Table of Contents

A	bstra	\mathbf{ct}	iii
De	eclar	ation	vi
Ce	ertifi	cate	vii
A	cknov	wledgements	viii
Ta	able o	of Contents	x
Li	st of	Tables	xiii
Li	st of	Figures	xvi
Li	st of	Abbreviations	xxii
1	Intr	roduction	1
	1.1	Present Status of Neutrino Physics	1
	1.2	Neutrino in the Standard Model	2
	1.3	Extension of Standard Model and Neutrino Mass	5
	1.4	Three-Neutrino Mixing	7
	1.5	Neutrino Oscillation	8
		1.5.1 Neutrino Oscillation in Vacuum	9
		1.5.2 Neutrino Oscillation in Matter (MSW effect)	10
	1.6	Neutrino Mass Hierarchy	12
	1.7	Different Neutrino Oscillation Experiments	14

1.7.1	Neutrino Detection Method	14
1.7.2	Solar Neutrino Oscillation Experiments	16
1.7.3	Atmospheric Neutrino Experiments	20
1.7.4	Reactor Experiments	21

Bibliography

$\mathbf{23}$

2 Perturbations to $\mu - \tau$ Symmetry and Leptogenesis with Type II

Sees	saw
2.1	Introduction
2.2	Seesaw Mechanism: Type I and Type II
2.3	$\mu - \tau$ Symmetric Neutrino Mass Matrix
2.4	Deviations from $\mu - \tau$ Symmetry
2.5	CP violation and Leptogenesis
2.6	Numerical Analysis
2.7	Results and Discussion

Bibliography

00		9
----	--	---

80

3 Discriminating Majorana Neutrino Textures in the light of Baryon

A	s	ymmetry
3	1	Introductio

3.1	Introduction	80
3.2	Majorana Texture Zeros	85
	3.2.1 One-zero texture	85
	3.2.2 Two-zero texture	86
3.3	Leptogenesis	87
3.4	Numerical Analysis	91
	3.4.1 Parametrization of One-zero Texture	93
	3.4.2 Parametrization of Two-zero Texture	94
	3.4.3 Calculation of Baryon Asymmetry	95
3.5	Results and Conclusion	09

Bibliography

4	Stability of Neutrino Masses and Mixing with non-zero θ_{13} using	g
	RGE	120
	4.1 Introduction	120

4.2	A_4 model for neutrino mass $\ldots \ldots \ldots$	123
4.3	RGE for neutrino masses and mixing	125
	4.3.1 Evolution equations for mixing angles	128
4.4	Numerical analysis and results	129
4.5	Conclusion	145

Bibliography

$\mathbf{146}$

5	Cor	clusior	n and Future Scope		154
	5.1	Conclu	usion		154
		5.1.1	Chapter 2		154
		5.1.2	Chapter 3		156
		5.1.3	Chapter 4		157
	5.2	Future	Prospects	•	158

List of publications

List of tables

Table	Caption	Page No.
Table 3.1	Physical properties of different parent materials used for	45-46
	the synthesis of poly(3,4-ethylenedioxythiophene)	
	nanoparticles, nanofibers and nanotubes	
Table 4.1	Crystallite size (L) and degree of crystallinity (K) of	72
	PEDOT nanostructures at different dopant	
	concentrations	
Table 4.2	Characteristic IR bands of PEDOT and their	74
	assignments	
Table 4.3	Characteristic Raman bands of PEDOT and their	75
	assignments	
Table 4.4	T_{onset} , T_{rpd} and residue at 550°C of PEDOT	78
	nanoparticles, nanofibers and nanotubes for different	
Table 45	dopant concentrations Activation analyse (E_{i}) of thermal dependencies of	80
Table 4.5	Activation energy (E_d) of thermal degradation of PEDOT parametricles parafibers and paratulas for	80
	PEDOT, nanoparticles, nanofibers and nanotubes for 1M Dopant concentration	
Table 5.1	Transport parameters calculated from resistivity data for	92
1 abic 5.1	PEDOT nanoparticles, nanofibers and nanotubes)2
Table 5.2	Transport parameters calculated from resistivity data for	93
	PEDOT nanotubes at different CSA concentrations	
Table 5.3	Frequency exponent (s) at different temperature for 1M	103
	DBSA, 1M SDS and 1M CSA doped PEDOT	
	nanoparticles, nanofibers and nanotubes, respectively	
Table 5.4	Transport parameters calculated from AC conductivity	104
	vs. frequency plots for PEDOT nanoparticles,	
	nanofibers and nanotubes at different dopant	
	concentrations	
Table 6.1	Calculated values of α_{hn} and β_{hn} from real part of	115
	dielectric permittivity plots of PEDOT nanostructures at	
	different dopant concentrations	

- **Table 6.2**Calculated values of α and β_{KWW} from the imaginary118parts of impedance and modulus plots of PEDOTnanostructures at different temperatures
- **Table 6.3**Calculated values of activation energy (E_a) of 1M125DBSA, SDS and CSA doped PEDOT nanoparticles,
nanofibers and nanotubes125

List of figures

Figure	Caption	Page No.
Figure 1.1	Chemical structure of some conjugated conducting polymers	2
Figure 1.2	Formation of polaron and bipolaron in PEDOT upon doping	7
Figure 1.3	Formation of polaron and solitons in trans- polyacetylene	8
Figure 1.4	Schematic diagram of band formation in solids	10
Figure 1.5	Schematic diagram of band formation in conducting polymers	10
Figure 1.6	Formation of bands in conducting polymers with increasing doping concentration: (a) neutral conducting polymers, (a) formation of polaron at low doping concentration, (c) formation of bipolaron at moderate doping concentration and (d) formation of bipolaron bands at high doping concentration	13
Figure 1.7	Schematic diagram of different polarization mechanisms under alternating electric field	14
Figure 1.8	Schematic diagram of synthesis of conducting polymer nanofibers by interfacial polymerization method	17
Figure 1.9	Schematic diagram of synthesis of conducting polymer nanotubes using hard template	18
Figure 1.10	Schematic representation of synthesis of conducting polymer nanoparticles through self-assembly method	19
Figure 1.11	Chemical structure of 3,4-ethylenedioxythiophene (EDOT)	22
Figure 1.12	Chemically oxidative polymerization of EDOT into PEDOT	23

Figure 3.1	Block diagram of synthesis of PEDOT nanoparticles	47
Figure 3.2	Block diagram of synthesis of PEDOT nanofibers	48
Figure 3.3	Block diagram of synthesis of PEDOT nanotubes	49
Figure 3.4	High resolution transmission electron microscope	51
	(JEOL, model JEM-2100)	
Figure 3.5	X-ray diffraction measurement unit (Rigaku,	52
	MiniFlex)	
Figure 3.6	(a) Typical X-ray diffractogram of a semi-	54
	crystalline polymer and (b) XRD patterns showing	
	the superposition of crystalline peaks and an	
	amorphous hump	
Figure 3.7	Photograph of FTIR spectrometer (Perkin Elmer,	55
	model spectrum 100)	
Figure 3.8	Photograph of micro-Raman spectrometer	56
	(Renishaw in-via)	
Figure 3.9	Photograph of set-up used for thermogravimetric	57
	analysis (Perkin Elmer, model STA 6000)	
Figure 3.10	Set-up used for dielectric and AC conductivity	60
	measurements	
Figure 3.11	(a) The set-up used for measuring DC resistivity and	61
	magnetoresistance, and (b) schematic of four probe	
	measurement	
Figure 4.1	Representative HRTEM images of PEDOT	64
	nanoparticles for (a) 0.003M and (b) 1M DBSA	
	concentration	
Figure 4.2	Diameter distribution histogram of PEDOT	65
	nanoparticles for (a) 0.003M and (b) 1M DBSA	
	concentration	
Figure 4.3	SAED patterns of PEDOT nanoparticles for (a)	65
	0.003M and (b) 1M DBSA concentration	
Figure 4.4	HRTEM images of PEDOT nanofibers for (a)	66
	0.03M and (b) 1M SDS concentration	

Figure 4.5 Diameter distribution histogram of PEDOT 66 nanofibers for (a) 0.03M and (b) 1M SDS concentration Figure 4.6 SAED patterns of PEDOT nanofibers for (a) 0.03M 67 and (b) 1M SDS concentration Figure 4.7 68 HRTEM images of PEDOT nanotubes for (a) 0.001M and (b) 1M CSA concentration Figure 4.8 Diameter distribution histogram of PEDOT 68 nanotubes for (a) 0.001M and (b) 1M CSA concentration Figure 4.9 SAED patterns of PEDOT nanotubes for (a) 0.001M 69 and (b) 1M CSA concentration 70 Figure 4.10 X-ray diffraction pattern of PEDOT nanoparticles for (a) 0.003M, (b) 0.01M, (c) 0.1M and (d) 1M **DBSA** concentration 70 Figure 4.11 X-ray diffraction pattern of PEDOT nanofibers for (a) 0.03M, (b) 0.1M, (c) 0.5M and (d) 1M SDS concentration Figure 4.12 X-ray diffraction pattern of PEDOT nanotubes for 71 (a) 0.001M, (b) 0.01M, (c) 0.1M and (d) 1M CSA concentration Figure 4.13 FTIR spectra of PEDOT (A) nanoparticles for (a) 73 0.003M, (b) 0.01M, (c) 0.1 and 1M DBSA concentration (B) nanofibers for (a) 0.03M, (b) 0.1M, (c) 0.5 and 1M SDS concentration and (C) nanotubes for (a) 0.001M, (b) 0.01M, (c) 0.1 and 1M CSA concentration Micro-Raman spectra of PEDOT (A) nanoparticles 76 Figure 4.14 for (a) 0.003M, (b) 0.01M, (c) 0.1 and 1M DBSA concentration (B) nanofibers for (a) 0.03M, (b) 0.1M, (c) 0.5 and 1M SDS concentration and (C) nanotubes for (a) 0.001M, (b) 0.01M, (c) 0.1 and 1M CSA concentration

xxi

Figure 4.15	Thermogravimetric plots of PEDOT (a)		
	nanoparticles, (b) nanofibers and (c) nanotubes for		
	different dopant concentration		
Figure 4.16	Derivative TG plots of PEDOT (a) nanoparticles,		
	(b) nanofibers and (c) nanotubes at different dopant		
	concentrations		
Figure 4.17	$\log\beta$ vs. 1000/T plots at five different heating rates		
	(10, 15, 20, 25 and 30°C/min) for different degree		
	of conversions (X) of (a) 1M DBSA doped PEDOT		
	nanoparticles, (b) 1M SDS doped PEDOT		
	nanofibers and (c) 1M CSA doped PEDOT		
	nanotubes		
Figure 5.1	Temperature dependent resistivity plots of PEDOT		
	(a) nanoparticles, (b) nanofibers and (c) nanotubes		
	for different dopant concentrations. Error bars		
	represent the standard deviation.		
Figure 5.2	Log-log plots of W vs. T for PEDOT (a)		
	nanoparticles, (b) nanofibers and (c) nanotubes for		
	different dopant concentrations. Error bars represent		
	the standard deviation.		
Figure 5.3	$\ln \rho$ vs. T ^{-1/4} plot of (a) DBSA doped PEDOT		
	nanoparticles, (b) SDS doped PEDOT nanofibers		
	and (c) CSA doped PEDOT nanotubes at different		
	dopant concentrations. In figure symbols are the		
	experimental data and red solid lines are best linear		
	fitted lines. Error bars represent the standard		
	deviation.		
Figure 5.4	$\ln \rho vs. T^{-1/2}$ plot of PEDOT nanotubes with varying		
	CSA concentration. In figure symbols are the		
	experimental data and red solid lines are best linear		
	fitted lines. Error bars represent the standard		
	deviation.		

- $\ln[\rho(B, T)/\rho(0, T)]$ vs. T^{-3/4} plots of resistivity data Figure 5.5 at magnetic field 8 T for (a) DBSA doped PEDOT nanoparticles, (b) SDS doped PEDOT nanofibers and (c) CSA doped PEDOT nanotubes. In figure symbols are the experimental data and red solid lines are best linear fitted lines. Error bars represent the standard deviation.
- Figure 5.6 MR (%) vs. B of (a) 0.003M DBSA doped PEDOT 94 nanoparticles, (b) 0.01M DBSA doped PEDOT nanoparticles and (c) 1M DBSA doped nanoparticles at eight different temperatures. Error bars represent the standard deviation.
- MR (%) (at B = 8T) vs. temperature plot for 94 Figure 5.7 0.003M, 0.01M and 1M DBSA doped PEDOT nanoparticles. Error bars represent the standard deviation.
- Figure 5.8 MR (%) vs. B of (a) PEDOT nanofibers and (b) 95 PEDOT nanotubes at eight different temperatures. Error bars represent the standard deviation.
- Figure 5.9 MR (%) (at B = 8T) vs. temperature plots of (a) 96 SDS doped PEDOT nanofibers and (b) CSA doped PEDOT nanotubes different at dopant concentrations. Error bars represent the standard deviation.
- B^2 Figure 5.10 MR (%) vs. plots of the positive magnetoresistance data of (a) 1M DBSA doped PEDOT nanoparticles, (b) 1M SDS doped PEDOT nanofibers and (c) 1M CSA doped PEDOT nanotubes. Error bars represent the standard deviation.

xxiii

98

- Figure 5.11 Room temperature frequency dependent AC 100 conductivity plots of (a) DBSA doped PEDOT nanoparticles, (b) SDS doped PEDOT nanofibers and (c) CSA doped PEDOT nanotubes for different dopant concentrations. In Figs. Symbols are the experimental data and red solid lines are the fitted lines according to eq. (5.11). Error bars represent the standard deviation.
- Figure 5.12 Frequency dependent AC conductivity plots of (a) 101
 1M DBSA doped PEDOT nanoparticles, (b) 1M
 SDS doped PEDOT nanofibers and (c) 1M CSA
 doped PEDOT nanotubes at different temperature.
 In Figs. symbols are the experimental data and red
 solid lines are the fitted lines according to eq.
 (5.11). Error bars represent the standard deviation.
- Figure 5.13 Frequency exponent *vs.* temperature plot of 1M 103 DBSA, 1M SDS and 1M CSA doped PEDOT nanoparticles, nanofibers and nanotubes, respectively. Error bars represent the standard deviation.
- Figure 5.14 Scaling of AC conductivity spectra at different 106 temperature for 1M (a) DBSA doped nanoparticles,
 (b) SDS doped nanofibers and (c) CSA doped nanotubes. Error bars represent the standard deviation.
- **Figure 6.1** Variation of real part of dielectric permittivity 112 $(\varepsilon'(\omega))$ of PEDOT (a) nanoparticles, (b) nanofibers and (c) nanotubes at room temperature for different dopant concentration. In figure symbols indicate the experimental data and the red solid lines represent the theoretical best fit obtained from Eq. (6.3). Error bars show the standard deviation.

- Figure 6.2Variation of real part of dielectric permittivity113 $(\varepsilon'(\omega))$ of PEDOT (a) 1M DBSA dopednanoparticles, (b) 1M SDS doped nanofibers and (c)1M CSA doped nanotubes at different temperature.Error bars show the standard deviation.
- **Figure 6.3** log-log plots of ε " *vs.* ω at room temperature for 116 PEDOT (a) nanoparticles, (b) nanofibers and (c) nanotubes for different dopant concentrations. Error bars show the standard deviation.
- Figure 6.4 Variation of imaginary part of complex impedance 117 (Z^{''}) as a function of frequency for (a) DBSA doped PEDOT nanoparticles, (b) SDS doped PEDOT nanofibers and (c) CSA doped PEDOT nanotubes with varying dopant concentrations. Error bars show the standard deviation.
- Figure 6.5Variation of imaginary part of complex impedance119(Z'') as a function of frequency for (a) 1M DBSAdoped PEDOT nanoparticles, (b) 1M SDS dopedPEDOT nanofibers and (c) 1M CSA doped PEDOTnanotubes at different temperatures. Error bars showthe standard deviation.
- Figure 6.6Variation of real modulus M' with frequency for120PEDOT (a) nanoparticles, (b) nanofibers and (c)
nanotubes at room temperature for different dopant
concentrations. Error bars show the standard
deviation.120
- Figure 6.7Variation of imaginary modulus M" with frequency122for PEDOT (a) nanoparticles, (b) nanofibers and (c)nanotubes at room temperature for different dopantconcentrations. Error bars show the standarddeviation.

- Figure 6.8Variation of imaginary modulus *M*" with frequency123for PEDOT (a) 1M BDSA doped nanoparticles, (b)1M SDS doped nanofibers and (c) 1M CSA dopednanotubes at different temperatures. Error bars showthe standard deviation.
- Figure 6.9 $\ln \tau_{max}$ vs. 1000/T plot of 1M DBSA, 1M SDS and1251M CSA doped PEDOT nanoparticles, nanofibersand nanotubes, respectively. Error bars show the
standard deviation.
- Figure 6.10 Scaling plots of Z' at different temperatures for (a) 126
 1M DBSA doped PEDOT nanoparticles, (b) 1M
 SDS doped PEDOT nanofibers and (c) 1M CSA
 doped PEDOT nanotubes. Error bars show the standard deviation.
- Figure 6.11 Scaling plots of M^{''} at different temperatures for (a) 127
 1M DBSA doped PEDOT nanoparticles, (b) 1M
 SDS doped PEDOT nanofibers and (c) 1M CSA
 doped PEDOT nanotubes. Error bars show the standard deviation.

List of abbreviations

Abbreviation

Meaning

AAO	Anodic aluminum oxide
AC	Alternating current
CB	Conduction band
CBH	Correlated barrier hopping
CCD	Charge-coupled device
CSA	Camphorsulfonic acid
DBSA	Dodecylbenzene sulfonic acid
DC	Direct current
DDW	Double distilled water
DOS	Density of states
EDOT	3,4-ethylenedioxythiophene
eV	electron Volt
FTIR	Fourier transforms infrared spectroscopy
FWHM	Full-width at half-maximum
HOMO	Highest occupied molecular orbital
LUMO	Lowest unoccupied molecular orbital
Mott-VRH	Mott-Variable range hopping
MR	Magnetoresistance
OLPT	Overlapping large polaron-tunneling
PA	Polyacetylene
PEDOT	Poly(3,4-ethylenedioxythiophene)
PPy	Polypyrrole
PTMs	Particle track-etched polymeric membranes
QMT	Quantum mechanical tunneling
SAED	Selected area electron diffraction
SDS	Sodium dodecyl sulfate
SP	Small polaron
TGA	Thermogravimetric analysis
V	Volt
VB	Valence band

VRH	Variable range hopping
XRD	X-ray diffraction

List of symbols

Symbol	Meaning
Å	Angstrom
В	Magnetic field
С	Capacitance
°C	Degree Celsius
d	Thickness of the sample
е	Electronic charge
E_a	Activation energy
E_d	Activation energy of thermal degradation
E_F	Fermi energy
G	Conductance
ħ	Reduced Planck's constant
Κ	Kelvin
Κ	Degree of crystallinity
k_B	Boltzmann constant
L	Crystallite size
L_B	Magnetic relaxation length
L_{loc}	Localization length
M^{*}	Complex electric modulus
M'	Real part of electric modulus
M''	Imaginary part of electric modulus
$N(E_F)$	Density of states
R_{hop}	Hooping length
R_{ω}	Hopping distance at a particular angular frequency ω
Т	Temperature
T_{Mott}	Characteristic Mott temperature
Tonset	Onset decomposition temperature
T_{rpd}	Rapidest decomposition temperature
W	Reduce activation energy
$W_{ m b}$	Barrier height
W_M	Binding energy

X	Degree of conversion
Z^*	Complex impedance
Z'	Real part of impedance
Ζ''	Imaginary part of impedance
ω	Angular frequency
ρ	Resistivity
σ_{dc}	DC conductivity
ε*	Complex dielectric permittivity
<i>E</i> ′	Real part of dielectric permittivity
<i>ɛ</i> ''	Imaginary part of dielectric permittivity
£ ₀	Dielectric permittivity at free space
τ	Relaxation time
λ	Wavelength
heta	Bragg diffraction angle
ϕ	Phase angle