loss
S_{e}	Electronic energy loss
ρ	Density
arphi	Fluence
\mathcal{Q}	Total charge
D	Dose
q	Charge state
X_C	Degree of crystallinity
L	Extent of polymer chain order
R	Interchain separation or hopping distance
E_{g}	Optical band gap energy
$ au_{0M}$	High temperature limit of relaxation time
E_{aM}	Activation energy for relaxation of charge carriers
σ	Formation (or damage) cross section
E_a	Hopping activation energy
$W_{_{H}}$	Barrier activation energy