Contents

a. Abstraci	t	i
b. Declara	tion	vii
c. Certifica	ute	viii
d. Acknow	ledgements	x
e. Content	s	xii
f. List of to	ubles	xvii
g. List of f	ïgures	xix
h. List of a	abbreviations	xxvii
i. List of sy	ymbols	xxix
Chapter 1:	Introduction	[1-26]
1.1	Historical background	1
1.2	Salient features and structure of conducting	3
poly	ymers	
	1.2.1 Doping in conducting polymers	4
	1.2.1.1 Chemical doping	4
	1.2.1.2 Electrochemical doping	5
	1.2.1.3 Photo-doping	5
	1.2.1.4 Charge-injection doping	6
	1.2.2 Charge carriers in conducting polymers	6
	1.2.3 Band structure in conducting polymers	8
1.3	Charge transport in conducting polymers	11
	1.3.1 Effect of disorder on charge transport	11
	1.3.2 Effect of doping concentration on charge	12
	transport	
1.4	Dielectric properties of conducting polymers	13
1.5	Conducting polymer nanostructures	15
	1.5.1 Synthesis of conducting polymer	15
	nanostructures	
	1.5.1.1 Chemical polymerization	16
	(i) Interfacial polymerization method	16
	(ii) Hard template method	17

(iii) Soft template method	18
(iv) Reactive template method	20
1.5.1.2 Electrochemical polymerization metho	od 20
1.6 Poly(3,4-ethylenedioxythiophene) (PEDOT)	21
1.7 Scope of the thesis and statement of the thesis	23
problem	
Chanton 2. The soutied Associate	[27-43]
Chapter 2: Theoretical Aspects	
2.1 Charge transport in disordered conducting	27
polymers	20
2.1.1 DC resistivity	28
2.1.1.1 Variable range hopping (VRH) model	28
2.1.1.2 Fluctuation induced tunneling (FIT)	29
model	31
2.1.1.3 Heterogeneous model	32
2.1.2 Metal-insulator (M-I) transition	
2.1.3 AC conductivity	32
2.1.3.1 Correlated barrier hopping (CBH)	32
model	22
2.1.3.2 Jonscher's power law	33
2.1.3.3 Scaling of AC conductivity	34
2.1.4 Magnetoresistance (MR)	35
2.1.4.1 Wave-function shrinkage model	35
2.1.4.2 Quantum interference model	36
2.1.5 Dielectric relaxation	37
2.1.5.1 Complex dielectric permittivity	38
formalism	
2.1.5.2 Complex impedance formalism	39
2.1.5.3 Complex modulus formalism	40
2.2 Thermal degradation kinetics and activation	41
energy	

Chapter	3:	Experimental Techniques	[44-61]
	3.1	Parent materials	44
	3.2	Synthesis of PEDOT nanostructures	46
		3.2.1 Synthesis of PEDOT nanoparticles	46
		3.2.2 Synthesis of PEDOT nanofibers	47
		3.2.3 Synthesis of PEDOT nanotubes	49
	3.3	Characterization techniques	50
		3.3.1 High resolution transmission electron	50
		Microscopy (HRTEM)	
		3.3.2 X-ray diffraction (XRD)	51
		3.3.2.1 Calculation of crystallite size (L)	53
		3.3.2.2 Calculation of degree of crystallinity	53
		3.3.3 Fourier transforms infrared spectroscopy	54
		(FTIR)	
		3.3.4 Micro-Raman (μ R) spectroscopy	55
		3.3.5 Thermogravimetric analysis (TGA)	56
		3.3.6 Dielectric relaxation spectroscopy (DRS)	57
		3.3.6.1 Impedance formalism	58
		3.3.6.2 Dielectric permittivity formalism	59
		3.3.6.3 Modulus formalism	59
		3.3.7 AC conductivity measurements	59
		3.3.8 DC resistivity and Magnetoresistance	60
Chapter	4:	Structural, vibrational and thermal analysis of	[62-82]
		poly(3,4-ethylenedioxythiophene) nanoparticles,	
		nanofibers and nanotubes	
	4.1	Introduction	62
	4.2	Structural analysis of PEDOT nanoparticles,	63
	nar	nofibers and nanotubes	
		4.2.1 High resolution transmission electron	63
		microscopy (HRTEM) analysis	
		4.2.2 X-ray diffraction studies	69

4.3 Vibrational analysis of PEDOT nanoparticles,	73
nanofibers and nanotubes	
4.3.1 Fourier transform infrared spectroscopy	73
4.3.2 Micro-Raman spectroscopy	74
4.4 Thermogravimetric analysis (TGA) of PEDOT	76
nanoparticles, nanofibers and nanotubes	
4.5 Summary	81
Chapter 5: Transport properties of poly(3,4-	[83-108]
ethylenedioxythiophene) nanoparticles, nanofibers	
and nanotubes	
5.1 Introduction	83
5.2 Transport properties analysis of PEDOT	85
nanoparticles, nanofibers and nanotubes	
5.2.1 DC resistivity study	85
5.2.2 Magnetoresistance (MR) study	93
5.2.3 AC conductivity analysis	99
5.2.3.1 Scaling of AC conductivity	105
5.3 Summary	106
Chapter 6: Dielectric properties and charge carrier relaxation	[109-129]
study of poly(3,4-ethylenedioxythiophene)	
nanoparticles, nanofibers and nanotubes	
6.1 Introduction	109
6.2 Dielectric properties analysis of PEDOT	111
nanoparticles, nanofibers and nanotubes	
6.2.1 Dielectric permittivity formalism	111
6.2.2 Impedance formalism	116
6.2.3 Modulus formalism	119
6.3 Scaling properties analysis of PEDOT	125
nanoparticles, nanofibers and nanotubes	
6.3.1 Scaling of impedance formalism	125
6.3.2 Scaling of modulus formalism	126

Chapter 7: Conclusions and Future directions	[130-137]
7.1 Conclusions	130
7.2 Future directions	136
References	[138-165]
List of Publications	[166-167]

127

6.4 Summary

List of tables

Table	Caption	Page No
Table 3.1	Physical properties of different parent materials used for	45-46
	the synthesis of poly(3,4-ethylenedioxythiophene)	
	nanoparticles, nanofibers and nanotubes	
Table 4.1	Crystallite size (L) and degree of crystallinity (K) of	72
	PEDOT nanostructures at different dopant	
	concentrations	
Table 4.2	Characteristic IR bands of PEDOT and their	74
	assignments	
Table 4.3	Characteristic Raman bands of PEDOT and their	75
	assignments	
Table 4.4	T_{onset} , T_{rpd} and residue at 550°C of PEDOT	78
	nanoparticles, nanofibers and nanotubes for different	
	dopant concentrations	
Table 4.5	Activation energy (E_d) of thermal degradation of	80
	PEDOT, nanoparticles, nanofibers and nanotubes for	
	1M Dopant concentration	
Table 5.1	Transport parameters calculated from resistivity data for	92
	PEDOT nanoparticles, nanofibers and nanotubes	
Table 5.2	Transport parameters calculated from resistivity data for	93
T. 11. 5.0	PEDOT nanotubes at different CSA concentrations	102
Table 5.3	Frequency exponent (s) at different temperature for 1M	103
	DBSA, 1M SDS and 1M CSA doped PEDOT	
Table 5.4	nanoparticles, nanofibers and nanotubes, respectively Transport parameters calculated from AC conductivity.	104
1 able 5.4	Transport parameters calculated from AC conductivity vs. frequency plots for PEDOT nanoparticles,	104
	nanofibers and nanotubes at different dopant	
	concentrations	
Table 6.1	Calculated values of α_{hn} and β_{hn} from real part of	115
TUNIC UI	dielectric permittivity plots of PEDOT nanostructures at	113
	different dopant concentrations	

Table 6.2	Calculated values of α and β_{KWW} from the imaginary	118
	parts of impedance and modulus plots of PEDOT	
	nanostructures at different temperatures	
Table 6.3	Calculated values of activation energy (E_a) of 1M	125

List of figures

Figure	Caption	Page No.
Figure 1.1	Chemical structure of some conjugated conducting	2
Figure 1.2	polymers Formation of polaron and bipolaron in PEDOT upon doping	7
Figure 1.3	Formation of polaron and solitons in trans- polyacetylene	8
Figure 1.4	Schematic diagram of band formation in solids	10
Figure 1.5	Schematic diagram of band formation in conducting polymers	10
Figure 1.6	Formation of bands in conducting polymers with increasing doping concentration: (a) neutral conducting polymers, (a) formation of polaron at low doping concentration, (c) formation of bipolaron at moderate doping concentration and (d) formation of bipolaron bands at high doping concentration	13
Figure 1.7	Schematic diagram of different polarization mechanisms under alternating electric field	14
Figure 1.8	Schematic diagram of synthesis of conducting polymer nanofibers by interfacial polymerization method	17
Figure 1.9	Schematic diagram of synthesis of conducting polymer nanotubes using hard template	18
Figure 1.10	Schematic representation of synthesis of conducting polymer nanoparticles through self-assembly method	19
Figure 1.11	Chemical structure of 3,4-ethylenedioxythiophene (EDOT)	22
Figure 1.12	Chemically oxidative polymerization of EDOT into PEDOT	23

Figure 3.1	Block diagram of synthesis of PEDOT nanoparticles	47
Figure 3.2	Block diagram of synthesis of PEDOT nanofibers	48
Figure 3.3	Block diagram of synthesis of PEDOT nanotubes	49
Figure 3.4	High resolution transmission electron microscope	51
	(JEOL, model JEM-2100)	
Figure 3.5	X-ray diffraction measurement unit (Rigaku,	52
	MiniFlex)	
Figure 3.6	(a) Typical X-ray diffractogram of a semi-	54
	crystalline polymer and (b) XRD patterns showing	
	the superposition of crystalline peaks and an	
	amorphous hump	
Figure 3.7	Photograph of FTIR spectrometer (Perkin Elmer,	55
	model spectrum 100)	
Figure 3.8	Photograph of micro-Raman spectrometer	56
	(Renishaw in-via)	
Figure 3.9	Photograph of set-up used for thermogravimetric	57
	analysis (Perkin Elmer, model STA 6000)	
Figure 3.10	Set-up used for dielectric and AC conductivity	60
	measurements	
Figure 3.11	(a) The set-up used for measuring DC resistivity and	61
	magnetoresistance, and (b) schematic of four probe	
	measurement	
Figure 4.1	Representative HRTEM images of PEDOT	64
	nanoparticles for (a) 0.003M and (b) 1M DBSA	
	concentration	
Figure 4.2	Diameter distribution histogram of PEDOT	65
	nanoparticles for (a) 0.003M and (b) 1M DBSA	
	concentration	
Figure 4.3	SAED patterns of PEDOT nanoparticles for (a)	65
	0.003M and (b) 1M DBSA concentration	
Figure 4.4	HRTEM images of PEDOT nanofibers for (a)	66
	0.03M and (b) 1M SDS concentration	

Figure 4.5	Diameter distribution histogram of PEDOT	66
	nanofibers for (a) 0.03M and (b) 1M SDS	
	concentration	
Figure 4.6	SAED patterns of PEDOT nanofibers for (a) 0.03M	67
	and (b) 1M SDS concentration	
Figure 4.7	HRTEM images of PEDOT nanotubes for (a)	68
	0.001M and (b) 1M CSA concentration	
Figure 4.8	Diameter distribution histogram of PEDOT	68
	nanotubes for (a) 0.001M and (b) 1M CSA	
	concentration	
Figure 4.9	SAED patterns of PEDOT nanotubes for (a) 0.001M	69
	and (b) 1M CSA concentration	
Figure 4.10	X-ray diffraction pattern of PEDOT nanoparticles	70
	for (a) 0.003M, (b) 0.01M, (c) 0.1M and (d) 1M	
	DBSA concentration	
Figure 4.11	X-ray diffraction pattern of PEDOT nanofibers for	70
	(a) 0.03M, (b) 0.1M, (c) 0.5M and (d) 1M SDS	
	concentration	
Figure 4.12	X-ray diffraction pattern of PEDOT nanotubes for	71
	(a) 0.001M, (b) 0.01M, (c) 0.1M and (d) 1M CSA	
	concentration	
Figure 4.13	FTIR spectra of PEDOT (A) nanoparticles for (a)	73
	0.003M, (b) 0.01M, (c) 0.1 and 1M DBSA	
	concentration (B) nanofibers for (a) 0.03M, (b)	
	0.1M, (c) 0.5 and 1M SDS concentration and (C)	
	nanotubes for (a) 0.001M, (b) 0.01M, (c) 0.1 and	
	1M CSA concentration	
Figure 4.14	Micro-Raman spectra of PEDOT (A) nanoparticles	76
	for (a) 0.003M, (b) 0.01M, (c) 0.1 and 1M DBSA	
	concentration (B) nanofibers for (a) 0.03M, (b)	
	0.1M, (c) 0.5 and 1M SDS concentration and (C)	
	nanotubes for (a) 0.001M, (b) 0.01M, (c) 0.1 and	
	1M CSA concentration	

Figure 4.15 Thermogravimetric plots of **PEDOT** 77 (a) nanoparticles, (b) nanofibers and (c) nanotubes for different dopant concentration **Figure 4.16** Derivative TG plots of PEDOT (a) nanoparticles, 78 (b) nanofibers and (c) nanotubes at different dopant concentrations **Figure 4.17** $\log \beta$ vs. 1000/T plots at five different heating rates 80 (10, 15, 20, 25 and 30°C/min) for different degree of conversions (X) of (a) 1M DBSA doped PEDOT nanoparticles, (b) 1M SDS doped **PEDOT** nanofibers and (c) 1M CSA doped PEDOT nanotubes Figure 5.1 Temperature dependent resistivity plots of PEDOT 86 (a) nanoparticles, (b) nanofibers and (c) nanotubes for different dopant concentrations. Error bars represent the standard deviation. Figure 5.2 Log-log plots of W vs. T for PEDOT (a) 88 nanoparticles, (b) nanofibers and (c) nanotubes for different dopant concentrations. Error bars represent the standard deviation. $ln\rho$ vs. $T^{-1/4}$ plot of (a) DBSA doped PEDOT Figure 5.3 89 nanoparticles, (b) SDS doped PEDOT nanofibers and (c) CSA doped PEDOT nanotubes at different dopant concentrations. In figure symbols are the experimental data and red solid lines are best linear fitted lines. Error bars represent the standard deviation. $\ln \rho \ vs. \ T^{-1/2}$ plot of PEDOT nanotubes with varying Figure 5.4 90 CSA concentration. In figure symbols are the experimental data and red solid lines are best linear fitted lines. Error bars represent the standard deviation.

Figure 5.5	$\ln[\rho(B, T)/\rho(0, T)]$ vs. $T^{-3/4}$ plots of resistivity data	91
	at magnetic field 8 T for (a) DBSA doped PEDOT	
	nanoparticles, (b) SDS doped PEDOT nanofibers	
	and (c) CSA doped PEDOT nanotubes. In figure	
	symbols are the experimental data and red solid	
	lines are best linear fitted lines. Error bars represent	
	the standard deviation.	
Figure 5.6	MR (%) vs. B of (a) 0.003M DBSA doped PEDOT	94
	nanoparticles, (b) 0.01M DBSA doped PEDOT	
	nanoparticles and (c) 1M DBSA doped	
	nanoparticles at eight different temperatures. Error	
	bars represent the standard deviation.	
Figure 5.7	MR (%) (at $B = 8T$) vs. temperature plot for	94
	0.003M, 0.01M and 1M DBSA doped PEDOT	
	nanoparticles. Error bars represent the standard	
	deviation.	
Figure 5.8	MR (%) vs. B of (a) PEDOT nanofibers and (b)	95
	PEDOT nanotubes at eight different temperatures.	
	Error bars represent the standard deviation.	
Figure 5.9	MR (%) (at $B = 8T$) vs. temperature plots of (a)	96
	SDS doped PEDOT nanofibers and (b) CSA doped	
	PEDOT nanotubes at different dopant	
	concentrations. Error bars represent the standard	
	deviation.	
Figure 5.10	MR (%) vs. B^2 plots of the positive	98
	magnetoresistance data of (a) 1M DBSA doped	
	PEDOT nanoparticles, (b) 1M SDS doped PEDOT	
	nanofibers and (c) 1M CSA doped PEDOT	
	nanotubes. Error bars represent the standard	
	deviation.	

Figure 5.11 Room temperature frequency dependent 100 conductivity plots of (a) DBSA doped PEDOT nanoparticles, (b) SDS doped PEDOT nanofibers and (c) CSA doped PEDOT nanotubes for different dopant concentrations. In Figs. Symbols are the experimental data and red solid lines are the fitted lines according to eq. (5.11). Error bars represent the standard deviation. **Figure 5.12** Frequency dependent AC conductivity plots of (a) 101 1M DBSA doped PEDOT nanoparticles, (b) 1M SDS doped PEDOT nanofibers and (c) 1M CSA doped PEDOT nanotubes at different temperature. In Figs. symbols are the experimental data and red solid lines are the fitted lines according to eq. (5.11). Error bars represent the standard deviation. 103 **Figure 5.13** Frequency exponent vs. temperature plot of 1M DBSA, 1M SDS and 1M CSA doped PEDOT nanoparticles, nanofibers and nanotubes, respectively. Error bars represent the standard deviation. **Figure 5.14** Scaling of AC conductivity spectra at different 106 temperature for 1M (a) DBSA doped nanoparticles, (b) SDS doped nanofibers and (c) CSA doped nanotubes. Error bars represent the standard deviation. Figure 6.1 Variation of real part of dielectric permittivity 112 $(\varepsilon'(\omega))$ of PEDOT (a) nanoparticles, (b) nanofibers and (c) nanotubes at room temperature for different dopant concentration. In figure symbols indicate the experimental data and the red solid lines represent the theoretical best fit obtained from Eq. (6.3). Error bars show the standard deviation.

Figure 6.2	Variation of real part of dielectric permittivity	113
	$(\varepsilon'(\omega))$ of PEDOT (a) 1M DBSA doped	
	nanoparticles, (b) 1M SDS doped nanofibers and (c)	
	1M CSA doped nanotubes at different temperature.	
	Error bars show the standard deviation.	
Figure 6.3	log-log plots of ε'' vs. ω at room temperature for	116
	PEDOT (a) nanoparticles, (b) nanofibers and (c)	
	nanotubes for different dopant concentrations. Error	
	bars show the standard deviation.	
Figure 6.4	Variation of imaginary part of complex impedance	117
	(Z'') as a function of frequency for (a) DBSA doped	
	PEDOT nanoparticles, (b) SDS doped PEDOT	
	nanofibers and (c) CSA doped PEDOT nanotubes	
	with varying dopant concentrations. Error bars show	
	the standard deviation.	
Figure 6.5	Variation of imaginary part of complex impedance	119
	(Z'') as a function of frequency for (a) 1M DBSA	
	doped PEDOT nanoparticles, (b) 1M SDS doped	
	PEDOT nanofibers and (c) 1M CSA doped PEDOT	
	nanotubes at different temperatures. Error bars show	
	the standard deviation.	
Figure 6.6	Variation of real modulus M' with frequency for	120
	PEDOT (a) nanoparticles, (b) nanofibers and (c)	
	nanotubes at room temperature for different dopant	
	concentrations. Error bars show the standard	
	deviation.	
Figure 6.7	Variation of imaginary modulus M'' with frequency	122
	for PEDOT (a) nanoparticles, (b) nanofibers and (c)	
	nanotubes at room temperature for different dopant	
	concentrations. Error bars show the standard	
	deviation.	

Figure 6.8	Variation of imaginary modulus M" with frequency	123
	for PEDOT (a) 1M BDSA doped nanoparticles, (b)	
	1M SDS doped nanofibers and (c) 1M CSA doped	
	nanotubes at different temperatures. Error bars show	
	the standard deviation.	
Figure 6.9	$ln\tau_{max}$ vs. $1000/T$ plot of 1M DBSA, 1M SDS and	125
	1M CSA doped PEDOT nanoparticles, nanofibers	
	and nanotubes, respectively. Error bars show the	
	standard deviation.	
Figure 6.10	Scaling plots of Z'' at different temperatures for (a)	126
	1M DBSA doped PEDOT nanoparticles, (b) 1M	
	SDS doped PEDOT nanofibers and (c) 1M CSA	
	doped PEDOT nanotubes. Error bars show the	
	standard deviation.	
Figure 6.11	Scaling plots of M'' at different temperatures for (a)	127
	1M DBSA doped PEDOT nanoparticles, (b) 1M	
	SDS doped PEDOT nanofibers and (c) 1M CSA	
	doped PEDOT nanotubes. Error bars show the	
	standard deviation.	

List of abbreviations

Abbreviation Meaning AAO Anodic aluminum oxide AC Alternating current CB Conduction band **CBH** Correlated barrier hopping **CCD** Charge-coupled device **CSA** Camphorsulfonic acid DBSA Dodecylbenzene sulfonic acid DC Direct current **DDW** Double distilled water DOS Density of states 3,4-ethylenedioxythiophene **EDOT** eV electron Volt **FTIR** Fourier transforms infrared spectroscopy **FWHM** Full-width at half-maximum **HOMO** Highest occupied molecular orbital **LUMO** Lowest unoccupied molecular orbital Mott-VRH Mott-Variable range hopping Magnetoresistance MR **OLPT** Overlapping large polaron-tunneling PA Polyacetylene **PEDOT** Poly(3,4-ethylenedioxythiophene) PPy Polypyrrole **PTMs** Particle track-etched polymeric membranes **QMT** Quantum mechanical tunneling **SAED** Selected area electron diffraction **SDS** Sodium dodecyl sulfate SP Small polaron **TGA** Thermogravimetric analysis V Volt VB Valence band

VRH Variable range hopping XRD X-ray diffraction

List of symbols

Symbol	Meaning	
Å	Angstrom	
В	Magnetic field	
C	Capacitance	
$^{\circ}\mathrm{C}$	Degree Celsius	
d	Thickness of the sample	
e	Electronic charge	
E_a	Activation energy	
E_d	Activation energy of thermal degradation	
E_F	Fermi energy	
G	Conductance	
\hbar	Reduced Planck's constant	
K	Kelvin	
K	Degree of crystallinity	
k_B	Boltzmann constant	
L	Crystallite size	
L_B	Magnetic relaxation length	
L_{loc}	Localization length	
M^*	Complex electric modulus	
M'	Real part of electric modulus	
M''	Imaginary part of electric modulus	
$N(E_F)$	Density of states	
R_{hop}	Hooping length	
R_{ω}	Hopping distance at a particular angular frequency ω	
T	Temperature	
T_{Mott}	Characteristic Mott temperature	
T_{onset}	Onset decomposition temperature	
T_{rpd}	Rapidest decomposition temperature	
W	Reduce activation energy	
$W_{ m b}$	Barrier height	
W_{M}	Binding energy	

X	Degree of conversion	
Z^*	Complex impedance	
Z'	Real part of impedance	
<i>Z</i> ''	Imaginary part of impedance	
ω	Angular frequency	
ρ	Resistivity	
σ_{dc}	DC conductivity	
ε^*	Complex dielectric permittivity	
\mathcal{E}'	Real part of dielectric permittivity	
<i>E''</i>	Imaginary part of dielectric permittivity	
\mathcal{E}_0	Dielectric permittivity at free space	
τ	Relaxation time	
λ	Wavelength	
θ	Bragg diffraction angle	
ϕ	Phase angle	