
Chapter 1

Introduction

In this introductory chapter, we present a brief overview on the current knowledge

on neutrino physics. In section 1.1, we discuss the present status of neutrino physics.

In section 1.2 and 1.3, we summarise the theory related to the neutrino masses and

mixing. Then a short account of neutrino oscillations in vacuum as well as in medium,

followed by a review on solar, atmospheric, accelerator and reactor type neutrino

experiments, are presented in sections 1.4 – 1.7.

1.1 Present Status of Neutrino Physics

In the last 20 years of research in the field of neutrino physics, there has been an

immense improvement in our knowledge of neutrino physics. Neutrino was first intro-

duced by Wolfram Pauli in 1930 to explain the continuous electron energy distribution

in nuclear beta decay. At first, it was assumed that neutrinos are massless. But, af-

ter the discovery of neutrino ocsillation phenomena by Pontecorvo in 1957 [1, 2], the

neutrino physics has drastically changed. The osclillation phenomena provides that

neutrinos are massive and they are mixed during propagation. In the year 1988,

muon neutrinos were discovered in Kamiokande [3] and IMB experiments [4] and the
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model-independent confirmation of atmospheric muon neutrinos oscillation was given

by Super-Kamiokande experiment in 1998. At the end of 2002, the first result of the

K2K long-baseline accelarator experiment [5] has provied the values of the neutrino

mixing parameters that generate atmospheric neutrino oscillations [6].

In the year 2000, the combined results of the two experiments SNO [7] and

Super-Kamiokande [8] gave the model-independent verification of the oscillations of

solar electron neutrinos and the values of the solar neutrino mixing parameters were

provied by the KamLAND very-long-baseline reactor experiment [9] at the end of

2002. This experiment measures a disappearance of electron anti-neutrinos due to

oscillations.

In the Standard Model, the neutrinos were introduced as massless fermions.

Thus, no gauge invariant renormalizable mass term can be formulated for neutrinos.

Therefore, in the standard model there is no hope of either mixing or CP -violation

in the leptonic sector. As a result, the experimental affirmation for neutrino masses

and mixings hints towards a new kind of physics. In this chapter, we review the

phenomenology of three neutrino masses and mixing based on neutrino oscillation

phenomena and also discuss the theory to describe the neutrino masses.

1.2 Neutrino in the Standard Model

The Standard Model (SM) of particle physics is a spontaneously broken Yang-Mills

quantum field theory describing the strong, weak and electromagnetic interactions

connected by the gauge groups SU(3), SU(2) and U(1) [10]:

GSM = SU(3)C × SU(2)L × U(1)Y (1.2.1)

with three matter fermion generations. The subscripts C,L, Y imply color, left-

handed chiral group and the hypercharge.
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Each generation comprises of five different representations of the gauge groups

given by:

(1, 2,−1

2
), (3, 2,

1

6
), (1, 1,−1), (3, 1,

2

3
), (3, 1,−1

3
) (1.2.2)

where the numbers in the parenthesis represent the transformation properties of the

particles under GSM (1.2.1). The matter content is listed in Table 1.1.
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Table 1.1: SM matter contents [10]

Furthermore, the model also contains a single Higgs boson doublet H, whose trans-

formation properties are given as:

H =

(
H+

H0

)
∼ (1, 2,

1

2
) (1.2.3)

The vacuum expectation value of this Higgs field breaks the gauge symmetry,

〈H〉 =

(
0

v√
2

)
=⇒ GSM −→ SU(3)C × U(1)EM (1.2.4)

The Higgs boson was the only missing piece of the SM. But, in March 2013, the LHC

experiment has confirmed the existence of Higgs boson [11] for which Peter Higgs and

François Englert, were awarded the Nobel Prize in Physics.
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It can be clearly seen from Table 1.1 that the neutrinos which are categorized as

fermions do not undergo strong or electromagnetic interactions. Only active neutrinos

show weak interactions i.e. they are singlets of SU(3)C × U(1)EM whereas they are

not singlets of SU(2)L.

As mentioned above, the SM has three active neutrinos νe, νµ and ντ with their anti-

partners. The e, µ and τ are called as the charged-lepton mass eigenstates and νe, νµ

and ντ are the SU(2) partners of these mass eigenstates. The weak charged current

(CC) interactions between the neutrinos and their corresponding charged leptons are

given by,

−LCC =
g√
2

∑
l

ν̄Llγµl
−
LW

+
µ +H.C. (1.2.5)

Beside this, the SM neutrinos have neutral-current (NC) interactions,

−LNC =
g

2cosθW

∑
l

ν̄LlγµνLlZ
0
µ (1.2.6)

These two Eqs. (1.2.5) and (1.2.6) are sufficient to describe all the neutrino inter-

actions within the SM. From Eq. (1.2.6), we can easily determine the decay width

of the Z0 boson into neutrinos. This decay width is proportional to the number of

light left-handed neutrinos which indicates the existence of only three light active

neutrinos in the SM.

Another salient feature of the SM is that the SM with the gauge symmetry of Eq.

(1.2.1) and the particle content of Table 1.1 follows an accidental global symmetry:

Gglobal
SM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ (1.2.7)

Here U(1)B is the symmetry in th baryon number and U(1)L(e,µ,τ)
are the symmetries

of the three lepton flavor with total lepton number L =
∑
i

Li, where i = e, µ, τ .

This symmetry is termed as accidental symmetry because nobody is imposing this

symmetry. It is a result of the gauge symmetry and the representations of the physical

states.
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In the SM, fermions get masses from the Yukawa interactions in which a right-handed

fermion couples with its left-handed doublet and Higgs field. The Yukawa Lagrangian

is given by,

−LY ukawa = Y d
ijQ̄LiHDRj + Y u

ij Q̄LiH̃URj + Y l
ijL̄LiHERj +H.C. (1.2.8)

where H̃ = iτ2H
∗. After spontaneous symmetry breaking , the fermions get masses

mf
ij = Y f

ij

v√
2

(1.2.9)

Since there is no right-handed neutrinos in this model and hence the Yukawa term

(1.2.8) leave the neutrinos massless.

Thus it could be understood that in the SM, the neutrinos remain massless. In order

to get mass of the neutrino, one should go beyond the SM.

1.3 Extension of Standard Model and Neutrino

Mass

As discussed in section (1.2), the SM of particle physics is capable of describing nearly

all the fundamental particles and their interactions except gravity. Moreover, the SM

fails to explain many observed phenomena of nature like the origin of tiny neutrino

mass and matter-antimatter asymmetry of the Universe. To explain the mass of the

neutrino, the particle contents of the SM must be extended.

If we add an arbitrary “m” number of right handed neutrinos along with the par-

ticle contents of the SM, then there will be two types of mass terms in the Lagrangian

which arises from gauge invariant renormalizable operators [10]:

−LMν = MDij ν̄siνLj +
1

2
MNij ν̄siν

c
si +H.C. (1.3.1)

where νc = Cν̄T is a charge conjugated field and C is the charge conjugation matrix.

MD is a complex m× 3 matrix and MN is a symmetric matrix of dimension m×m.
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The first term in Eq.(1.3.1) is the Dirac mas term generated from spontaneous

electroweak symmetry breaking from Yukawa interactions

Y ν
ij ν̄siH̃

†LLj ⇒MDij = Y ν
ij

v√
2

(1.3.2)

The second term in Eq.(1.3.1)is the Majorana mass term which is singlet under the

SM gauge group. Hence, it can appear as a bare mass term.

Eq.(1.3.1) can also be written as:

−LMν =
1

2
~̄νcMν~ν +H.C. (1.3.3)

where,

Mν =

(
0 MD

T

MD MN

)
(1.3.4)

and ~ν = ( ~νL, ~νcs) is a 6-dimensional vector. The matrix Mν is complex and symmetric

which can be diagonalized by a unitary matrix V of dimension 6 as

V TMνV = diag(m1,m2, ......,m6) (1.3.5)

In terms of resulting 6-mass eigenstates,

~νmass = V †~ν, (1.3.6)

Eq.(1.3.3) can be rewritten as:

−LMν =
1

2

6∑
k=1

mk(ν̄
c
mass,k νmass,k + ν̄mass,k ν

c
mass,k) =

1

2

6∑
k=1

mkν̄Mk νMk (1.3.7)

where,

νMk = νmass,k + νcmass,k = (V †~ν)k + (V †~ν)ck (1.3.8)

which obey the Majorana condition

νM = νcM (1.3.9)
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and are introduced as the Majorana neutrinos. Thus the Majorana condition suggests

only one field to describe both the neutrino and anti-neutrino states i.e. a Majo-

rana neutrino can be described by a two-component spinor apart from the charged

fermions, which are Dirac particles and are represented by four-component spinors.

1.4 Three-Neutrino Mixing

As we have discussed earlier, there are three active neutrinos from the experimental

evidences and they take part in standard charged current (CC) and neutral current

(NC) weak interactions. Let us denote the neutrino mass eigenstates by (ν1, ν3,

ν3), the charged lepton mass eigenstates by (e, µ, τ), the corresponding interaction

eigenstates by (eI , µI , τ I) and ν̄ = (νLe, νLµ, νLτ ) respectively. Thus the leptonic

charged current interactions are given by

−LCC =
g√
2

(ēL, µ̄L, τ̄L)γµU


ν1

ν2

ν3

W+
µ +H.C. (1.4.1)

where U is a (3× 3) unitary matrix.

The charged lepton and the neutrino mass terms and the neutrino mass in the

interaction basis are given by:

−LM =

[
(ēIL, µ̄

I
L, τ̄

I
L)Ml


eIR

µIR

τ IR

+H.C.

]
−LMν (1.4.2)

The term −LMν is already defined in Eq.(1.3.3).

Thus we can write

V l†

L MlV
l
R = diag(me,mµ,mτ )

V ν†

L MνV
ν
R = diag(m1,m2,m3)

(1.4.3)
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where V l and V ν are the two 3 × 3 unitary diagonalizing matrices for the charged

leptons and the neutrinos. Thus, the mixing matrix UPMNS can be derived from these

two diagonalizing matrices:

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 diag(1, eiα, ei(β+δ)).

(1.4.4)

where cij = cos θij, sij = sin θij. δ is the Dirac CP phase and α, β are the

Majorana phases. The mixing matrix UPMNS is a 3×3 matrix analogous to the CKM

matrix for the quarks [12, 13] except the two extra phases. Due to the Majorana

nature of the neutrinos, the matrix UPMNS depends on six independent parameters:

three mixing angles and three phases (one for Dirac and two for Majorana).

1.5 Neutrino Oscillation

Neutrino oscillation is a quantum mechanical phenomena in which a neutrino that

is created with a specific flavor (e, µ or τ) can change to a different flavor. This is

possible only when the neutrinos are massive and the mass difference is not so large.

If in any charged-current interaction, there involves an electron then a νe will be

produced. When this neutrino propagates, it is the physical state that propagates

with time. After some time, it has a probability to change into a different flavor

state. As stated above, the basic criteria for neutrino oscillation is that there should

be a mass difference between the neutrino states and the mass eigenstates should be

different from the flavor eigenstates. The reason behind it is that if the two states

have the same mass then both will propagate in the same way and there will be no

oscillation. In the next subsections, these things will be discussed in brief.
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1.5.1 Neutrino Oscillation in Vacuum

The flavor eigenstate of neutrino can be written as


νe

νµ

ντ

 and the mass eigenstate

can be written as


ν1

ν2

ν3

 with mass eigenvalues (m1,m2,m3). The flavor eigenstate

and the mass eigenstate can be co-related by 3× 3 rotation matrix [15]
νe

νµ

ντ

 = (UPMNS)


ν1

ν2

ν3

 . (1.5.1)

where

UPMNS =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (1.5.2)

If we consider only two generation neutrino then we can write(
νe

νµ

)
=

(
cosθ sinθ

−sinθ cosθ

)(
ν1

ν2

)
. (1.5.3)

At time t

νe(t) = ν1cosθe
−iE1t + ν2sinθe

−iE2t,

νµ(t) = −ν1sinθe
−iE1t + ν2cosθe

−iE2t.
(1.5.4)

Therefore, at time t = 0, the above equation reduces to

νe(0) = ν1cosθ + ν2sinθ,

νµ(0) = −ν1sinθ + ν2cosθ.
(1.5.5)

Substituting ν1 and ν2 from eq. (1.5.5) into eq. (1.5.4) we get

νe(t) = νe(0)[cos2θe−iE1t + sin2θe−iE2t] + νµ(0)[e−iE2t − e−iE1t]cosθsinθ. (1.5.6)
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Now here we take the approximations, E1 =
√
m2

1 + p2
1
∼= p + m2

1/2p and E2 =√
m2

2 + p2
2
∼= p+m2

2/2p. We also consider that the momentum of the neutrino is high

enough so that p1 = p2 = p.

Thus the probability of νe → νµ oscillation in time t is given by

P (t)νe→νµ = sin2θcos2θ[e−iE2t − e−iE1t]2 = sin22θ.2sin2(
t.∆m2

21

4E
), (1.5.7)

where t = L
C

. The term L is the oscillation distance and ∆m2
21 = |m2

2 − m2
1|.

From eq. (1.5.6) it is clearly seen that the probability of oscillation (P (t)νe→νµ) in

vacuum depends on the following parameters:

• The mixing angle θ.

• The mass squared difference ∆m2
21.

• The oscillation distance L.

Thus from eq. (1.5.6) one can find out that the vital condition to occur neutrino

oscillation in vacuum are:

• ∆m2
21 cannot be zero i,e, the neutrino cannot be massless and also they can not

be degenerate.

• There should be a finite mixing between the different flavors of neutrino in the

neutrino beam.

• There must be lepton flavor violation so that the different neutrino types as

defined by the weak charged current, are mixtures of the mass eigenstates.

1.5.2 Neutrino Oscillation in Matter (MSW effect)

The oscillation pattern of neutrino will be exceptionally changed if one considers the

presence of matter. Moreover, under certain conditions, the presence of matter can
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lead to resonant amplification of the transition between given types of neutrino (νe,

νµ, ντ ) even when the same transitions are strongly suppressed in vacuum due to small

mixing. If a neutrino is produced in some reactions at time t = 0, then after time t

it should have a non-zero amplitude to be found as νe or νµ. The neutrino state can

be defined as

|νe(t) >= ae(t)|νe > +aµ(t)|νµ > . (1.5.8)

The evolution of ae(t) and aµ(t) are governed by the free particle Hamiltonian given

by [14]

i
d

dt

(
ae

aµ

)
=

1

4E

(
∆m2

21cos2θ ∆m2
21sin2θ

∆m2
21sin2θ −∆m2

21cos2θ

)(
ae

aµ

)
, (1.5.9)

where ∆m2
21 = m2

2 −m2
1 and θ is the mixing angle defined by

νe = cosθν1 + sinθν2, νµ = −sinθν1 + cosθν2. (1.5.10)

Since the neutrino travels through solar matter and hence they will undergo

neutral current interactions with the matter. However, only the νe interaction is

more effective to consider and hence the eq. (1.5.9) turns out to be

i
d

dt

(
ae

aµ

)
=

1

4E

(
A−∆m2

21cos2θ ∆m2
21sin2θ

∆m2
21sin2θ ∆m2

21cos2θ − A

)(
ae

aµ

)
, (1.5.11)

where A = 2
√

2GFηeE gives the effective mass square difference gained by the neu-

trino pairs due to the interactions in the Sun. ηe is the electron number density inside

the Sun and is a function of the distance from the Sun’s core. As the neutrino travels

inside the Sun A changes. At some point, the diagonal terms in eq . (1.5.11) become

equal and the effective neutrino mixing also become maximal. This resonance en-

hancement of the mixing due to the presence of matter with varying density is known

as “Mikheyev-Smirnov-Wolfenstein (MSW)” effect. Hence the resonance condition

can be written as

A = ∆m2
21cos2θ. (1.5.12)
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The evolution equation (1.5.11) has the structure of a Schrödinger equation with the

effective Hamiltonian matrix in the flavor basis

H =
1

4E

(
A−∆m2

21cos2θ ∆m2
21sin2θ

∆m2
21sin2θ ∆m2

21cos2θ − A

)
, (1.5.13)

which can be diagonalized by a unitary matrix

UM =

(
cosθM sinθM

−sinθM cosθM

)
(1.5.14)

Equation (1.5.14) is the effective mixing matrix in matter and

∆m2
M =

√
(∆m2

21cos2θ − A)2 + (∆m2
21sin2θ)2 (1.5.15)

is the effective squared-mass difference. The effective mixing angle in matter θM is

given by

tan2θM =
tan2θ

1− A
∆m2

21cos2θ

(1.5.16)

Using the condition given in eq. (1.5.12) we get from eq. (1.5.16) tan2θM −→∞
or θM −→ π

4
. This implies that it is possible to have θM = π

4
even if the vacuum

mixing angle is small. The oscillation length at the resonance can be derived as

Lres =
4πp

∆m2
21sin2θ

(1.5.17)

If sin2θM = 1 then L = 4πp
∆m2

21
which corresponds to large oscillation probabilities.

If A = 0 and the mixing angle in vacuum θ is very small then eq. (1.5.16) gives

rise to same mass eigenstates as oscillation in matter.

1.6 Neutrino Mass Hierarchy

As stated above, neutrinos travel as a mixture of three flavor states and hence we can

not predict the mass of νe, νµ, ντ separately but one can predict their mass squared

12



difference. On the basis of present knowledge, one can not decide whether the mass

eigenstate ν3 is heavier or lighter than the mass eigenstates ν1 and ν2. This is com-

monly referred as neutrino mass hierarchy and is divided into two categories [16]

• Normal Hierarchy (NH): The scenario, in which the mass eigenstate ν3 is

heavier, is referred to as the normal mass hierarchy (NH). For NH patters, we

can simply write that

m3 > m2 > m1,

where m3,m2,m1 are the mass eigenvalues respectively.

Figure 1.1: Possible neutrino mass hierarchies [17]

• Inverted Hierarchy (IH): The scenario, in which the mass eigenstate ν3 is

lighter, is referred to as the inverted mass hierarchy (IH). For IH patters, we

can similarly write as

m2 > m1 > m3
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These two mass orderings are illustrated in fig:1.1. This thesis is mainly based on

these two mass hierarchy patterns on different aspects.

1.7 Different Neutrino Oscillation Experiments

In this section we briefly outline the various neutrino oscillation experiments con-

nected to both solar and atmospheric neutrinos. We also manifest the experimental

data of those experiments within the framework of three neutrino mixings.

1.7.1 Neutrino Detection Method

The basic principle of neutrino detection is based on the β-transformations which can

be written as

n→ p+ e− + ν̄e

p→ n+ e+ + νe

(1.7.1)

or equivalently as

n+ νe → p+ e−

p+ ν̄e → n+ e+
(1.7.2)

We can see that in eqs. (1.7.1) and (1.7.2) lepton number is conserved. The specific

properties of the neutrino (Zν = 0, mν
∼= 0, µν = 0) make the experimental detection

of this particle very difficult. The estimated value of the interaction cross section of

the neutrino with the nucleus is equal to 10−44 cm2. Thus the mean free path in a

condensed medium (n = 1022 cm−3) will be

l =
1

nσ
=

1

1022 × 10−44
cm = 1022 cm = 1017 km, (1.7.3)

while the corresponding value in the nuclear matter (n = 1038 cm−3) is

l =
1

nσ
=

1

1038 × 10−44
cm = 106 cm = 10 km, (1.7.4)

14



i.e. 108 times more than the nuclear dimension. Hence the existence of neutrino was

confirmed only when there is a high intensity flux of neutrinos.

There are mainly three methods of detecting neutrinos which are briefly described

as follows:

• Water Detector (Elastic Scattering):

The basic principle of water detector is that in water, neutrino can hit elec-

trons out of atoms with so much force that the electrons emit characteristic

Cherenkov light. Physicists can then detect this light with the help of photo-

tubes surrounding the detector.

νe + e− → νe + e− (1.7.5)

This principle was used in Super-Kamiokande experiment.

• Radio-Chemical Method:

The principle used in radio-chemical method is reverse β decay in which neutrino

can change proton in atomic nuclei into neutrons, which can be detected through

their reactions.

ν̄e + p→ n+ e+

νe +37 Cl→37 Ar + e−

νe + 71Ga → 71Ge + e−

(1.7.6)

The first one was employed in Homestake experiment and the second one in

GALLEX, SAGE, GNO experiments.

• Heavy Water Detector:

The general principle of heavy water detector is mainly based on charged current

interaction through νe and neutral current interaction through νx;x = e, µ, τ .

νe +2 H→ p+ p+ e−

νx +2 H→ p+ n+ νx (x = µ, τ)
(1.7.7)
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The above principle was employed in SNO.

1.7.2 Solar Neutrino Oscillation Experiments

There are several solar neutrino experiments which are successful in observing the

solar neutrinos. The list of those experiments are listed below with the year of con-

firmation and the country in which the experiments were implemented.

• Homestake experiment (1970, Lead, South Dakota) (Radio-chemical method).

• SAGE (Russia), GALLEX (Gran Sasso) (1998) (Radio-chemical method).

• Gallium Neutrino Observatory (GNO) (2003, Gran Sasso)(Radio-chemical

Method).

• KAMIOKANDE (1987, Japan)(water detector which produces Cherenkov ra-

diation).

• Super-KAMIOKANDE (2002, Japan)(water detector).

• SNO(1999, Canada)(Heavy water detector).

• KamLAND (2003, Japan).

Homestake Experiment (Davis’s Experiment)

The first pioneering experiment to detect solar neutrino was introduced by Davis

and his collaborators at Homestake using 37Cl−37 Ar method which was proposed by

Pontecorvo [18]. In this experiment, 37Cl absorbs a νe followed by the produced 37Ar

decay through orbital e− capture,

νe +37 Cl→37 Ar + e−(thresold 814 keV). (1.7.8)
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Since the threshold of the above reaction is 814 keV, hence the detector is sen-

sitive to all neutrinos generated in the Sun except the p-p neutrinos.

Reaction Abbr. Flux (cm−2s−1)

pp→ de+ν pp 5.97(1± 0.006)× 1010

pe−p→ dν pep 1.41(1± 0.011)× 108

3He p→ 4He e+ ν hep 7.90(1± 0.015)× 103

7Be e− → 7Li ν + γ 7Be 5.07(1± 0.06)× 109

8B→ 8Be∗ e+ ν 8B 5.94(1± 0.11)× 106

13N→ 13C e+ ν 13N 2.88(1± 0.15)× 108

15O→ 15N e+ ν 15O 2.15(1+0.17
−0.16)× 108

17F→ 17O e+ ν 17F 5.82(1+0.19
−0.17)× 106

Table 1.2: The Standard Solar Model (SSM) neutrino fluxes predicted by the BPS08

(GS) model [19]

The energy of the neutrino and their flux from the different processes in the Sun are

given in Table 1.2.

Thus it is clear from Table 1.2 that the dominant contribution in the 37Cl−37 Ar

experiment came from 8B neutrinos, but 7B, pep, 13N and 15O neutrinos also have

contribution as well. It is necessary to comment that the observed flux is significantly

smaller than the SSM calculation [20].

Gallium Experiments

In gallium experiments (GALLEX and GNO at Gran Sasso in Italy and SAGE at

Baskan in Russia), they use the following reaction

νe + 71Ga → 71Ge + e− (threshold 233 keV) (1.7.9)

The SSM calculation predicts that more than 80% of the capture rate in gallium

arises due to low energy pp. The results of GALLEX, GNO, GNO + GALLEX and
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SAGE experiments are shown in Table 1.3.

Experiment 71Ga − 71Ge (SNU)

GALLEX [21] 77.5± 6.2+4.3
−4.7

GNO [22] 62.9+5.5
−5.3 ± 2.5

GNO+GALLEX [22] 69.3± 4.1± 3.6

SAGE [23] 65.4+3.1+2.6
−3.0−2.8

SSM [BPS08(GS)] [19] 127.9+8.1
−8.2

Table 1.3: The results of radio-chemical solar neutrino experiments. The predictions

of a recent SSM BPS08(GS) [19] are also listed in the last row. SNU (Solar Neutrino

Unit) is defined as 10−36 neutrino captures per atom per second.

Kamiokande Experiment

The Kamiokande experiment was started in 1987 in Japan which utilizes νe scattering,

νx + e− → νx + e−, (1.7.10)

in a large water-Cherenkov detector. It was the first experiment which gave the

direct evidence that neutrinos come from the direction of the Sun [24]. The above

reaction is sensitive to all active neutrinos, x = e, µ and τ . The results of Kamiokande

experiment is shown in Table 1.4.

Super-Kamiokande Experiment

The Super-Kamiokande experiment [25–28] was mainly started taking data from 1996

in which a 50-kton water Cherenkov detector was used to replace the Kamiokande

experiment. Due to the high threshold (recoil-electron total energy of 7 MeV in

Kamiokande and 5 MeV in Super-Kamiokande), this experiment was successful in

observing pure 8B solar neutrinos.
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Experiment Reaction 8B ν flux (106cm−2s−1 )

Kamiokande [29] νe 2.80± 0.19± 0.33

Super-K I [26,28] νe 2.38± 0.02± 0.08

Super-K II [27,28] νe 2.41± 0.05+0.16
−0.15

Super-K III [28] νe 2.32± 0.04± 0.05

SNO (Pure D2O) [30] CC 1.76+0.06
−0.05 ± 0.09

νe 2.39+0.24
−0.23 ± 0.12

NC 5.09+0.44+0.46
−0.43−0.43

Borexino [31] νe 2.4± 0.4± 0.1

SSM[BPS08(GS)] [19] - 5.94(1± 0.11)

Table 1.4: 8B solar neutrino results obtained from different experiments. The predic-

tions of a recent SSM BPS08(GS) [19] are also listed in the last row.

Sudbury Neutrino Observatory (SNO)

Another solar neutrino experiment SNO in Canada had started observation in 1999 in

which they used 1000 tons of ultar-pure heavy water (D2O) contained in a spherical

acrylic vessel, surrounded by an ultra-pure H2O shield. SNO measured 8B solar

neutrinos via the charged-current (CC) and neutral-current (NC) reactions [32–40]

νe + d→ e− + p + p (CC), (1.7.11)

and

νx + d→ νx + p + n (NC), (1.7.12)

as well as νe scattering as defined in eq. (1.7.10). The CC reaction is sensitive to νe

only, while the NC is sensitive to all active neutrinos. The results of SNO are shown

in Table 1.4.
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Borexino Experiment

In 2007 at Gran Sasso in Italy, a new solar neutrino experiment Borexino started

observation. This experiment measures solar neutrinos via νe scattering in 300 tons

of ultra-pure liquid scintillator.

Experiment Reaction 7Be ν flux (109cm−2s−1 )

Borexino [42] νe 3.10± 0.15

SSM[BPS08(GS)] [19] - 5.07(1± 0.06)

Table 1.5: 7Be solar neutrino result from Borexino. The predictions of a recent SSM

BPS08(GS) [19] are also listed in the last row.

Experiment Reaction pep ν flux (108cm−2s−1 )

Borexino [42] νe 1.0± 0.2

SSM[BPS08(GS)] [19] - 1.41(1± 0.011)

Table 1.6: pep solar neutrino result from Borexino. The predictions of a recent SSM

BPS08(GS) [19] are also listed in the last row.

The experiment was successful in observing 7Be solar neutrinos with an energy

threshold 250 keV [41–49] and 8B solar neutrinos with threshold value of 3 MeV [31].

The results are depicted in Table 1.4, 1.5 and 1.6.

1.7.3 Atmospheric Neutrino Experiments

The Kamiokande experiment in Japan and the IMB experiment in the US were the

pioneering experimental projects to develop large volume water Cherenkov detector

with the primary goal of detecting nucleon decay, as predicted by GUT developed in

1970’s. It was observed that in both the experiments, the ratio of νµ induced events

to νe induced events subsequently get reduced from the expected value of 2. The flux

obtained from Kamiokande and IMB experiments are shown in Table 1.7.
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Experiment Flux

Kamiokande [50] 0.06± 0.07± 0.05

IMB [4] 0.54± 0.05± 0.12

Table 1.7: Experimental data from Kamiokande and IMB.

1.7.4 Reactor Experiments

The most elegant way to measure θ13 is through kilometre-baseline reactor neutrino

oscillation experiments. The main advantage of it is that the generation of non-zero

θ13 will cause a deficit of ν̄e flux at ∼ 1− 2 km baseline which is proportional to the

value of sin22θ13 [51]. Since the reactor measurements are independent of CP -phase

and θ23, therefore a high precision measurement can be achieved.

In order to measure θ13, the two first generated kilometre-baseline reactor ex-

periments, CHOOZ [52] and PALO VERDE [53–55] were constructed. The CHOOZ

detector was built at a distance of ∼ 1, 050m from the two reactors of the CHOOZ

power plant of Electricite de France in the Ardennes region of France while the PALO

VERDE detector was built at distances of 750, 890 and 890 m from the three reac-

tors of the Palo Verde Nuclear Generating Station in the Arizona desert of the United

States. More interestingly, both the experiments had failed to observe the ν̄e deficit

from θ13 but they had succeded in giving an upper limit of sin22θ13 < 0.10 at 90%

confidence level [52].

Due to the importance of knowing the precise value of θ13 and the failure of

CHOOZ and PALE VERDE experiments, a series of worldwide second-generation

kilometre-baseline reactor experiments were started in the 21st century. Among those,

Double Chooz [56–58] in France, RENO [60] in Korea and Daya Bay [61,62] in China

were the most famous experiments which tried to push the sensitivity to θ13 consid-

erably below 10◦.
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In the Double Chooz experiment, they measured νes from two 4.25 GWth reactors

with a far detector placed in 1050 m from the two reactor cores. With the 101 days

of data, they initially reported sin22θ13 = 0.086 ± 0.041 ± 0.030 [56]. Recently, they

recorded sin22θ13 = 0.109±0.030±0.025 [59] with 227.93 live days of running. Double

Chooz was also successful in measuring θ13 using inverse β-decay interactions with

neutrons capture on hydrogen [63] or from combined fit Gd-capture and H-capture

rate+spectrum etc [64].

The RENO experiment consists of six 2.8 GWth reactors at Yonggwang Nuclear

Power Plant in Korea with two identical detectors located at 294 m and 1383 m from

the reactor array center. Their initial result includes sin22θ13 = 0.113± 0.013± 0.019

with 229 days of running time [60]. In September 2013, RENO reported a new result

of sin22θ13 = 0.100± 0.010± 0.012 with 403 live days of data [65].

The Daya Bay experiment measured the νes from the Daya Bay nuclear power

complex in China which includes six 2.9 GWth reactors with six identical detectors

positioned in two near (470 m and 576 m) and one far (1648 m) underground hall.

The initial results of Daya Bay gave the evidence of non-zero θ13 in 5.2σ confidence

level with a value of sin22θ13 = 0.0.089± 0.010± 0.005 (139 days of data) [61]. Later,

they repoted their latest results for sin22θ13 = 0.090+0.008
−0.009 based on 217 days of live

running [66].
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Chapter 2

Perturbations to µ− τ Symmetry
and Leptogenesis with Type II
Seesaw

In this chapter, we study the different µ− τ symmetric neutrino mass matrices orig-

inating from type I seesaw mechanism which give rise to zero values of θ13. We then

apply a perturbative term originates from type II seesaw which breaks the µ − τ

symmetry and calculate the neutrino oscillation parameters as a function of type II

seesaw strength. We also extend our study to get baryogenesis by incorporating the

origin of nontrivial leptonic CP phase in the charged lepton sector.

2.1 Introduction

The standard model (SM) of particle physics have been established as the most suc-

cessful theory describing all fundamental particles and their interactions except grav-

ity, specially after the discovery of its last missing piece, the Higgs boson in 2012.

In spite of its huge phenomenological success, the SM fails to explain many observed
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phenomena in nature. Origin of tiny neutrino mass and matter-antimatter asymme-

try are two of such phenomena which can be explained only within the framework

of some beyond standard model (BSM) physics. Neutrinos which remain massless in

the SM, have been shown to have tiny but non-zero mass (twelve order of magnitude

smaller than the electroweak scale) by several neutrino oscillation experiments [1–5].

Recent neutrino oscillation experiments T2K [6], Double ChooZ [7], Daya-Bay [8] and

RENO [9] have not only made the earlier predictions for neutrino parameters more

precise, but also predicted non-zero value of the reactor mixing angle θ13 as given

below.

Experimental Data sin2 2θ13 sin2 θ13

T2K [6] 0.110.11
−0.05

(
0.140.12

−0.06

)
0.0280.019

−0.024

(
0.0360.022

−0.030

)
Double ChooZ [7] 0.086± 0.041± 0.030 0.0220.019

−0.018

Daya-Bay [8] 0.092± 0.016± 0.005 0.024± 0.005

RENO [9] 0.113± 0.013± 0.019 0.029± 0.006

Table 2.1: Experimental value of reactor mixing angle from recent neutrino oscillation

experiments.

Oscilation Parameters Within 3σ range within 3σ range

(Schwetz et al. [10]) (Fogli et al. [11])

∆m2
21 [10−5 eV2] 7.00-8.09 6.99-8.18

|∆m2
31 (NH) [10−3 eV2] 2.27-2.69 2.19-2.62

|∆m2
23 (IH) [10−3 eV2] 2.24-2.65 2.17-2.61

sin2 θ12 0.27-0.34 0.259-0.359

sin2 θ23 0.34-0.67 0.331-0.637

sin2 θ13 0.016-0.030 0.017-0.031

Table 2.2: The global fit values for the mass squared differences and mixing angles

as reported by Ref. [10] presented by 2nd column and by Ref. [11] by third column.
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Recent global fits for different oscillation parameters within their 3σ range taken

from Ref. [10] and Ref. [11] are presented below in table 2.2.

Several BSM frameworks have been proposed to explain the origin of tiny neu-

trino mass and the pattern of neutrino mixing. Tiny neutrino mass can be explained

by seesaw mechanisms which broadly fall into three types : type I [12–15], type

II [16–21] and type III [22] whereas the pattern of neutrino mixing can be understood

by incorporating additional flavor symmetries.

The neutrino oscillation data before the discovery of non-zero θ13 were in perfect

agreement with µ−τ symmetric neutrino mass matrix. Four different neutrino mixing

pattern which can originate from such a µ− τ symmetric neutrino mass matrix are:

Bimaximal Mixing (BM) [23–25], Tri-bimaximal Mixing (TBM) [26–31], Hexagonal

Mixing (HM) [32] and Golden Ratio Mixing (GRM) [33–38]. All these scenarios

predict θ23 = 45o, θ13 = 0 but different values of solar mixing angle θ12 = 45o (BM),

θ12 = 35.3o (TBM), θ12 = 30o (HM), θ12 = 31.71o (GRM). However, in view of the

fact that the latest experimental data have ruled out sin2θ13 = 0, one needs to go

beyond these µ − τ symmetric frameworks. Since the experimental value of θ13 is

still much smaller than the other two mixing angles, µ − τ symmetry can still be a

valid approximation and the non-zero θ13 can be accounted for by incorporating the

presence of small perturbations to µ− τ symmetry coming from different sources like

charged lepton mass diagonalization, for example. Several such scenarios have been

widely discussed in [39–48] and the latest neutrino oscillation data can be successfully

predicted within the framework of many interesting flavor symmetry models.

Apart from the origin of neutrino mass and mixing, the observed matter anti-

matter asymmetry also remains unexplained within the SM framework. The observed

baryon asymmetry in the Universe is encoded in the baryon to photon ratio measured

by dedicated cosmology experiments like Wilkinson Mass Anisotropy Probe (WMAP),

Planck etc. The latest data available from Planck mission constrain the baryon to
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photon ratio [49] as

YB ' (6.065± 0.090)× 10−10 (2.1.1)

Leptogenesis is one of the most widely studied mechanism of generating this observed

baryon asymmetry in the Universe by generating an asymmetry in the leptonic sector

first and later converting it into baryon asymmetry through electroweak sphaleron

transitions [50]. As pointed out first by Fukugita and Yanagida [51], the out of

equilibrium CP violating decay of heavy Majorana neutrinos provides a natural way

to create the required lepton asymmetry. The salient feature of this mechanism is the

way it relates two of the most widely studied problems in particle physics: the origin

of neutrino mass and the origin of matter-antimatter asymmetry. This idea has been

implemented in several interesting models in the literature [52–65]. Recently such

a comparative study was done to understand the impact of mass hierarchies, Dirac

and Majorana CP phases on the predictions for baryon asymmetry in [66] within the

framework of left-right symmetric models.

In the present chapter, we propose a common mechanism which can generate

the desired neutrino mass and mixing including non-zero θ13 and also the matter

antimatter asymmetry. We extend the SM by three right handed singlet neutrinos

and one Higgs triplet such that both type I and type II seesaw can contribute to

neutrino mass. Type I seesaw is assumed to give rise to a µ− τ symmetric neutrino

mass matrix with θ13 = 0 whereas type II seesaw acts as a perturbation which breaks

the µ− τ symmetry resulting in non-zero θ13. Similar works have been done recently

where type II seesaw was considered to be the origin of θ13 [67,68] as well as non-zero

Dirac CP phase δ [69] by assuming the type I seesaw giving rise to TBM type mixing.

Some earlier works studying neutrino masses and mixing by using the interplay of two

different seesaw mechanisms can be found in [70–75]. In this work we generalize earlier

studies on TBM type mixing to most general µ−τ symmetric neutrino mass matrices

and check whether a minimal form of µ−τ symmetry breaking type II seesaw can give
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rise to correct value of reactor mixing angle θ13. We then calculate the predictions

for other neutrino parameters as well as observables like sum of absolute neutrino

masses
∑

i|mi| and effective neutrino mass mee = |∑i U
2
eimi|. We check whether

the sum of absolute neutrino masses obey the cosmological upper bound
∑

i|mi| <
0.23 eV [49] and whether the effective neutrino mass mee lies within the bounds

coming from neutrinoless double beta decay experiments. We also calculate the lepton

asymmetry by considering the source of leptonic Dirac CP violation in the charged

lepton sector. From the requirement of generating correct neutrino parameters and

baryon asymmetry we constrain type II seesaw strength, Dirac CP phase and at the

same time discriminate between neutrino mass hierarchies, different lightest neutrino

masses and different µ− τ symmetric mass matrices.

The plan of the chapter is sketched as following manner. In section 2.2 we discuss

the methodology of type I and type II seesaw mechanisms. In section 2.3, we discuss

the parametrization of different µ − τ symmetric neutrino mass matrices. We then

discuss deviations from µ−τ symmetry using type II seesaw in section 2.4. In section

2.5, we discuss CP violation and outline the mechanism of leptogenesis in the presence

of type I and type II seesaw. In section 2.6 we discuss our numerical analysis and

results and then finally conclude in section 2.7.

2.2 Seesaw Mechanism: Type I and Type II

Type I seesaw [12–15] mechanism is the simplest possible realization of the dimension

five Weinberg operator [76] for the origin of neutrino masses within a renormalizable

framework. This mechanism is implemented in the standard model by the inclusion

of three additional right handed neutrinos (νiR, i = 1, 2, 3) as SU(2)L singlets with

zero U(1)Y charges. Being singlet under the gauge group, bare mass terms of the

right handed neutrinos MRR are allowed in the Lagrangian. On the other hand, in
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type II seesaw [16–21] mechanism, the standard model is extended by inclusion of

an additional SU(2)L triplet scalar field ∆ having U(1)Y charge twice that of lepton

doublets with its 2× 2 matrix representation as

∆ =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
.

Thus, the gauge invariant lagrangian relevant for type I plus type II seesaw mechanism

is given below

L = (DµΦ)†(DµΦ) + Tr(Dµ∆)†(Dµ∆)− Llept
Y − V (Φ,∆) , (2.2.1)

with the leptonic interaction terms,

LY = yij`iΦ̃νR + fij`
T
i C(iτ2)∆`j +

1

2
νTRC

−1MRνR + h.c. (2.2.2)

Here `L ≡ (ν, e)TL, Φ ≡ (φ0, φ−)T and C is the charge conjugation operator. The

scalar potential of the model using SM Higgs doublet Φ and Higgs triplet scalar ∆L

is

V(Φ,∆) = µ2
ΦΦ†Φ + λ1

(
Φ†Φ

)2
+ µ2

∆Tr
(
∆†∆

)
+ λ2

[
Tr
(
∆†∆

)]2
+ λ3Det

(
∆†∆

)
+ λ4

(
Φ†Φ

)
Tr
(
∆†∆

)
+ λ5

(
Φ†τiΦ

)
Tr
(
∆†τi∆

)
+

1√
2
µΦ∆

(
ΦT iτ2∆Φ

)
+ h.c.

With vacuum expectation value of the SM Higgs 〈Φ0〉 = v/
√

2, the trilinear

mass term µΦ∆ generates an induced VEV for Higgs triplet as 〈∆0〉 = v∆/
√

2 where

v∆ ' µΦ∆v
2/
√

2µ2
∆, the resulting in 6 × 6 neutrino mass matrix after electroweak

symmetry breaking reads as

Mν =

(
mLL mLR

mT
LR MRR

)
, (2.2.3)

where mLR = yν v is the Dirac neutrino mass, mLL = fν v∆ is the Majorana mass

for light active neutrinos and mRR is the bare mass term for heavy sterile Majorana
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neutrinos. Within the mass hierarchy MRR � mLR � mLL, the seesaw formula for

light neutrino mass is given by

mν ≡ mLL = mI
LL +mII

LL (2.2.4)

where the formula for type I seesaw contribution is presented below,

mI
LL = −mLRM

−1
RRm

T
LR. (2.2.5)

where mLR is the Dirac mass term of the neutrinos which is typically of electroweak

scale. Demanding the light neutrinos to be of eV scale one needs MRR to be as high

as 1014 GeV without any fine-tuning of Dirac Yukawa couplings. Whereas the type

II seesaw contribution to light neutrino mass is given by

mII
LL = fνv∆ , (2.2.6)

where the analytic formula for induced VEV for neutral component of the Higgs scalar

triplet, derived from the minimization of the scalar potential, is

v∆ ≡ 〈∆0〉 =
µΦ∆v

2

µ2
∆

. (2.2.7)

In the low scale type II seesaw mechanism operative at TeV scale, barring the nat-

uralness issue, one can consider a very small value of trilinear mass parameter to

be

µΦ∆ ' 10−8 GeV ,

where the Higgs scalar triplet mass lie within TeV range which give interesting phe-

nomenological possibility of being produced in pairs at LHC. The sub-eV scale light

neutrino mass with type II seesaw mechanism contrains the corresponding Majorana

Yukawa coupling as

f 2
ν < 1.4× 10−5

( µ∆

1 TeV

)
.
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Within reasonable value of fν ' 10−2, the triplet Higgs scalar VEV is v∆ ' 10−7

GeV which is in agreement with the oscillation data. It is worth to note here that the

tiny trilinear mass parameter µΦ∆ controls the neutrino overall mass scale, but does

not play any role in the couplings with the fermions and thereby, making the lepton

flavour violaion studies more viable.

2.3 µ− τ Symmetric Neutrino Mass Matrix

µ − τ symmetric neutrino mass matrix is one of the most widely studied neutrino

mixing scenario in the literature. In this work, we consider four different types of

µ − τ symmetric neutrino mass matrix: Bimaximal mixing (BM), Tri-bimaximal

mixing (TBM), Hexagonal mixing (HM) and Golden Ratio mixing (GRM). These

scenarios predict θ13 = 0, θ23 = π
4

whereas the value of θ12 depends upon the particular

model. Since θ13 = 0 has been ruled out by latest neutrino oscillation experiments,

the µ−τ symmetry has to be broken appropriately in order to account for the correct

neutrino oscillation data. We assume these four different µ − τ symmetric neutrino

mass matrices to originate from type I seesaw mechanism whereas type II seesaw term

acts as a perturbation which breaks µ− τ symmetry in order to produce the correct

neutrino oscillation parameters.

The µ − τ symmetric BM type neutrino mass matrix originating from type I

seesaw can be parametrised as

mLL =


A+B F F

F A B

F B A

 (2.3.1)

This has eigenvalues m1 = A+B+
√

2F,m2 = A+B−
√

2F,m3 = A−B. It predicts

the mixing angles as θ23 = θ12 = 45o and θ13 = 0. It clearly shows that only the first

mixing angle θ23 is still allowed from oscillation data whereas θ12 = 45o and θ13 = 0
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have been ruled out experimentally.

The µ − τ symmetric TBM type neutrino mass matrix originating from type I

seesaw can be parametrized as

mLL =


A B B

B A+ F B − F
B B − F A+ F

 (2.3.2)

which is clearly µ − τ symmetric with eigenvalues m1 = A − B, m2 = A + 2B,

m3 = A − B + 2F . It predicts the mixing angles as θ12 ' 35.3o, θ23 = 45o and

θ13 = 0. Although the prediction for first two mixing angles are still allowed from

oscillation data, θ13 = 0 has been ruled out experimentally at more than 9σ confidence

level.

In the same way, the µ − τ symmetric Hexagonal mixing (HM) type neutrino

mass matrix can be written as

mLL =


A B B

B 1
2
(A+ 2

√
2
3
B + F ) 1

2
(A+ 2

√
2
3
B − F )

B 1
2
(A+ 2

√
2
3
B − F ) 1

2
(A+ 2

√
2
3
B + F )

 (2.3.3)

This has eigenvalues m1 = 1
3
(3A−

√
6B),m2 = A+

√
6B and m3 = F . This predicts

the mixing angles to be θ23 = 45o, θ12 = 30o and θ13 = 0. Oscilation data still allow

θ23 = 45o and θ12 = 30o whereas θ13 = 0 is ruled out. For GRM pattern, the µ − τ
symmetric neutrino mass matrix can be written as

mLL =


A B B

B F A+
√

2B − F
B A+

√
2B − F F

 , (2.3.4)

giving the eigenvalues equal to m1 = 1
2
(2A +

√
2B −

√
10B),m2 = 1

2
(2A +

√
2B +

√
10B), and m3 = −A −

√
2B + 2F . This gives rise to neutrino mixing angles as

θ23 = 45o, θ12 = 31.71o and θ13 = 0. Apart from θ13, the other two mixing angles are

still within the 3σ range of neutrino mixing angles.
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2.4 Deviations from µ− τ Symmetry

For simplicity, we assume the type II seesaw mass matrix to be of minimal form while

ensuring, at the same time, that it breaks the µ − τ symmetry in order to generate

non-zero θ13. The form of the neutrino mass matrix arising from type II seesaw only

is taken as

mII
LL =


0 −w w

−w w 0

w 0 −w

 (2.4.1)

The structure of this mass matrix although looks ad-hoc, can however, be explained

within generic flavor symmetry models like A4. Within the framework of seesaw

mechanism, neutrino mass and mixing have been extensively studied by many au-

thors using discrete flavor symmetries [77–100] available in the literature. Among

the different discrete flavor symmetry groups, the group of even permutations on

four elements A4 can naturally explain the µ − τ symmetric mass matrix obtained

from type I seesaw mechanism. Without going into the details of generating a µ− τ
symmetric mass matrix within A4 models, an exercise performed already by several

authors, here we briefly outline one possible way of generating the type II seesaw mass

matrix (2.4.1) within an A4 model. This group has 12 elements having 4 irreducible

representations, with dimensions ni, such that
∑

i n
2
i = 12. The characters of 4 rep-

resentations are shown in table 4.1. The complex number ω is the cube root of unity.

The group A4 has four irreducible representations namely, 1,1′,1′′ and 3. In generic

A4 models, the SU(2)L lepton doublets l = (le, lµ, lτ ) are assumed to transform as

triplet 3 under A4 whereas the SU(2)L singlet charged leptons ec, µc, τ c transform

as 1,1′,1′′ respectively. In type I seesaw scenarios, the SU(2)L singlet right handed

neutrinos νc transform as a triplet under A4. Since we are trying to explain the

structure of type II term only, we confine our discussion to the lepton doublets only.

We introduce three scalars ζ1, ζ2, ζ3 transforming as 1,1′,1′′ under A4. The SU(2)L
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triplet Higgs field ∆L is assumed to be a singlet under A4. Thus the type II seesaw

term can be written as

LII = fll(ζ1 + ζ2 + ζ3)∆L/Λ

where Λ is the cutoff scale and f is a dimensionless coupling constant.

The decomposition of the llζ1,2,3 terms into A4 singlet gives

llζ1 = (lele + lµlτ + lτ lµ)ζ1

llζ2 = (lµlµ + lelτ + lτ le)ζ2

llζ3 = (lτ lτ + lelµ + lµle)ζ3

Assuming the vacuum alignments of the scalars as 〈ζ1〉 = 0, 〈ζ2〉 = Λ, 〈ζ3〉 = −Λ, we

obtain the type II seesaw contribution to neutrino mass as

mII
LL =


0 −f〈δ0

L〉 f〈δ0
L〉

−f〈δ0
L〉 f〈δ0

L〉 0

f〈δ0
L〉 0 −f〈δ0

L〉

 (2.4.2)

which has the same form as (2.4.1) if we denote f〈δ0
L〉 = fvL as w. We adopt this

minimal structure of the type II seesaw mass matrix for our numerical analysis.

Class χ(1) χ(2) χ(3) χ(4)

C1 1 1 1 3

C2 1 ω ω2 0

C3 1 ω2 ω 0

C4 1 1 1 -1

Table 2.3: Character table of A4
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2.5 CP violation and Leptogenesis

Leptogenesis is one of the most widely studied mechanisms to generate the observed

baryon asymmetry of the Universe by creating an asymmetry in the leptonic sector

first, which subsequently gets converted into baryon asymmetry through B + L vi-

olating sphaleron processes during electroweak phase transition. Since quark sector

CP violation is not sufficient for producing observed baryon asymmetry, a framework

explaining non-zero θ13 and leptonic CP phase could not only give a better picture of

leptonic flavor structure, but also the origin of matter-antimatter asymmetry.

In a model with both type I and type II seesaw mechanisms at work, there

are two possible sources of lepton asymmetry: either the CP violating decay of the

lightest right handed neutrino or that of scalar triplet. Recently, such a work was

performed in [66] where the contributions of type I and type II seesaw to baryon

asymmetry were calculated without assuming any specific symmetries in the type I

or type II seesaw matrices. In another work [69], type II seesaw was considered to be

the origin of non-zero θ13 and non-trivial Dirac CP phase simultaneously and baryon

asymmetry was calculated taking contribution only from the type II seesaw term. In

the present work, both type I and type II seesaw mass matrices are real and hence

the diagonalizing matrix Uν of neutrino mass matrix is also real giving rise to trivial

values of Dirac CP phase. Thus, the only remaining source of CP violation in leptonic

sector is the charged lepton sector.

We note that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) leptonic mixing

matrix is related to the diagonalizing matrices of neutrino and charged lepton mass

matrices Uν , Ul respectively, as

UPMNS = U †l Uν (2.5.1)
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The PMNS mixing matrix can be parametrized as

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (2.5.2)

where cij = cos θij, sij = sin θij and δ is the Dirac CP phase. Our goal is to generate

correct values of neutrino mixing angles including non-zero θ13 with the combination

of type I and type II seesaw. Since, neutrino mass matrix is real without any phase,

its diagonalizing matrix Uν is also real and takes the form of UPMNS after setting δ

to zero. Thus, the charged lepton mass diagonalizing matrix Ul, the only source of

non-zero CP phase δ can be written as

Ul =


c2

13 + eiδs2
13 (1− e−iδ)c13s13s23 (1− e−iδ)c13s13c23

(−1 + eiδ)c13s13s23 c2
13 + s2

13(c2
23 + e−iδs2

23) (−1 + e−iδ)c23s
2
13s23

(−1 + eiδ)c13s13c23 (−1 + e−iδ)c23s
2
13s23 c2

13 + s2
13(s2

23 + e−iδc2
23)


(2.5.3)

We derive this form of Ul such that U †l Uν gives the desired form of PMNS mixing

matrix (2.5.2). If we assume that this matrix Ul also diagonalizes the Dirac neutrino

mass matrix mLR, the CP phase originating in the charged lepton sector can affect

the lepton asymmetry as we discuss below.

In our work we are considering CP-violating out of equilibrium decay of heavy

RH neutrinos in to Higgs and lepton within the framework of dominant type I and

sub-dominant type II seesaw mechanism. In principle, the decay of Higgs triplet

having masses few hundred GeV can contribute to the CP-asymmetry in the lepton

sector having prominent gauge interaction along with the as usual CP-asymmetry

due to heavy (> 109 GeV) right-handed neutrino decays without having any gauge

interaction. The wash-out factors in case of CP-asymmetry due to Triplet decay is

large and thus, the net CP-asymmetry is negligible. For simplicity we consider only

the right handed neutrino decay as a source of lepton asymmetry and neglect the
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contribution coming from triplet decay. The lepton asymmetry from the decay of

right handed neutrino into leptons and Higgs scalar is given by

εNk =
∑
i

Γ(Nk → Li +H∗)− Γ(Nk → L̄i +H)

Γ(Nk → Li +H∗) + Γ(Nk → L̄i +H)
(2.5.4)

Nk

Li

H∗

Nk Nk NjNj

Li Lm

LiH∗
H∗

H∗

H∗

(a) (b) (c)

Lm

Figure 2.1: Right handed neutrino decay

Nk ∆−−

Lm

H∗
H

Li

Figure 2.2: Right handed neutrino decay

In a hierarchical pattern for right handed neutrinos M2,3 � M1, it is sufficient to

consider the lepton asymmetry produced by the decay of lightest right handed neu-

trino N1 decay. In a type I seesaw framework where the particle content is just the

standard model with three additional right handed neutrinos, the lepton asymmetry

is generated through the decay processes shown in figure 2.1. In the presence of type

II seesaw, N1 can also decay through a virtual triplet as can be seen in figure 2.2.

Following the notations of [64], the lepton asymmetry arising from the decay of N1
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in the presence of type I seesaw only can be written as

εα1 =
1

8πv2

1

(m†LRmLR)11

∑
j=2,3

Im[(m∗LR)α1(m†LRmLR)1j(mLR)αj]g(xj)

+
1

8πv2

1

(m†LRmLR)11

∑
j=2,3

Im[(m∗LR)α1(m†LRmLR)j1(mLR)αj]
1

1− xj
(2.5.5)

where v = 174 GeV is the vev of the Higgs doublet responsible for breaking the

electroweak symmetry,

g(x) =
√
x

(
1 +

1

1− x − (1 + x)ln
1 + x

x

)
and xj = M2

j /M
2
1 . The second term in the expression for εα1 above vanishes when

summed over all the flavors α = e, µ, τ . The sum over flavors is given by

ε1 =
1

8πv2

1

(m†LRmLR)11

∑
j=2,3

Im[(m†LRmLR)2
1j]g(xj) (2.5.6)

After determining the lepton asymmetry ε1, the corresponding baryon asymmetry

can be obtained by

YB = cκ
ε

g∗
(2.5.7)

through electroweak sphaleron processes [50]. Here the factor c is measure of the

fraction of lepton asymmetry being converted into baryon asymmetry and is approx-

imately equal to −0.55. κ is the dilution factor due to wash-out process which erase

the produced asymmetry and can be parametrized as [101–103]

−κ '
√

0.1Kexp[−4/(3(0.1K)0.25)], for K ≥ 106

' 0.3

K(lnK)0.6
, for 10 ≤ K ≤ 106

' 1

2
√
K2 + 9

, for 0 ≤ K ≤ 10. (2.5.8)

where K is given as

K =
Γ1

H(T = M1)
=

(m†LRmLR)11M1

8πv2

MPl

1.66
√
g∗M2

1
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Here Γ1 is the decay width of N1 and H(T = M1) is the Hubble constant at temper-

ature T = M1. The factor g∗ is the effective number of relativistic degrees of freedom

at T = M1 and is approximately 110.

We note that the lepton asymmetry shown in equation (2.5.6) is obtained by summing

over all the flavors α = e, µ, τ . A non-vanishing lepton asymmetry is generated

only when the right handed neutrino decay is out of equilibrium. Otherwise both

the forward and the backward processes will happen at the same rate resulting in a

vanishing asymmetry. Departure from equilibrium can be estimated by comparing the

interaction rate with the expansion rate of the Universe. At very high temperatures

(T ≥ 1012GeV) all charged lepton flavors are out of equilibrium and hence all of

them behave similarly resulting in the one flavor regime. However at temperatures

T < 1012 GeV (T < 109GeV), interactions involving tau (muon) Yukawa couplings

enter equilibrium and flavor effects become important [104–107]. Taking these flavor

effects into account, the final baryon asymmetry is given by

Y 2flavor
B =

−12

37g∗
[ε2η

(
417

589
m̃2

)
+ ετ1η

(
390

589
m̃τ

)
]

Y 3flavor
B =

−12

37g∗
[εe1η

(
151

179
m̃e

)
+ εµ1η

(
344

537
m̃µ

)
+ ετ1η

(
344

537
m̃τ

)
]

where ε2 = εe1 + εµ1 , m̃2 = m̃e + m̃µ, m̃α =
(m∗LR)α1(mLR)α1

M1
. The function η is given by

η(m̃α) =

[(
m̃α

8.25× 10−3eV

)−1

+

(
0.2× 10−3eV

m̃α

)−1.16
]−1

In the presence of an additional scalar triplet, the right handed neutrino can also decay

through a virtual triplet as shown in figure 2.2. The contribution of this diagram to

lepton asymmetry can be estimated as [108,109]

εα∆1 = − M1

8πv2

∑
j=2,3 Im[(mLR)1j(mLR)1α(M II∗

ν )jα]∑
j=2,3|(mLR)1j|2

(2.5.9)
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For the calculation of baryon asymmetry, we go to the basis where the right handed

Majorana neutrino mass matrix is diagonal

U∗RMRRU
†
R = diag(M1,M2,M3) (2.5.10)

In this diagonal MRR basis, the Dirac neutrino mass matrix also changes to

mLR = m0
LRUR (2.5.11)

where m0
LR is the Dirac neutrino mass matrix given by

m0
LR = Ulm

d
LRU

†
l (2.5.12)

Here md
LR is the diagonal form of the Dirac neutrino mass matrix in our calculation

given by

md
LR =


λm 0 0

0 λn 0

0 0 1

mf (2.5.13)

where λ = 0.22 is the standard Wolfenstein parameter, (m,n) are positive integers

and mf = mτ tanβ = 80.43GeV. As mentioned earlier, Ul is the matrix which is

assumed to diagonalize both the charged lepton and Dirac neutrino mass matrices.

2.6 Numerical Analysis

To begin with, we write down the light neutrino mass matrix mLL in terms of (com-

plex) mass eigenvalues m1, m2, m3 and PMNS mixing matrix UPMNS ≡ U , working

in a basis where charged lepton mass matrix is already diagonal, as

mν = U∗diag(m1,m2,m3)U † . (2.6.1)

The mixing matrix U is parametrized in terms of three neutrino mixing angle θ23, θ12,

θ13 and a Dirac phase δ. The two Majorana phases are absorbed in mass eigenvalues
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mi instead in the mixing matrix U . Here the two Majorana phases are simply taken

to be zero for subsequent numerical analysis.

At the first step of numerical analysis, we have considered particularly four

choices of U and mν so that θ13 = 0 and θ23 is maximal with the general form of

the mixing matrix at leading order as

U =


c12 s12 0

−s12/
√

2 c12/
√

2 −1/
√

2

−s12/
√

2 c12/
√

2 1/
√

2

 (2.6.2)

We start writing the relevant matrix form for light neutrino mass satisfying µ−τ sym-

metry and corresponding mixing matrix having different values of θ12 but consistent

with our earlier assumptions, i.e. θ13 = 0 and maximal θ23, as

m(0)
ν

∣∣
BM

=


A+B F F

F A B

F B A

 , UBM =


1/
√

2 1/
√

2 0

−1/2 1/2 −1/
√

2

−1/2 1/2 1/
√

2

 , (2.6.3)

with m1 = A+B +
√

2F,m2 = A+B −
√

2F,m3 = A−B.

m(0)
ν

∣∣
TBM

=


A B B

B A+ F B − F
B B − F A+ F

 , UTBM =


2/
√

6 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2

 ,(2.6.4)

with m1 = A − B, m2 = A + 2B, m3 = A − B + 2F . It is clear from the BM and

TBM-type of mixing matrices

tan2 θ23 = |Uµ3|2/|Uτ3|2 = 1 .

Similarly, there are other two other types of mass matrix and mixing matrix which

can reproduce θ13 = 0 and maximal θ23 and they are: (i) Hexagonal type predicting
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θ12 = π/6, (ii) Golden ratio type for which θ12 tan−1(1/ϕ) with φ = (1 +
√

5)/2.

m(0)
ν

∣∣
HM

=


A B B

B 1
2
(A+ 2

√
2
3
B + F ) 1

2
(A+ 2

√
2
3
B − F )

B 1
2
(A+ 2

√
2
3
B − F ) 1

2
(A+ 2

√
2
3
B + F )

 ,

UHM =


√

3
2

1
2

0

−
√

2
4

√
6

4
− 1√

2

−
√

2
4
−
√

6
4

1√
2


(2.6.5)

with m1 = 1
3
(3A−

√
6B),m2 = A+

√
6B and m3 = F .

m(0)
ν

∣∣
GRM

=


A B B

B F A+
√

2B − F
B A+

√
2B − F F

 ,

UGRM =


√

2√
5−
√

5

√
2√

5+
√

5
0

−
√

2√
5+
√

5

√
2√

5−
√

5
−1/
√

2

−
√

2√
5+
√

5

√
2√

5−
√

5
1/
√

2


(2.6.6)

with m1 = 1
2
(2A +

√
2B −

√
10B),m2 = 1

2
(2A +

√
2B +

√
10B), and m3 = −A −

√
2B + 2F .

Parameters (BM) IH NH IH NH

A 0.023946 0.015114 0.0731646 0.0741

B 0.024946 0.0141142 0.00816462 0.00409996

F 0.00027118 0.0145033 0.000163019 0.00542086

m3 0.001 0.0497393 0.065 0.0858662

m2 0.0492747 0.0087178 0.0815598 0.0705337

m1 0.0485077 0.001 0.0810987 0.07∑
imi 0.0987824 0.0594571 0.22766 0.22639

Table 2.4: Parametrization of the neutrino mass matrix for BM

48



Parameters (TBM) IH NH IH NH

A 0.0487942 0.0035726 0.0812524 0.07017789

B 0.0002555 0.0025726 0.000153696 0.00017789

F -0.023769 0.0243546 -0.00804935 0.007798948

m3 0.001 0.0497092 0.065 0.0855979

m2 0.0493052 0.0087178 0.0815598 0.0705337

m1 0.0485387 0.001 0.0810987 0.07∑
imi 0.098844 0.059427 0.227657 0.226132

Table 2.5: Parametrization of the neutrino mass matrix for TBM

Parameters (HM) IH NH IH NH

A 0.048699 0.00292945 0.081214 0.0701334

B 0.00023485 0.00236308 0.000141179 0.000163405

F 0.001 0.0497393 0.065 0.0858662

m3 0.001 0.0497393 0.065 0.0858662

m2 0.0492747 0.0087178 0.0815598 0.0705337

m1 0.0485077 0.001 0.0810987 0.07∑
imi 0.0987824 0.0594571 0.227658 0.2261957

Table 2.6: Parametrization of the neutrino mass matrix for HM

For normal hierarchy, the diagonal mass matrix of the light neutrinos can be written as

mdiag = diag(m1,
√
m2

1 + ∆m2
21,
√
m2

1 + ∆m2
31) whereas for inverted hierarchy it can

be written as mdiag = diag(
√
m2

3 + ∆m2
23 −∆m2

21,
√
m2

3 + ∆m2
23,m3). We choose

two possible values of the lightest mass eigenstate m1,m3 for normal and inverted

hierarchies respectively. First we choose mlightest as large as possible such that the

sum of the absolute neutrino masses fall just below the cosmological upper bound. For

normal and inverted hierarchies, this turns out to be 0.07 eV and 0.065 eV respectively.

Then we allow moderate hierarchy to exist between the mass eigenvalues and choose
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the lightest mass eigenvalue to be 0.001 eV to study the possible changes in our

analysis and results. The parametrization for all these possible cases are shown in

table 2.4, 2.5, 2.6 and 2.7.

Parameters (GRM) IH NH IH NH

A 0.0487197 0.00305254 0.0812261 0.0701377

B 0.0002425 0.00234835 0.000145813 0.000157545

F 0.0250314 0.0270146 0.0732162 0.0775182

m3 0.001 0.047655 0.065 0.0846759

m2 0.0492747 0.0084262 0.0815598 0.0704982

m1 0.0485077 0.001 0.0810987 0.07∑
imi 0.0987824 0.057081 0.227658 0.225174

Table 2.7: Parametrization of the neutrino mass matrix for GRM

Parameters TBM(IH) TBM(NH) BM(IH) HEX (NH)

w 0.004435 0.004575 0.00461 0.00461

sin2 θ13 0.01621 0.01672 0.01622 0.01621

sin2 θ23 0.4105 0.5918 0.4102 0.5937

Table 2.8: Parameters used in the calculation of baryogenesis

Model δ for 1 flavor(in radian) δ for 2 flavor(in radian)

TBM(IH), m3 = 0.001 0.00329867-0.0043982297, 3.1376656-3.13860814 3.14190681

TBM(NH), m1 = 0.001 3.14269221-3.14300637, 6.282085749-6.282242829 -

BM(IH), m3 = 0.001 0.000314159, 1.40711935, 4.8754376 0.0001570769

HEX(NH), m1 = 0.001 3.182276-3.1981413, 6.28020079-6.2808291 -

Table 2.9: Values of δ giving rise to correct baryon asymmetry
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For our numerical analysis, we adopt the minimal structure (2.4.1) of the type

II seesaw term as

mII
LL =


0 −w w

−w w 0

w 0 −w

 , (2.6.7)

where ω denotes the strength of perturbation coming from type II seesaw mechanism.

We first numerically fit the leading order µ− τ symmetric neutrino mass matrix

(2.3.2) by taking the central values of the global fit neutrino oscillation data [10].

We also incorporate the cosmological upper bound on the sum of absolute neutrino

masses [49] reported by the Planck collaboration recently. In the second step, we

have to diagonalize the complete mass matrix

mν = m(0)
ν +m(pert.)

ν = mI
ν +mII

ν ,

and as a result, there is a corresponding mixing matrix whose elements are related to

the parameters of the model plus the strength of the type II perturbation term.

After fitting the type I seesaw contribution to neutrino mass with experimental

data, we introduce the type II seesaw contribution as a perturbation to the µ − τ

symmetric neutrino mass matrix.

The strength of the type II seesaw perturbation in order to generate the correct

value of non-zero θ13 can be seen from figure 2.3, 2.4, 2.5 and 2.6. We also calculate

other neutrino parameters by varying the type II seesaw strength and show our results

as a function of sin2 θ13 in figure 2.7, 2.8, 2.9, 2.10 for BM mixing, figure 2.11, 2.12,

2.13, 2.14 for TBM mixing, figure 2.15, 2.16, 2.17, 2.18 for Hexagonal mixing and

figure 2.19, 2.20, 2.21, 2.22 for GR mixing. We also calculate the sum of the absolute

neutrino masses
∑

i|mi| to check whether it lies below the Planck upper bound.

Finally, we calculate the effective neutrino mass mee = |∑i U
2
eimi| which can play a

great role in neutrino-less double beta decay. These are shown as a function of sin2 θ13

in figure 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29 and 2.30.
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Figure 2.3: Variation of sin2 θ13 with type II seesaw strength w for BM and TBM

with m1(m3) = 0.07(0.065) eV.
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Figure 2.4: sin2 θ13 with type II seesaw strength w for BM and TBM with m1(m3) =

0.07(0.065) eV.
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Figure 2.5: sin2 θ13 with type II seesaw strength w for HM and GRM with m1(m3) =

0.001 eV.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009  0.01

S
in

2
θ

1
3

ω

HEX(IH) with m3=0.065 eV

3σ range

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009  0.01

S
in

2
θ

1
3

ω

HEX(NH) with m1=0.07 eV

3σ range

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009  0.01

S
in

2
θ

1
3

ω

GRM(IH) with m3=0.065 eV

3σ range

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009  0.01

S
in

2
θ

1
3

ω

GRM(NH) with m1=0.07 eV

3σ range

Figure 2.6: sin2 θ13 with type II seesaw strength w for HM and GRM with m1(m3) =

0.07(0.065) eV.
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Figure 2.7: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for BM with m1(m3) = 0.001 eV.
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Figure 2.8: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for BM with m1(m3) = 0.07(0.065) eV.
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Figure 2.9: sin2 θ23, sin2 θ12 with sin2 θ13 for BM with m1(m3) = 0.001 eV.
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Figure 2.10: sin2 θ23, sin2 θ12 with sin2 θ13 for BM with m1(m3) = 0.07(0.065) eV.
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Figure 2.11: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for TBM with m1(m3) = 0.001 eV.
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Figure 2.12: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for TBM with m1(m3) = 0.07(0.065)

eV.
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Figure 2.13: sin2 θ23, sin2 θ12 with sin2 θ13 for TBM with m1(m3) = 0.001 eV.
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Figure 2.14: sin2 θ23, sin2 θ12 with sin2 θ13 for TBM with m1(m3) = 0.07(0.065) eV.
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Figure 2.15: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for HM with m1(m3) = 0.001 eV.
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Figure 2.16: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for HM with m1(m3) = 0.07(0.065) eV.
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Figure 2.17: sin2 θ23, sin2 θ12 with sin2 θ13 for HM with m1(m3) = 0.001 eV.
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Figure 2.18: sin2 θ23, sin2 θ12 with sin2 θ13 for HM with m1(m3) = 0.07(0.065) eV.
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Figure 2.19: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for GRM with m1(m3) = 0.001 eV.
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Figure 2.20: ∆m2
21, ∆m2

23, ∆m2
31 with sin2 θ13 for GRM with m1(m3) = 0.07(0.065)

eV.
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Figure 2.21: sin2 θ23, sin2 θ12 with sin2 θ13 for GRM with m1(m3) = 0.001 eV.
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Figure 2.22: sin2 θ23, sin2 θ12 with sin2 θ13 for GRM with m1(m3) = 0.07(0.065) eV.
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Figure 2.23:
∑

i|mi|, |mee| with sin2 θ13 for BM with m1(m3) = 0.001 eV.
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Figure 2.24:
∑

i|mi|, |mee| with sin2 θ13 for BM with m1(m3) = 0.07(0.065) eV.
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Figure 2.25:
∑

i|mi|, |mee| with sin2 θ13 for TBM with m1(m3) = 0.001 eV.
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Figure 2.26:
∑

i|mi|, |mee| with sin2 θ13 for TBM with m1(m3) = 0.07(0.065) eV.

63



 0.0985

 0.099

 0.0995

 0.1

 0.1005

 0.101

 0.1015

 0.102

 0.1025

 0.103

 0.1035

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

Σ
i m

i (
e
V

)

Sin
2
θ13

HEX(IH) with m3=0.001 eV

3σ range

 0.059

 0.0595

 0.06

 0.0605

 0.061

 0.0615

 0.062

 0.0625

 0.063

 0.0635

 0.064

 0.0645

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

Σ
i m

i (
e
V

)

Sin
2
θ13

HEX(NH) with m1=0.001 eV

3σ range

 0.04868

 0.0487

 0.04872

 0.04874

 0.04876

 0.04878

 0.0488

 0.04882

 0.04884

 0.04886

 0.04888

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

lm
e

e
l 
(e

V
)

Sin
2
θ13

HEX(IH) with m3=0.001 eV

3σ range

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

lm
e

e
l 
(e

V
)

Sin
2
θ13

HEX(NH) with m1=0.001 eV

3σ range

Figure 2.27:
∑

i|mi|, |mee| with sin2 θ13 for HM with m1(m3) = 0.001 eV.
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Figure 2.28:
∑

i|mi|, |mee| with sin2 θ13 for HM with m1(m3) = 0.07(0.065) eV.
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Figure 2.29:
∑

i|mi|, |mee| with sin2 θ13 for GRM with m1(m3) = 0.001 eV.
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Figure 2.30:
∑

i|mi|, |mee| with sin2 θ13 for GRM with m1(m3) = 0.07(0.065) eV.
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Figure 2.31: Variation of baryon asymmetry with δ for BM and HM

-1000

-500

 0

 500

 1000

 0  1  2  3  4  5  6  7

1
0

1
0
Y

B

δ (radian)

TBM(IH) with m3=0.001 eV (One-flavor regime)

-1000

-500

 0

 500

 1000

 0  1  2  3  4  5  6  7

1
0

1
0
Y

B

δ (radian)

TBM(NH) with m1=0.001 eV (One-flavor regime)

-100

-50

 0

 50

 100

 0  1  2  3  4  5  6  7

1
0

1
0
Y

B

δ (radian)

TBM(IH) with m3=0.001 eV (Two-flavor regime)

-400

-200

 0

 200

 400

 0  1  2  3  4  5  6  7

1
0

1
0
Y

B

δ (radian)

TBM(NH) with m1=0.001 eV (Two-flavor regime)

Figure 2.32: Variation of baryon asymmetry with δ for TBM
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2.7 Results and Discussion

We have studied the possibility of generating non-zero θ13 by perturbing the µ − τ
symmetric neutrino mass matrix using type II seesaw. The leading order µ − τ

symmetric mass matrix originating from type I seesaw can be of four different types:

bi-maximal, tri-bi-maximal, hexagonal and golden ratio mixing, which differ by the

solar mixing angle they predict. All these four different types of mixing predict

θ23 = 45o and θ13 = 0.

Model ∆m2
21

∆m2
23

∆m2
31 θ13 θ23 θ12

∑
|mi|

YB
(1 flav.)

YB
(2 flav.)

YB
(3 flav.)

BM(IH) (m3=0.001) X X X X X X X X ×

BM(NH) (m1=0.001) X X X X × X × × ×

BM(IH) (m3=0.065) × X X X × X × × ×

BM(NH) (m1=0.07) X X X X × X × × ×

TBM(IH) (m3=0.001) X X X X X X X X ×

TBM(NH) (m1=0.001) X X X X X X X × ×

TBM(IH) (m3=0.065) × X X X X X × × ×

TBM(NH) (m1=0.07) × X X X X X × × ×

HEX(IH) (m3=0.001) X X X X × X × × ×

HEX(NH) (m1=0.001) X X X X X X X × ×

HEX(IH) (m3=0.065) × X X X X X × × ×

HEX(NH) (m1=0.07) × X X X X X × × ×

GRM(IH) (m3=0.001) × × × × × X × × ×

GRM(NH) (m1=0.001) X X X × × X × × ×

GRM(IH) (m3=0.065) × × X × × X × × ×

GRM(NH) (m1=0.07) × × X × × X × × ×

Table 2.10: Summary of Results. The symbol X (×) is used when the particular

parameter in the column can (can not) be realized within a particular model denoted

by the row.

We use a minimal µ− τ symmetry breaking form of type II seesaw mass matrix

to perturb the type I seesaw mass matrix and determine the strength of type II seesaw

term in order to generate non-zero θ13 in the correct 3σ range. We find that except
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the case of golden ratio mixing with inverted hierarchy and m3 = 0.001 eV, all other

cases under consideration give rise to correct values of θ13 as can be seen from figure

2.3, 2.4, 2.5 and 2.6. We then calculate other neutrino parameters as we vary the type

II seesaw strength and show their variations as a function of sin2 θ13. We find that

bimaximal mixing with inverted hierarchy, tri-bimaximal mixing with both normal

and inverted hierarchies and hexagonal mixing with normal hierarchy can give rise

to correct values of neutrino parameters as well as baryon asymmetry. The variation

of baryon asymmetry with respect to δ are shown in figure 2.31 and 2.32. It is seen

that BM (IH) with m3 = 0.001eV gives rise to correct baryon asymmetry in both 1-

and 2-flavor regimes. Similarly, in case of HM (NH) with m1 = 0.001eV, only 1-flavor

regimes shows good results. For the TBM case, IH with m3 = 0.001eV and NH with

m1 = 0.001eV produce exact baryogenesis in 1-flavor regime whereas TBM (IH) with

m3 = 0.001eV produces correct value of baryon asymmetry in 2-flavor regime. The

golden ratio mixing is disfavored in our framework for both types of neutrino mass

hierarchies.

We summarize our results for all the models under consideration in table 2.10.

We also show the preferred values of Dirac CP phase δ for successful leptogenesis in

table 2.9. More precise experimental data from neutrino oscillation and cosmology

experiments should be able to falsify or verify some of the models discussed in this

work.
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Chapter 3

Discriminating Majorana Neutrino
Textures in the light of Baryon
Asymmetry

This chapter deals with the study of different Majorana zero-textures allowed from

neutrino oscillation data when the charged lepton mass matrix is assumed to take the

diagonal form. Considering the two Majorana phases to be equal in case of one-zero

textures, we calculate the lightest neutrino mass in terms of Dirac CP phase. Simi-

larly, in case of two-zero texture we calculate all the three CP phases and the lightest

mass by solving four real constrain equations and then adopting a type I seesaw frame-

work, we end our study by evaluating baryogenesis through the process of leptogenesis.

3.1 Introduction

Origin of sub-eV scale neutrino masses and large leptonic mixing is one of the biggest

unresolved mysteries in particle physics. Due to the absence of right handed neutrinos
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in the standard model (SM), neutrinos remain massless at renormalizable level. Sev-

eral beyond standard model (BSM) frameworks have been proposed to explain tiny

neutrino masses observed by neutrino oscillation experiments more than a decade

ago [1–4]. More recently, the experiments like T2K [5], Double Chooz [6], Daya-

Bay [7] and RENO [8] have not only confirmed the earlier measurements but also

discovered a small but non-zero reactor mixing angle. Two different sets of latest

global fit values for 3σ range of neutrino oscillation parameters given in [9] and [10]

are shown in table 3.1 and 3.2 respectively.

Parameters Normal Hierarchy (NH) Inverted Hierarchy (IH)
∆m2

21

10−5eV2 7.02− 8.09 7.02− 8.09
|∆m2

31|
10−3eV2 2.317− 2.607 2.307− 2.590

sin2 θ12 0.270− 0.344 0.270− 0.344

sin2 θ23 0.382− 0.643 0.389− 0.644

sin2 θ13 0.0186− 0.0250 0.0188− 0.0251

δCP 0− 2π 0− 2π

Table 3.1: Global fit 3σ values of neutrino oscillation parameters [9]

Parameters Normal Hierarchy (NH) Inverted Hierarchy (IH)
∆m2

21

10−5eV2 7.11− 8.18 7.11− 8.18
|∆m2

31|
10−3eV2 2.30− 2.65 2.20− 2.54

sin2 θ12 0.278− 0.375 0.278− 0.375

sin2 θ23 0.393− 0.643 0.403− 0.640

sin2 θ13 0.0190− 0.0262 0.0193− 0.0265

δCP 0− 2π 0− 2π

Table 3.2: Global fit 3σ values of neutrino oscillation parameters [10]

Although the 3σ range for the leptonic Dirac CP phase δCP is 0− 2π, there are two

possible best fit values of it found in the literature: 306o (NH), 254o (IH) [9] and 254o
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(NH), 266o (IH) [10]. If neutrinos are Majorana fermions whose masses are generated

by conventional seesaw mechanism [11–15], then two Majorana phases also appear

in the mixing matrix which do not affect neutrino oscillations and hence can not

be measured by oscillation experiments. The Majorana phases can however, have

interesting implications in lepton number violating process like neutrinoless double

beta decay, origin of matter-antimatter asymmetry of the Universe etc. Apart from

the mass squared differences and mixing angles, the sum of the absolute neutrino

masses are also tightly constrained from cosmology
∑

i|mi| < 0.23 eV [16].

One of the most popular BSM framework to understand the origin of tiny neu-

trino mass and large leptonic mixing is to identify the possible underlying symmetries.

Symmetries can either relate two or more free parameters of the model or make them

vanish, making the model more predictive. The widely studied µ− τ symmetric neu-

trino mass matrix giving θ13 = 0 is one such scenario where discrete flavor symmetries

can relate two or more terms in the neutrino mass matrix. Non-zero θ13, as required

by latest oscillation data, can be generated by incorporating different possible correc-

tions to leading order µ − τ symmetric neutrino mass matrix, as discussed recently

in many works including [17–21]. The other possible role symmetries can play is to

impose texture zeros in the mass matrices. The symmetry realization of such texture

zeros can be found in several earlier as well as recent works [22–28]. Recently, a

systematic study of texture zeros in lepton mass matrices were done in [29]. In the

simplest case, one can assume the charged lepton mass matrix to be diagonal and

then consider the possible texture zeros in the symmetric Majorana neutrino mass

matrix. It turns out that in this simplest case, only certain types of one-zero tex-

ture and two-zero textures in the Majorana neutrino mass matrix are consistent with

neutrino data.

In this chapter, we consider all types of texture zeros allowed in the Majorana

neutrino mass matrix (in the diagonal charged lepton basis) from neutrino oscillation
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data and constrain them further from the requirement of producing successful baryon

asymmetry through the mechanism of leptogenesis. Some earlier works related to the

calculation of lepton asymmetry with texture zero Majorana neutrino mass matrix

can be found in [30–34]. Leptogenesis is one of the most widely studied formalism

which provides a dynamical origin of the observed baryon asymmetry in the Universe.

The asymmetry is created in the leptonic sector first which later gets converted into

baryon asymmetry through B + L violating electroweak sphaleron transitions [35].

As pointed out first by Fukugita and Yanagida [36], the required lepton asymmetry

can be generated by the out of equilibrium CP violating decay of heavy Majorana

neutrinos which are present in several BSM frameworks which attempt to explain tiny

SM neutrino masses. We consider the framework of type I seesaw mechanism [11–15]

generating tiny SM neutrino masses where right handed neutrinos are present and

discriminate between different texture zeros in the neutrino mass matrix from the

requirement of producing the correct baryon asymmetry seen by Planck experiment

[16]

YB = (8.58± 0.22)× 10−11 (3.1.1)

Usually, the Majorana neutrino mass matrix can be constrained from the neutrino

oscillation data on two mass squared differences and three mixing angles. But the

most general neutrino mass matrix can still contain those neutrino parameters which

are not yet determined experimentally: the lightest neutrino mass, leptonic Dirac CP

phase and two Majorana CP phases. All these four free parameters can in general,

affect the resulting lepton asymmetry calculated from the lightest right handed neu-

trino decay. Although it is difficult to make predictions with four free parameters,

in case of texture zero Majorana mass matrix, it is possible to reduce the number

of free parameters. As we show in details in this work, two of these free neutrino

parameters can be determined in terms of the other two in one-zero texture case

whereas all four free parameters can be numerically determined in case of two-zero
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texture mass matrices. To simplify the calculation, we assume equality of Majorana

phases in one-zero texture case and write down all the free parameters in the neutrino

mass matrix in terms of Dirac CP phase. We then compute the baryon asymmetry

as a function of Dirac CP phase. We not only constrain the Dirac CP phase from

the requirement of producing the observed baryon asymmetry but also show that

some of the texture zeros (allowed from neutrino oscillation data) are disfavored if

leptogenesis through the lightest right handed neutrino decay is the only source of

baryon asymmetry. Since all the neutrino parameters are fixed in two-zero texture

mass matrices, we compute baryon asymmetry for different choices of diagonal Dirac

neutrino mass matrices. Thus we not only discriminate between different two-zero

texture mass matrices, but also constrain the diagonal form of Dirac neutrino mass

matrices from the requirement of producing the observed baryon asymmetry.

It should be noted that we assume the Dirac neutrino mass matrix to be of diag-

onal type throughout our analysis. Also the charged lepton mass matrix is assumed

to be diagonal so that the diagonalizing matrix of the light neutrino mass matrix is

same as the leptonic mixing matrix. A more general discussion with non-diagonal

Dirac neutrino as well as charged lepton mass matrices may give rise to a different

set of conclusions from the ones obtained in this work.

This chapter is organized as follows. In section 3.2, we discuss all the possible

texture zeros in the Majorana neutrino mass matrix with diagonal charged lepton

basis. In section 3.3, we briefly outline the mechanism of leptogenesis through right

handed neutrino decay. In section 3.4, we discuss the numerical analysis of all the

texture zero models and finally conclude in section 3.5.
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3.2 Majorana Texture Zeros

A symmetric 3 × 3 Majorana neutrino mass matrix Mν can have six independent

parameters. If k of them are vanishing then the total number of structurally different

Majorana mass matrices with texture zeros is

6Ck =
6!

k!(6− k)!
(3.2.1)

A symmetric mass matrix with more than 3 texture zeros k ≥ 4 can not be compatible

with lepton masses and mixing. Similarly in the diagonal charged lepton basis, a

symmetric Majorana neutrino mass matrix with 3 texture zeros is not compatible

with neutrino oscillation data [37]. Therefore, we are left with either one-zero texture

which can be of six different types and two-zero texture which can be of fifteen different

types. Different possible Majorana neutrino mass matrices with one-zero texture and

one vanishing eigenvalue was studied by the authors of [38] whereas one-zero texture

in the light of recent neutrino oscillation data with non-zero θ13 was discussed in

the work [39,40]. Implications of one-zero texture for neutrinoless double beta decay

can be found in [41]. Two-zero textures in the Majorana neutrino mass matrix have

received lots of attention in several works in the last few years, some of which can

be found in [42–53]. We briefly discuss these texture zero Majorana neutrino mass

matrices in the following subsections 3.2.1 and 3.2.2 respectively.

3.2.1 One-zero texture

In case of one-zero texture, the Majorana neutrino mass matrix Mν contains only

one independent zero. There are six possible patterns of such one-zero texture which,

following the notations of [40] can be written as
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G1 :


0 × ×
× × ×
× × ×

 , G2 :


× 0 ×
0 × ×
× × ×

 , G3 :


× × 0

× × ×
0 × ×

 ,

G4 :


× × ×
× 0 ×
× × ×

 ,

G5 :


× × ×
× × 0

× 0 ×

 , G6 :


× × ×
× × ×
× × 0

 (3.2.2)

Where the crosses “×” denote non-zero arbitrary elements of Mν .

3.2.2 Two-zero texture

There are fifteen possible two-zero textures of the Majorana neutrino mass matrix Mν

. Using the notations of [50], these fifteen two-zero textures of Mν can be classified

into six categories given below:

A1 :


0 0 ×
0 × ×
× × ×

 , A2 :


0 × 0

× × ×
0 × ×

 ; (3.2.3)

B1 :


× × 0

× 0 ×
0 × ×

 , B2 :


× 0 ×
0 × ×
× × 0

 , B3 :


× 0 ×
0 0 ×
× × ×

 , B4 :


× × 0

× × ×
0 × 0

 ;

(3.2.4)

C :


× × ×
× 0 ×
× × 0

 ; (3.2.5)
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D1 :


× × ×
× 0 0

× 0 ×

 , D2 :


× × ×
× × 0

× 0 0

 ; (3.2.6)

E1 :


0 × ×
× 0 ×
× × ×

 , E2 :


0 × ×
× × ×
× × 0

 , E3 :


0 × ×
× × 0

× 0 ×

 ; (3.2.7)

F1 :


× 0 0

0 × ×
0 × ×

 , F2 :


× 0 ×
0 × 0

× 0 ×

 , F3 :


× × 0

× × 0

0 0 ×

 , (3.2.8)

Where the crosses “×” imply non-zero arbitrary elements of Mν . In the light of recent

oscillation as well as cosmology data, only six different two-zero textures namely, A1,2

and B1,2,3,4 are favorable as discussed by the authors of [50,52]. We therefore, consider

only these six possible two-zero textures for our analysis.

3.3 Leptogenesis

Leptogenesis is one of the most well motivated framework of producing baryon asym-

metry of the Universe which creates an asymmetry in the leptonic sector first and

then converts it into baryon asymmetry through B+L violating electroweak sphaleron

transitions. For a review of leptogenesis, please refer to [54]. Although the origin of

leptonic mixing and baryon asymmetry could be entirely different, leptogenesis pro-

vides a minimal setup to understand the dynamical origin of both these problems in

particle physics which remain unsolved till now. There are three basic requirements

to produce baryon asymmetry in our Universe which most likely, was in a baryon

symmetric state initially. As pointed out first by Sakharov [55], these three require-

ments are (i) Baryon number violation, (ii) C and CP violation and (iii) Departure
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from equilibrium. Although the standard model satisfies the first two requirements

and out of equilibrium conditions in principle, can be achieved in an expanding Uni-

verse like ours, it turns out that the amount of CP violation measured in the SM

quark sector is too small to account for the entire baryon asymmetry of the Universe.

Since there can be more sources of CP violating phases in the leptonic sector which

are not yet from experimentally determined, leptogenesis provides an indirect way of

constraining these unknown phases from the requirement of producing the observed

baryon asymmetry.

In a model with type I seesaw mechanism at work, the CP violating out of

equilibrium decay of the lightest right handed neutrino can give rise to the required

lepton asymmetry. The neutrino mass matrix in type I seesaw mechanism can be

written as

Mν = −mLRM
−1
RRm

T
LR. (3.3.1)

where mLR is the Dirac neutrino mass matrix and MRR is the right handed singlet

neutrino mass matrix. We note that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

leptonic mixing matrix is related to the diagonalizing matrices of neutrino and charged

lepton mass matrices Uν , Ul respectively, as

UPMNS = U †l Uν (3.3.2)

In the diagonal charged lepton basis, UPMNS is same as the diagonalizing matrix Uν

of the neutrino mass matrix given by (3.3.1). The PMNS mixing matrix can be

parametrized as

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 diag(1, eiα, ei(β+δ))

(3.3.3)

where cij = cos θij, sij = sin θij. δ is the Dirac CP phase and α, β are the Majorana

phases.
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In our work we are considering CP-violating out of equilibrium decay of heavy

right handed neutrinos into Higgs and lepton within the framework type I seesaw

mechanism. The lepton asymmetry from the decay of right handed neutrino into

leptons and Higgs scalar is given by

εNk =
∑
i

Γ(Nk → Li +H∗)− Γ(Nk → L̄i +H)

Γ(Nk → Li +H∗) + Γ(Nk → L̄i +H)
(3.3.4)

In a hierarchical pattern of three right handed neutrinos M2,3 � M1, it is sufficient

to consider the lepton asymmetry produced by the decay of the lightest right handed

neutrino N1. Following the notations of [56], the lepton asymmetry arising from the

decay of N1 in the presence of type I seesaw only can be written as

εα1 =
1

8πv2

1

(m†LRmLR)11

∑
j=2,3

Im[(m∗LR)α1(m†LRmLR)1j(mLR)αj]g(xj)

+
1

8πv2

1

(m†LRmLR)11

∑
j=2,3

Im[(m∗LR)α1(m†LRmLR)j1(mLR)αj]
1

1− xj
(3.3.5)

where v = 174 GeV is the vev of the Higgs doublet responsible for breaking the

electroweak symmetry,

g(x) =
√
x

(
1 +

1

1− x − (1 + x)ln
1 + x

x

)
and xj = M2

j /M
2
1 . The second term in the expression for εα1 above vanishes when

summed over all the flavors α = e, µ, τ . The sum over flavors is given by

ε1 =
1

8πv2

1

(m†LRmLR)11

∑
j=2,3

Im[(m†LRmLR)2
1j]g(xj) (3.3.6)

The corresponding baryon asymmetry is related to the lepton asymmetry as

YB = cκ
ε1
g∗

(3.3.7)

through electroweak sphaleron processes [35]. Here, c is a measure of the fraction

of lepton asymmetry being converted into baryon asymmetry and is approximately
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equal to −0.55. κ is the dilution factor due to wash-out processes which erase the

produced asymmetry and can be parametrized as [57–59]

−κ '
√

0.1Kexp[−4/(3(0.1K)0.25)], for K ≥ 106

' 0.3

K(lnK)0.6
, for 10 ≤ K ≤ 106

' 1

2
√
K2 + 9

, for 0 ≤ K ≤ 10. (3.3.8)

where K is given as

K =
Γ1

H(T = M1)
=

(m†LRmLR)11M1

8πv2

MPl

1.66
√
g∗M2

1

Here Γ1 is the decay width of N1 and H(T = M1) is the Hubble constant at temper-

ature T = M1. The factor g∗ is the effective number of relativistic degrees of freedom

at T = M1 and is approximately 110.

It should be noted that the lepton asymmetry given by equation (3.3.6) has

been obtained by summing over all the lepton flavors α = e, µ, τ . A non-zero lepton

asymmetry can however, be obtained only when the right handed neutrino decay is out

of equilibrium. Otherwise both the forward and the backward processes will happen

at the same rate resulting in a vanishing asymmetry. Departure from equilibrium

can be estimated by comparing the interaction rate with the expansion rate of the

Universe, parametrized by the Hubble parameter. At very high temperatures (T ≥
1012GeV) all charged lepton flavors are out of equilibrium and hence all of them behave

similarly resulting in the one flavor regime mentioned above. However at temperatures

T < 1012 GeV (T < 109GeV), interactions involving tau (muon) Yukawa couplings

enter equilibrium and flavor effects become important in the calculation of lepton

asymmetry [60–64]. The temperature regimes 109 < T/GeV < 1012 and T/GeV < 109

correspond to two and three flavor regimes of leptogenesis respectively. The final

baryon asymmetry in the two and three flavor regimes can be written as

Y 2flavor
B =

−12

37g∗
[ε2η

(
417

589
m̃2

)
+ ετ1η

(
390

589
m̃τ

)
]
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Y 3flavor
B =

−12

37g∗
[εe1η

(
151

179
m̃e

)
+ εµ1η

(
344

537
m̃µ

)
+ ετ1η

(
344

537
m̃τ

)
]

where ε2 = εe1 + εµ1 , m̃2 = m̃e + m̃µ, m̃α =
(m∗LR)α1(mLR)α1

M1
. The function η is given by

η(m̃α) =

[(
m̃α

8.25× 10−3eV

)−1

+

(
0.2× 10−3eV

m̃α

)−1.16
]−1

For the calculation of baryon asymmetry, we first calculate the right handed neu-

trino mass spectrum by diagonalizing the right handed singlet neutrino mass matrix

MRR as

U∗RMRRU
†
R = diag(M1,M2,M3) (3.3.9)

In this diagonal MRR basis, according to the type I seesaw formula, the Dirac neutrino

mass matrix also changes to

mLR = m0
LRUR (3.3.10)

where m0
LR is the Dirac neutrino mass matrix given. If the Dirac neutrino mass

matrix is assumed to be diagonal, it can be parametrized by

md
LR =


λm 0 0

0 λn 0

0 0 1

mf (3.3.11)

where λ = 0.22 is the standard Wolfenstein parameter and (m,n) are positive integers.

We choose the integers (m,n) in such a way which keeps the lightest right handed

neutrino mass in the appropriate flavor regime.

3.4 Numerical Analysis

Using the parametric form of PMNS matrix shown in (3.3.3), the Majorana neutrino

mass matrix Mν can be found as

Mν = UPMNSM
diag
ν UT

PMNS (3.4.1)
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where

Mdiag
ν =


m1 0 0

0 m2 0

0 0 m3

 , (3.4.2)

where m1,m2 and m3 are the three neutrino mass eigenvalues. As mentioned earlier,

here we assume that the diagonalizing matrix of the neutrino mass matrix Mν is same

as the PMNS mixing matrix due to the chosen charged lepton mass matrix in the

diagonal form.

For the case of normal hierarchy (NH), the three neutrino mass eigenvalues can

be written as mdiag = diag(m1,
√
m2

1 + ∆m2
21,
√
m2

1 + ∆m2
31), while for the case of

inverted hierarchy (IH), it can be written as mdiag = diag(
√
m2

3 + ∆m2
23 −∆m2

21,√
m2

3 + ∆m2
23,m3). For illustrative purposes, we consider two different order of mag-

nitude values for the lightest neutrino mass m1 for NH and m3 for IH. In the first

case, we assume mlightest as large as possible so that the sum of the absolute neutrino

masses lie just below the cosmological upper bound and it turns out to be 0.07 eV

and 0.065 eV for NH and IH respectively. This gives rise to a quasi-degenerate type

of neutrino mass spectrum. Secondly. we choose the lightest mass eigenvalue to be

10−6 eV for both NH and IH cases so that we have a hierarchical pattern of neutrino

masses. The PMNS mixing matrix is evaluated by taking the best fit values of the

neutrino mixing angles given in Table 3.1. After using the best fit values of two mass

squared differences and three mixing angles, the most general neutrino mass matrix

given by (3.4.1) contain four parameters: the lightest neutrino mass, Dirac CP phase

and two Majorana phases. Comparing the most general neutrino mass matrix to

the texture zero mass matrices, we can either relate two or more terms in the mass

matrix or equate them to zero. Depending upon the number of constraints for a

specific texture zero mass matrix, we can either write down some free parameters

in the most general neutrino mass matrix in terms of the others or we can find the
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exact numerical values of the free parameters. We briefly discuss the procedure we

adopt for numerical analysis involving different types of Majorana texture zero mass

matrices in the following subsections 3.4.1 and 3.4.2.

3.4.1 Parametrization of One-zero Texture

In the case of one-zero texture mass matrices discussed in subsection 3.2.1, there is

only one independent zero and hence we have only one complex equation as constraint

resulting in two real equations relating m1(m3), δ, α, β. To simplify the analysis, we

assume equality of two Majorana phases α = β. Using the constraints, we write down

the Majorana phases α = β as well as lightest neutrino mass in terms of Dirac CP

phase δ.
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Figure 3.1: Variation of cosα with δ for one-zero texture with inverted hierarchy.
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However, for a specific type of one-zero texture mass matrix denoted by G1, the

zero appears in the (1, 1) term and in the most general neutrino mass matrix (3.4.1),

the (1, 1) term does not depend upon the Dirac CP phase. Therefore, in this case

the Majorana phase is independent of the Dirac phase, but depends upon the value

of lightest neutrino mass. The lightest neutrino mass for normal hierarchy is found

to be 0.0062 eV, whereas for inverted hierarchy, we do not get any real solution for

lightest neutrino mass, satisfying the constraint. For one-zero texture G2 also, we do

not get any real solution for lightest neutrino mass in the case of inverted hierarchy.

For G3,4,5,6 with inverted hierarchy, the variation of Majorana CP phase with Dirac

CP phase is shown in figure 3.1. Similarly, the dependence of lightest neutrino mass

on Dirac CP phase is shown in the first panel of figures 3.2 and 3.3 respectively.

For normal hierarchy, we do not get any real solution for lightest neutrino mass for

the one-zero textures G4,5,6. For G2,3 the dependence of Majorana CP phase with

Dirac CP phase is shown in figure 3.4. For G1, the lightest neutrino mass is exactly

determined whereas for G2,3 its dependence on δ can be seen in figure 3.6.

3.4.2 Parametrization of Two-zero Texture

In two-zero texture mass matrices discussed in subsection 3.2.2, the Majorana neu-

trino mass matrix contains two independent zeros. Therefore, we have two complex

and hence four real constraint equations to relate the four independent parameters.

We numerically solve these four equations to find lightest neutrino mass, Dirac CP

phase δ and Majorana CP phases α, β. A set of such solutions are shown in table 3.3

and 3.4.
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Patterns m3 (eV) δ α β

A1 0.00019 0.0059 2.99 0.99

A2 0.00038 0.34 2.99 0.87

B1 0.049 1.57 3.10 3.11

B2 0.0048 1.62 0.93 3.88

B3 0.00055 0.055 4.99 6.098

B4 0.0052 0.37 2.00 0.73

Table 3.3: Values of m3, δ, α and β for two-zero texture with inverted hierarchy.

Patterns m1 (eV) δ α β

A1 0.005 4.36 1.73 4.21

A2 0.0069 0.039 1.57 1.55

B1 0.068 1.59 0.041 3.14

B2 0.022 0.84 2.72 3.31

B3 0.07 1.55 3.11 0.0017

B4 0.07 4.79 3.15 6.19

Table 3.4: Values of m1, δ, α and β for two-zero texture with normal hierarchy.

3.4.3 Calculation of Baryon Asymmetry

To calculate the baryon asymmetry in the appropriate flavor regime, we choose the

diagonal Dirac neutrino mass matrix in such a way that the lightest right handed

singlet neutrino mass lies in the same flavor regime. Similar to the discussion in

earlier works [19–21], we choose mf = 82.43 GeV in the Dirac neutrino mass matrix

given by (3.3.11). We also choose (m,n) = (1, 1), (3, 1) and (5, 3) to keep the lightest

right handed neutrino mass in one, two and three flavor regimes respectively. The

resulting baryon asymmetry as a function of Dirac CP phase for different patterns of

one-zero texture in the Majorana neutrino mass matrix are shown in figures 3.2-3.6.
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Figure 3.2: Variation of lightest neutrino mass m3 and baryon asymmetry with Dirac

CP phase δ for one-zero textures G3 and G4 with inverted hierarchy.
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Figure 3.3: Variation of lightest neutrino mass m3 and baryon asymmetry with Dirac

CP phase δ for one-zero textures G5 and G6 with inverted hierarchy.
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Figure 3.4: Variation of cosα with δ for one-zero texture with normal hierarchy.

-100

-50

 0

 50

 100

 0  1  2  3  4  5  6  7

1
0

1
1
 Y

B

δ (Radian)

G1 (NH) One flavor regime

-100

-50

 0

 50

 100

 0  1  2  3  4  5  6  7

1
0

1
1
 Y

B

δ (Radian)

G1 (NH) Two flavor regime

-100

-50

 0

 50

 100

 0  1  2  3  4  5  6  7

1
0

1
1
 Y

B

δ (Radian)

G1 (NH) Three flavor regime

Figure 3.5: Variation of baryon asymmetry with Dirac CP phase δ for one-zero texture

G1 with normal hierarchy.
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Figure 3.6: Variation of lightest neutrino mass m1 and baryon asymmetry with Dirac

CP phase δ for one-zero textures G2 and G3 with normal hierarchy.
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Figure 3.7: Variation of baryon asymmetry in one flavor regime with Dirac neutrino

masses for two-zero textures A1 and A2.
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Figure 3.8: Variation of baryon asymmetry in one flavor regime with Dirac neutrino

masses for two-zero textures B1 and B2.
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Figure 3.9: Variation of baryon asymmetry in one flavor regime with Dirac neutrino

masses for two-zero textures B3 and B4.
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Figure 3.10: Variation of baryon asymmetry in two flavor regime with Dirac neutrino

masses for two-zero texture A1 and A2.
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Figure 3.11: Variation of baryon asymmetry in two flavor regime with Dirac neutrino

masses for two-zero texture B1 and B2.
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Figure 3.12: Variation of baryon asymmetry in two flavor regime with Dirac neutrino

masses for two-zero texture B3 and B4.
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Figure 3.13: Variation of baryon asymmetry in three flavor regime with Dirac neutrino

masses for two-zero texture A1 and A2.
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Figure 3.14: Variation of baryon asymmetry in three flavor regime with Dirac neutrino

masses for two-zero texture B1 and B2.
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Figure 3.15: Variation of baryon asymmetry in three flavor regime with Dirac neutrino

masses for two-zero texture B3 and B4.
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In case of two-zero texture mass matrices, since all the neutrino parameters are

fixed, we compute the baryon asymmetry by varying the Dirac neutrino mass matrix.

We choose the Dirac neutrino mass matrix to be of the form

md
LR =


m11 0 0

0 m22 0

0 0 m33

 (3.4.3)

We fix m11 such that the lightest right handed neutrino mass falls in the appropriate

flavor regime, and vary m22 = x,m33 = y ≥ x and calculate baryon asymmetry. The

resulting baryon asymmetry as a function of m22 = x,m33 = y ≥ x are shown in

figures from figure 3.7 to figure 3.15.

3.5 Results and Conclusion

Assuming the charged lepton mass matrix to be diagonal, we have studied all pos-

sible texture zeros in the Majorana neutrino mass matrix that are allowed by latest

neutrino oscillation data as well as the Planck bound on the sum of absolute neutrino

masses and constrain them further from the requirement of producing correct baryon

asymmetry of the Universe through the mechanism of leptogenesis. The allowed Ma-

jorana texture zeros broadly fall into two categories: one-zero texture and two-zero

texture. There are six different one-zero textures all of which are allowed by latest

oscillation and cosmology data and hence we consider all of them in our analysis. Out

of fifteen possible two-zero textures, only six are compatible with oscillation data and

the Planck bound, as pointed out by [50,52].

We have first derived the most general Majorana neutrino mass matrix in terms

of the neutrino best fit values as well as the free parameters: lightest neutrino mass,

Dirac CP phase and two Majorana phases. Comparing this mass matrix to a specific

type of texture zero mass matrix we arrive at one or two complex constraints relating
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some or all of the free parameters. Since in case of one-zero texture we have only

one complex and hence two real constraints but four free parameters, we assume the

equality between two Majorana phases so that we can write them as a function of

Dirac CP phase. In case of two-zero textures, we have two complex and hence four

real constraints that allow us to find all the four free parameters numerically. We get

several solutions for (mlightest, δ, α, β) all of which give mlightest of the same order of

magnitude but different possible values of phases. We list one such set of solutions

for each two-zero texture in table 3.3 and 3.4. Since all the free neutrino parameters

are numerically determined in this case, any future measurement of Dirac CP phase

in neutrino experiments will verify or falsify some of these sets of solutions.

Patterns One flavor Two flavor Three flavor

G1 × × ×
G2 × × ×
G3 X X ×
G4 X X X

G5 X × X

G6 X X X

Table 3.5: Summary of results for one-zero texture with inverted hierarchy. The

symbol X (×) is used when the baryon asymmetry YB is in (not in) range.

The summary of our baryon asymmetry results in one-zero texture models is

given in table 3.5 and 3.6. It can be seen from these tables that in the one-flavor

regime, all one-zero textures can give rise to correct baryon asymmetry depending

upon the hierarchy of light neutrino masses. However, in two flavor regime, only

G1 with NH and G3,4,6 with IH can give rise to correct baryon asymmetry. In the

three flavor regime, G1 with NH and G4,5,6 with IH can give rise to correct baryon

asymmetry.
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Patterns One flavor Two flavor Three flavor

G1 X X X

G2 X × ×
G3 X × ×
G4 × × ×
G5 × × ×
G6 × × ×

Table 3.6: Summary of results for one-zero texture with normal hierarchy. The symbol

X (×) is used when the baryon asymmetry YB is in (not in) range.

Patterns One flavor IH (NH) Two flavor IH (NH) Three flavor IH (NH)

A1 X(X) ×(×) ×(×)

A2 X(X) ×(×) ×(×)

B1 X(×) ×(×) ×(×)

B2 X(X) X(×) X(X)

B3 ×(×) X(×) X(×)

B4 X(×) X(×) X(×)

Table 3.7: Summary of results for two-zero texture with inverted and normal hier-

archy. The symbol X (×) is used when the baryon asymmetry YB is in (not in)

range.

The summary of results in two-zero texture models are shown in table 3.7. In

one flavor regime, all the two-zero texture mass matrices except B3 can give rise to

correct YB, depending on the neutrino mass hierarchy. For two flavor regime, only

B2,3,4 with IH can give rise to the observed baryon asymmetry. Similarly, in three

flavor regime B2 with both IH, NH and B3,4 with only IH can produce correct YB.

Thus if M1 < 1012 GeV, then all the allowed two-zero textures except B2,3,4 are

disfavored in the light of baryon asymmetry. For the two-zero texture mass matrices
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that give correct baryon asymmetry, we also constrain the entries in the diagonal

Dirac neutrino mass matrices as can be seen from figures 3.7 to 3.15.

In all the tables mentioned above, the symbol X (×) is used when the baryon

asymmetry YB for a particular case in (not in) the range given by the Planck experi-

ment. As we mention above, here we have tried to discriminate between all possible

Majorana neutrino textures by demanding the observed baryon asymmetry to arise

from leptogenesis through the CP violating decay of the lightest right handed neu-

trino. We have not only constrained the number of texture zero mass matrices, but

also constrained the parameters of the neutrino mass matrix which are yet undeter-

mined in experiments. We should however, note that although a certain number of

texture zero mass matrices with a particular light neutrino mass hierarchy do not give

rise to correct baryon asymmetry, this does not rule out that particular texture as

there could be some other source of baryon asymmetry in the Universe. Also, we have

arrived at our conclusions by doing the calculations for diagonal Dirac neutrino and

charged lepton mass matrices and hence are subject to change if more general forms

of these mass matrices are considered. We leave such a general discussion to future

studies. Our analysis in this work only provide a guideline for future works related

to model building in neutrino physics attempting to understand the dynamical origin

of neutrino mass and mixing.
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Chapter 4

Stability of Neutrino Masses and
Mixing with non-zero θ13 using
RGE

In this chapter, we use renormalisation group equations to study their effects on

neutrino masses and mixings. For this purpose, we consider a µ− τ symmetric TBM

type mass matrix at high scale. Keeping the three neutrino mass eigenvalues as input

parameters at high scale, we compute them at low scale using the RGE’s. We also

calculate the absolute neutrino mass and the effective neutrino mass considering both

inverted and normal hierarchies.

4.1 Introduction

Exploration of the origin of neutrino masses and mixing has been one of the major

goals of particle physics community for the last few decades. The results of recent

neutrino oscillation experiments have provided a clear evidence favoring the existence

of tiny but non-zero neutrino masses [1–5]. Recent neutrino oscillation experiments
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like T2K [6], Double ChooZ [7], Daya-Bay [8] and RENO [9] have not only confirmed

the earlier predictions for neutrino parameters, but also provided strong evidence for

a non-zero value of the reactor mixing angle θ13. The latest global fit values for 3σ

range of neutrino oscillation parameters [10] are as follows:

∆m2
21 = (7.00− 8.09)× 10−5 eV2

∆m2
31 (NH) = (2.27− 2.69)× 10−3 eV2

∆m2
23 (IH) = (2.24− 2.65)× 10−3 eV2

sin2θ12 = 0.27− 0.34

sin2θ23 = 0.34− 0.67

sin2θ13 = 0.016− 0.030 (4.1.1)

where NH and IH refers to normal and inverted hierarchy respectively. Another global

fit study [11] reports the 3σ values as

∆m2
21 = (6.99− 8.18)× 10−5 eV2

∆m2
31 (NH) = (2.19− 2.62)× 10−3 eV2

∆m2
23 (IH) = (2.17− 2.61)× 10−3 eV2

sin2θ12 = 0.259− 0.359

sin2θ23 = 0.331− 0.637

sin2θ13 = 0.017− 0.031 (4.1.2)

The observation of non-zero θ13 which is evident from the above global fit data can

have non- trivial impact on neutrino mass hierarchy as studied in recent papers [12,13].

Non-zero θ13 can also shed light on the Dirac CP violating phase in the leptonic sector

which would have remained unknown if θ13 were exactly zero. The detailed analysis
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of this non-zero θ13 have been demonstrated both from theoretical [14–18], as well as

phenomenological [19–24] point of view, prior to and after the confirmation of this

important result announced in 2012. It should be noted that prior to the discovery of

non-zero θ13, the neutrino oscillation data were compatible with the so called TBM

form of the neutrino mixing matrix [25–30] given by

UTBM ==


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 , (4.1.3)

which predicts sin2θ12 = 1
3
, sin2θ23 = 1

2
and sin2θ13 = 0. However, since the latest data

have ruled out sin2θ13 = 0, there arises the need to go beyond the TBM framework.

In view of the importance of the non-zero reactor mixing and hence, CP violation in

neutrino sector, the present work demonstrates how a specific µ-τ symmetric mass

matrix (giving rise to TBM type mixing) at high energy scale can produce non-zero θ13

along with the desired values of other neutrino parameters ∆m2
21,∆m

2
23, θ23, θ12 at low

energy scale through renormalization group evolution (RGE). We also outline how the

µ−τ symmetric neutrino mass matrix with TBM type mixing can be realized at high

energy scale within the framework of MSSM with an additional A4 flavor symmetry

at high energy scale. After taking the RGE effects into account, we observe that the

output at TeV scale is very much sensitive to the choice of neutrino mass ordering at

high scale as well as the value of tanβ = vu
vd

, the ratio of vev’s of two MSSM Higgs

doublets Hu,d. We point out that this model allows only a very mild hierarchy of both

inverted and normal type at high energy scale. We scan the neutrino mass eigenvalues

at high energy and constrain them to be large |m1,2,3| = 0.08 − 0.12 eV in order to

produce correct neutrino parameters at low energy. We consider two such input values

for mass eigenvalues, one with inverted hierarchy and the other with normal hierarchy

and show the predictions for neutrino parameters at low energy scale. We also show

the evolution of effective neutrino mass mee = |∑i U
2
eimi| (where U is the neutrino
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mixing matrix) that could be interesting from neutrino-less double beta decay point

of view. Finally we consider the cosmological upper bound on the sum of absolute

neutrino masses (
∑

i|mi| < 0.23 eV) reported by the Planck collaboration [31] to

check if the output at low energy satisfy this or not.

This chapter is organized as follows. In section 4.2, we discuss briefly the A4

model at high energy scale. In section 4.3 we outline the RGE’s of mass eigenvalues

and mixing parameters. In section 4.4 we discuss our numerical results, and finally

conclude in section 4.5.

4.2 A4 model for neutrino mass

Type I seesaw framework is the simplest mechanism for generating tiny neutrino

masses and mixing. In this seesaw mechanism neutrino mass matrix can be written

as

mLL = −mLRM
−1
R mT

LR. (4.2.1)

Within this framework of seesaw mechanism neutrino mass has been extensively stud-

ied by discrete flavor groups by many authors [32–55] available in the literature.

Among the different discrete groups the model by the finite group of even permuta-

tion, A4 also can explain the µ− τ symmetric mass matrix obtained from this type I

seesaw mechanism. This group has 12 elements having 4 irreducible representations,

with dimensions ni, such that
∑

i n
2
i = 12. The characters of 4 representations are

shown in table 4.1. The complex number ω is the cube root of unity. In the present

work we outline a neutrino mass model with A4 symmetry given in the ref. [56, 57].

This flavor symmetry is also accompanied by an additional Z3 symmetry in order to

achieve the desired leptonic mixing. In this model, the three families of left-handed

lepton doublets l = (le, lµ, lτ ) transform as triplets, while the electroweak singlets

ec, µc, τ c and the electroweak Higgs doublets Hu,d transform as singlets under the
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A4 symmetry. In order to break the flavor symmetry spontaneously, two A4 triplet

scalars φl = (φl1, φl2, φl3), φν = (φν1, φν2, φν3) and three scalars ζ1, ζ2, ζ3 transform-

ing as 1,1′,1′′ under A4 are introduced. The Z3 charges for l, Hu,d, φl, φν , ζ1,2,3 are

ω, 1, 1, ω, ω respectively.

Class χ(1) χ(2) χ(3) χ(4)

C1 1 1 1 3

C2 1 ω ω2 0

C3 1 ω2 ω 0

C4 1 1 1 -1

Table 4.1: Character table of A4

Under the electroweak gauge symmetry as well as the flavor symmetry mentioned

above, the superpotential for the neutrino sector can be written as

Wν = (yνφφν + yνζ1ζ1 + yνζ2ζ2 + yνζ3ζ3)
llHuHu

Λ2
(4.2.2)

where Λ is the cutoff scale and y′s are dimensionless couplings. Decomposing the first

term (which is in a 3× 3× 3 form of A4) into A4 singlets, we get

llφν = (2lele − lµlτ − lτ lµ)φν1 + (2lµlµ − lelτ − lτ le)φν2 + (2lτ lτ − lelµ − lµle)φν3

Similarly, the decomposition of the last three terms into A4 singlet gives

llζ1 = (lele + lµlτ + lτ lµ)ζ1

llζ2 = (lµlµ + lelτ + lτ le)ζ2

llζ3 = (lτ lτ + lelµ + lµle)ζ3
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Assuming the vacuum alignments of the scalars as 〈φν〉 = ανΛ(1, 1, 1), 〈ζ1〉 = αζΛ,

〈ζ2,3〉 = 0, the neutrino mass matrix can be written as

mLL =
v2
u

Λ


a+ 2d/3 −d/3 −d/3
−d/3 2d/3 a− d/3
−d/3 a− d/3 2d/3

 , (4.2.3)

where d = yνφαν , a = yνζ1αζ and vu is the vev of Hu. The above mass matrix has

eigenvalues m1 = v2u
Λ

(a+ d), m2 = v2u
Λ
a and m3 = v2u

Λ
(−a+ d). Without adopting any

un-natural fine tuning condition to relate the mass eigenvalues further, we wish to

keep all the three neutrino mass eigenvalues as free parameters in the A4 symmetric

theory at high energy and determine the most general parameter space at high energy

scale which can reproduce the correct neutrino oscillation data at low energy through

renormalization group evolution (RGE).

Such a parameterization of the neutrino mass matrix however, does not disturb

the generic features of the model for example, the µ − τ symmetric nature of mLL,

TBM type mixing as well the diagonal nature of the charged lepton mass matrix,

which at leading order (LO) is given by [56–58]

ml = vdαl


ye 0 0

0 yµ 0

0 0 yτ

 (4.2.4)

Here vd is the vev of Hd; ye, yµ, yτ and αl are dimensionless couplings. These

matrices in the leptonic sector given by (4.2.3) and (4.2.4) are used in the next section

for numerical analysis.

4.3 RGE for neutrino masses and mixing

The left-handed Majorana neutrino mass matrix mLL which is generally obtained

from seesaw mechanism at high scale MR, is usually expressed in terms of K(t), the
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coefficient of the dimension five neutrino mass operator [59–62] in a scale-dependent

manner [63,64],

mLL(t) = v2
uK(t), (4.3.1)

where t = ln(µ/1GeV ) and the vev is vu = v0 sin β with v0 = 174 GeV in MSSM. The

neutrino mass eigenvalues mi and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

mixing matrix UPMNS [65, 66] are then extracted through the diagonalization of

mLL(t) at every point in the energy scale t using the equations (4.3.1),

mdiag
LL = diag(m1,m2,m3) = V T

νLmLLVνL, (4.3.2)

and UPMNS = VνL in the basis where the charged lepton mass matrix is diagonal.

The PMNS mixing matrix,

UPMNS =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 , (4.3.3)

is usually parameterized in terms of the product of three rotations R(θ23), R(θ13) and

R(θ12), (neglecting CP violating phases) by

UPMNS = U †l Uν =


c13c12 c13s12 s13

−c23s12 − c12s13s23 c12c23 − s12s13s23 c13s23

s12s23 − c12s13c23 −c12s23 − c23s13s12 c13c23

 , (4.3.4)

where Ul is unity in the basis where charge lepton mass matrix is diagonal, sij = sin θij

and cij = cos θij respectively.

The RGE’s for vu and the eigenvalues of coefficient K(t) in equation (4.3.1), de-

fined in the basis where the charged lepton mass matrix is diagonal, can be expressed

as [67,69]
d

dt
lnvu =

1

16π2
[

3

20
g2

1 +
3

4
g2

2 − 3h2
t ] (4.3.5)

d

dt
lnK = − 1

16π2
[
6

5
g2

1 + 6g2
2 − 6h2

t − δi3h2
τ − δ3jh

2
τ ] (4.3.6)
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Neglecting h2
µ and h2

e compared to h2
τ , and taking scale-independent vev as in equation

(4.3.1), we have the complete RGE’s for three neutrino mass eigenvalues,

d

dt
mi =

1

16π2
[(−6

5
g2

1 − 6g2
2 + 6h2

t ) + 2h2
τU

2
τi]mi. (4.3.7)

The above equations together with the evolution equations for mixing angles (4.3.16-

4.3.17), are used for the numerical analysis in our work.

The approximate analytical solution of equation (4.3.7) can be obtained by taking

static mixing angle U2
τi in the integration range as [68]

mi(t0) = mi(tR)exp(
6

5
Ig1 + 6Ig2 − 6It)exp(−2U2

τiIτ ) (4.3.8)

The integrals in the above expression are usually defined as [63,64,68]

Igi(t0) =
1

16π2

∫ tR

t0

g2
i (t)dt (4.3.9)

and

If (t0) =
1

16π2

∫ tR

t0

h2
f (t)dt (4.3.10)

where i = 1, 2, 3 and f = t, b, τ respectively. For a two-fold degenerate neutrino

masses that is, mdiag
LL = diag(m,m,m′) = UT

PMNSmLLUPMNS, the equation (4.3.8) is

further simplified to the following expressions

m1(t0) ≈ m(tR)(1 + 2δτ (c12s13c23 − s12s23)2) +O(δ2
τ ) (4.3.11)

m2(t0) ≈ m(tR)(1 + 2δτ (c23s13s12 + c12s23)2) +O(δ2
τ ) (4.3.12)

m3(t0) ≈ m′(tR)(1 + 2δτ (c13c23)2) +O(δ2
τ ). (4.3.13)

While deriving the above expressions, the following approximations are used

exp(−2|Uτi|2Iτ ) ' 1− 2|Uτi|2Iτ = 1 + 2|Uτi|2δτ

−δτ = Iτ '
1

cos2 β
(mτ/4πv)2 ln(MR/mt)
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The sign of the quantity δτ in MSSM depends on the neutrino mixing matrix

parameters and the approximation on δτ taken here is valid only if t0 is associated

with the top quark mass. From equations (4.3.11) and (4.3.12), the low energy solar

neutrino mass scale is then obtained as

4m2
21(t0) = m2

2 −m2
1 ≈ 4δτm

2(cos 2θ12(s2
23 − s2

13c
2
23) + s13 sin 2θ12 sin 2θ23) +O(δ2

τ )

(4.3.14)

4.3.1 Evolution equations for mixing angles

The corresponding evolution equations for the PMNS matrix elements Ufi are given

by [67]
dUfi
dt

= − 1

16π2

∑
k 6=i

mk +mi

mk −mi

Ufk(U
TH2

eU)ki, (4.3.15)

where f = e, µ, τ and i, k = 1, 2, 3 respectively. Here He is the Yukawa coupling

matrices of the charged leptons in the diagonal basis and

(UTH2
eU)ki = h2

τ (U
T
kτUτi) + h2

µ(UT
kµUµi) + h2

e(U
T
keUei)

Neglecting h2
µ and h2

e as before and denoting Aki = mk+mi
mk−mi

, equation (4.3.15) simplifies

to [67]

ds12

dt
=

1

16π2
h2
τc12[c23s13s12Uτ1A31 − c23s13c12Uτ2A32 + Uτ1Uτ2A21], (4.3.16)

ds13

dt
=

1

16π2
h2
τc23c

2
13[c12Uτ1A31 + s12Uτ2A32], (4.3.17)

ds23

dt
=

1

16π2
h2
τc

2
23[−s12Uτ1A31 + c12Uτ2A32]. (4.3.18)

These equations are valid for a generic MSSM with the minimal field content and are

independent of the flavor symmetry structure at high energy scale.
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4.4 Numerical analysis and results

For the analysis of the RGE’s, equations (4.3.7),(4.3.16)-(4.3.18) for neutrino masses

and mixing angles, here we follow two consecutive steps (i) bottom-up running [68]

in the first place, and then (ii) top-down running [63, 64] in the next. In the first

step (i), the running of the RGE’s for the third family Yukawa couplings (ht, hb, hτ )

and three gauge couplings (g1, g2, g3) in MSSM , are carried out from top-quark mass

scale (t0 = lnmt) at low energy end to high energy scale MR [68, 69]. In the present

analysis we consider the high scale value as the unification scale MR = 1.6 × 1016

GeV, with different tan β input values to check the stability of the model at low

energy scale. For simplicity of the calculation, the SUSY breaking scale is taken at

the top-quark mass scale t0 = lnmt [63, 64, 68]. We adopt the standard procedure

to get the values of gauge couplings at top-quark mass scale from the experimental

CERN-LEP measurements at MZ , using one-loop RGE’s, assuming the existence of

a one-light Higgs doublet and five quark flavors below mt scale [68,69]. Using CERN-

LEP data, MZ = 91.187GeV ,αs(MZ) = 0.118 ± 0.004, α−1
1 (MZ) = 127.9 ± 0.1,

sin2θW (MZ) = 0.2316± 0.0003, and SM relations,

1

α1(MZ)
=

3

5

(1− sin2θW (MZ))

α(MZ)
,

1

α2(MZ)
=
sin2θW (MZ)

α(MZ)
, g2
i = 4παi, (4.4.1)

we calculate the gauge couplings at MZ scale, α1(MZ) = 0.0169586, α2(MZ) =

0.0337591, α3(MZ) = 0.118. As already mentioned, we consider the existence of one

light Higgs doublet (nH = 1) and five quark flavors (nF = 5) in the scale MZ−mt. Us-

ing one-loop RGE’s of gauge couplings, we get g1(mt) = 0.463751, g2(mt) = 0.6513289

and g3(mt) = 1.1891996. Similarly, the Yukawa couplings are also evaluated at

top-quark mass scale for input values of mt(mt) = 174 GeV, mb(mt) = 4.25 GeV,

mτ (mt) = 1.785 GeV and the QED-QCD rescaling factors ηb = 1.55, ητ = 1.015 in

the standard fashion [69],
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ht(mt) =
mt(mt)

√
1 + tan2β

174tanβ
,

hb(mt) =
mb(mt)

√
1 + tan2β

174
,

hτ (mt) =
mτ (mt)

√
1 + tan2β

174
. (4.4.2)

where mb(mt) = mb(mb)
ηb

, mτ (mt) = mτ (mτ )
ητ

. The one-loop RGE’s for top quark,

bottom quark and τ -lepton Yukawa couplings in the MSSM in the range of mass

scales mt ≤ µ ≤MR are given by

d

dt
ht =

ht
16π2

(6h2
t + h2

b −
3∑
i=1

cig
2
i ), (4.4.3)

d

dt
hb =

hb
16π2

(6h2
b + h2

τ +−
3∑
i=1

c
′

ig
2
i ), (4.4.4)

d

dt
hτ =

hτ
16π2

(4h2
τ + 3h2

b −
3∑
i=1

c
′′

i g
2
i ), (4.4.5)

where

ci =


13
15

3

16
3

 , c
′

i =


7
15

3

16
3

 , c
′′

i =


9
5

3

0

 . (4.4.6)

The two-loop RGE’s for the gauge couplings are similarly expressed in the range

of mass scales mt ≤ µ ≤MR as

d

dt
gi =

gi
16π2

[big
2
i +

1

16π2
(

3∑
j=1

bijg
2
i g

2
j )−

3∑
j=t,b,τ

aijg
2
i h

2
j)], (4.4.7)

where

bi =


6.6

1

−3

 , bij =


7.9 5.4 17

1.8 25 24

2.2 9 14

 , aij =


5.2 2.8 3.6

6 6 2

4 4 0

 . (4.4.8)
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Values of ht, hb, hτ , g1, g2, g3 evaluated for tanβ = 55 at high scale MR = 1.6× 1016

from equation (4.4.3)-(4.4.5) and (4.4.7) are

ht(MR) = 0.142685458, hb(MR) = 0.378832042

hτ (MR) = 0.380135357, g1(MR) = 0.381783873

g2(MR) = 0.377376229, g3(MR) = 0.374307543

In the second step (ii), the running of three neutrino masses (m1,m2,m3) and mixing

angles (s12, s23, s13) are carried out together with the running of Yukawa and gauge

couplings, from high scale tR(= lnMR) to low scale to. In this case, we use the input

values of Yukawa and gauge couplings evaluated earlier at scale tR from the first

stage running of RGE’s in case (i). In principle, one can evaluate neutrino masses

and mixing angles at every point of the energy scale. It can be noted that in the

present problem, the running of other SUSY parameters such as M0, M1/2, µ, are not

required and hence, it is not necessary to supply their input values.

We are now interested in studying radiative generation θ13 for the case when

m1,2,3 6= 0 and s13 = 0 at high energy scale. Such studies can give the possible origin

of the reactor angle in a broken A4 model. During the running of mass eigenvalues

and mixing angles from high to low scale, the non-zero input value of mass eigenvalues

m1,2,3 will induce radiatively a non-zero values of s13. Similar approach was followed

in [70,71] considering m3 = 0. The authors in [70,71] used inverted hierarchy neutrino

mass pattern (m,−m, 0) at high scale. Such a specific structure of mass eigenvalues

however, require fine tuning conditions in the flavor symmetry model at high energy.

Instead of assuming a specific relation between mass eigenvalues at high energy scale,

here we attempt to find out the most general mass eigenvalues at high energy which

can give rise to the correct neutrino data at low energy scale. The only assumption

in our work is the opposite CP phases i.e. (m1,−m2,m3). In another work [72],
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authors have shown the radiative generation of 4m2
21 considering the non-zero θ13 at

high scale and tanβ values lower than 50. They have also shown that ∆m2
21 can run

from zero at high energy to the observed value at the low energy scale, only if θ13 is

relatively large and the Dirac CP-violating phase is close to π. The running effects

can be observed only when θ13 is non-zero at high-energy scale as per their analysis.

In the present work, θ13 is assumed to be zero at high scale consistent with a TBM

type mixing within A4 symmetric model. We also examine the running behavior of

neutrino parameters in a neutrino mass model obeying special kind of µ-τ symmetry

at high scale, which was not studied in the earlier work mentioned above.

Input Values Output Values for different tanβ

– – tanβ=15 tanβ=25 tanβ=40 tanβ=45 tanβ=50 tanβ=55

m1 (eV) 0.0924619 0.0924619 0.0925375 0.0933433 0.0945343 0.0978126 0.1086331

m2 (eV) -0.0938539 -0.0938539 -0.0939295 -0.0947101 -0.0958434 -0.0989746 -0.1089959

m3 (eV) 0.0853599 0.0853599 0.0854102 0.0860902 0.0870723 0.0897417 0.0979824

sinθ23 0.707107 0.7070999 0.7066970 0.7030523 0.6975724 0.6831660 0.6398494

sinθ13 0.00 0.0000655 0.0006287 0.0081088 0.0188213 0.0467352 0.1265871

sinθ12 0.57735 0.57735 0.57735 0.57735 0.5774592 0.5779958 0.5820936

Table 4.2: Input and output values with different tanβ values for Inverted Hierarchy

For a complete numerical analysis, first we parameterize the neutrino mass matrix

to have a TBM type structure with eigenvalues in the form (m1,−m2,m3). Since the

mixing angles at high energy scale are fixed (TBM type), we only need to provide

three input values namely, m1,m2,m3. Using these values at the high energy scale,

neutrino parameters are computed at low energy scale by simultaneously solving the

RGE’s discussed above. We first allow moderate as well as large hierarchies between

the lightest and the heaviest mass eigenvalues (with the lighter being at least two

orders of magnitudes smaller) of both normal and inverted type and find that the
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output values of θ13 do not lie in the experimentally allowed range for all values of

tan β = 15, 25, 40, 45, 50, 55 used in our analysis.

Input Values Output Values for different tanβ

– – tanβ=15 tanβ=25 tanβ=40 tanβ=45 tanβ=50 tanβ=55

m1 (eV) 0.0992596 0.0992596 0.0993352 0.1001914 0.1014757 0.1049422 0.1159424

m2 (eV) -0.1000997 -0.1000996 -0.1001752 -0.1010062 -0.1022256 -0.1055608 -0.1162467

m3 (eV) 0.1085996 0.1085996 0.1086751 0.1095313 0.1107905 0.1142319 0.1253917

sinθ23 0.707107 0.7070999 0.7073014 0.7107263 0.7159094 0.7305902 0.7876961

sinθ13 0.00 0.0000582 0.0005604 0.0073647 0.0176199 0.0474922 0.1684841

sinθ12 0.57735 0.57735 0.57735 0.57735 0.5774410 0.5780104 0.5857702

Table 4.3: Input and output values with different tanβ values for Normal Hierarchy

We then consider very mild hierarchical pattern of mass eigenvalues keeping them

in the same order of magnitude range. We vary the neutrino mass eigenvalues at high

energy scale in the range 0.01− 0.12 eV and generate the neutrino parameters at low

energy. We restrict the neutrino parameters θ13, θ12, θ23 and ∆m2
21 at low energy to be

within the allowed 3σ range and show the variation of ∆m2
23(IH),∆m2

31(NH) at low

energy with respect to the input mass eigenvalues at high energy. We show the results

in figure 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 for a specific value of tanβ = 55. It can be seen

from these figures that the correct value of neutrino parameters at low energy can

be obtained only for large values of mass eigenvalues at high energy scale |m1,2,3| =

0.08 − 0.12 eV. We then choose two specific sets of mass eigenvalues at high energy

scale corresponding to inverted hierarchy and normal hierarchy respectively and show

the evolution of several neutrino observables including oscillation parameters, effective

neutrino mass mee = |∑i U
2
eimi|, sum of absolute neutrino masses

∑
i|mi| in figure

4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20. It can be

seen from figure 4.7 and 4.14 that the correct value of θ13 can be obtained at low
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energy only for very high values of tan β = 55. The other neutrino parameters also

show a preference for higher tan β values. The output values of neutrino parameters

at low energy are given in table 4.2 and 4.3 for both sets of input parameters. The

large deviation of θ13 at low energy from its value at high energy (θ13 = 0 for TBM at

high energy) whereas smaller deviation of other two mixing angles can be understood

from the RGE equations for mixing angles (4.3.16), (4.3.17), (4.3.18). Using the

input values given in table 4.2 and 4.3, the slope of sinθ13 can be calculated to be

h2τ
16π2 (−5.88) and h2τ

16π2 (5.23) for inverted and normal hierarchies respectively. On the

other hand, the slope of sinθ23 at high energy scale is found to be h2τ
16π2 (2.95) and

h2τ
16π2 (−2.63) for inverted and normal hierarchies respectively. Thus, the lower value

of slope for sinθ23 results in smaller deviation from TBM values compared to that

of sinθ13. We also note from figure 4.12, 4.19 that the sum of the absolute neutrino

masses at low energy is 0.315 eV and 0.3555 eV for inverted and normal hierarchy

respectively. This lies outside the limit set by the Planck experiment Σ|mi| < 0.23

eV [31]. However, there still remains a little room for the sum of absolute mass to

lie beyond this limit depending on the cosmological model, as suggested by several

recent studies [73–75]. Ongoing as well as future cosmology experiments should be

able to rule out or confirm such a scenario.

It is interesting to note that, our analysis shows a preference for very mild hierar-

chy of either inverted or normal type at high energy scale which also produces a very

mild hierarchy at low energy. This can have interesting consequences in the ongoing

neutrino oscillation as well as neutrino-less double beta decay experiments. Also, the

large tan β region of MSSM (which gives better results in our model) will undergo

serious scrutiny at the collider experiments making our model falsifiable both from

neutrino as well as collider experiments. We note that the present analysis will be

more accurate if the two loop contributions [76–78] RGE’s are taken into account.
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Figure 4.1: Scatter plot of ∆m2
23 at low energy versus initial value of m1 at high

energy for IH keeping all other neutrino parameters at low energy within 3σ range
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Figure 4.2: Scatter plot of ∆m2
23 at low energy versus initial value of m2 at high

energy for IH keeping all other neutrino parameters at low energy within 3σ range
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Figure 4.3: Scatter plot of ∆m2
23 at low energy versus initial value of m3 at high

energy for IH keeping all other neutrino parameters at low energy within 3σ range
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Figure 4.4: Scatter plot of ∆m2
31 at low energy versus initial value of m1 at high

energy for NH keeping all other neutrino parameters at low energy within 3σ range
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Figure 4.5: Scatter plot of ∆m2
31 at low energy versus initial value of m2 at high

energy for NH keeping all other neutrino parameters at low energy within 3σ range

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.07  0.08  0.09  0.1  0.11  0.12  0.13  0.14

∆
m

3
1
2

m3

3σ range

Figure 4.6: Scatter plot of ∆m2
31 at low energy versus initial value of m3 at high

energy for NH keeping all other neutrino parameters at low energy within 3σ range
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Figure 4.7: Radiative generation of sin2θ13 for tanβ=15, 25, 40, 45, 50, 55 for IH

using input values given in Table 4.2
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Figure 4.8: Evolution of sin2θ12 for tanβ=15, 25, 40, 45, 50, 55 for IH using input

values given in Table 4.2
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Figure 4.9: Evolution of sin2θ23 for tanβ=15, 25, 40, 45, 50, 55 for IH using input

values given in Table 4.2
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Figure 4.10: Evolution of ∆m2
21 for tanβ=15, 25, 40, 45, 50, 55 for IH using input

values given in Table 4.2
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Figure 4.11: Evolution of ∆m2
23 for tanβ=15, 25, 40, 45, 50, 55 for IH using input

values given in Table 4.2
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Figure 4.12: Evolution of
∑

i|mi| for tanβ=15, 25, 40, 45, 50, 55 for IH using input

values given in Table 4.2
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Figure 4.13: Evolution of mee for tanβ=15, 25, 40, 45, 50, 55 for IH using input values

given in Table 4.2
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Figure 4.14: Radiative generation of sin2θ13 for tanβ=15, 25, 40, 45, 50, 55 for NH

using input values given in Table 4.3
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Figure 4.15: Evolution of sin2θ12 for tanβ=15, 25, 40, 45, 50, 55 for NH using input

values given in Table 4.3
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Figure 4.16: Evolution of sin2θ23 for tanβ=15, 25, 40, 45, 50, 55 for NH using input

values given in Table 4.3
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Figure 4.17: Evolution of ∆m2
21 for tanβ=15, 25, 40, 45, 50, 55 for NH using input

values given in Table 4.3
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Figure 4.18: Evolution of ∆m2
31 for tanβ=15, 25, 40, 45, 50, 55 for NH using input

values given in Table 4.3
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Figure 4.19: Evolution of
∑

i|mi| for tanβ=15, 25, 40, 45, 50, 55 for NH using input

values given in Table 4.3
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Figure 4.20: Evolution of mee for tanβ=15, 25, 40, 45, 50, 55 for NH using input

values given in Table 4.3
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4.5 Conclusion

We have studied the effect of RGE’s on neutrino masses and mixing in MSSM with

µ− τ symmetric neutrino mass model giving TBM type mixing at high energy scale.

We incorporate an additional flavor symmetry A4 at high scale to achieve the desired

structure of the neutrino mass matrix. The RGE equations for different neutrino

parameters are numerically solved simultaneously for different values of tan β ranging

from 15 to 55. We take the three neutrino mass eigenvalues at high energy scale

as free parameters and determine the parameter space that can give rise to correct

values of neutrino oscillation parameters at low energy. We find that only very mild

hierarchy produces correct values of oscillation parameters at low enrgy when the

values of tan β is close to 55. We also find that there are no such significant effects

on the running of sin2 θ23, sin2 θ12 with tan β. Similarly, we observe that the sum of

the absolute neutrino mass lie above the plank upper bound Σ|mi| < 0.23 eV [31].
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Chapter 5

Conclusion and Future Scope

In this chapter, we outlines the major conclusions drawn from the above phenomeno-

logical studies which deals with the study of different µ− τ symmetric neutrino mass

models relationg to the origin of non-zero θ13, the study of one-zero and two zero tex-

ture in terms of baryogenesis and the evolution of non-zero θ13 using renormalization

group equation (RGE). We also discuss the various possible scopes of research in the

above mentioned fields in future.

5.1 Conclusion

The significant conclusions as achieved from the present study are summarized chap-

terwise in the subsections 5.1.1, 5.1.2 and 5.1.3 respectively.

5.1.1 Chapter 2

In chapter 2, we try to generate nonzero θ13 by adding a perturbative term to the

µ − τ symmetric mass matrix using type II seesaw. Here, we consider four different
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types of µ − τ symmetric mass matrices bimaximal, tribimaximal, hexagonal and

golden ratio mixing respectively. We find that

• Except golden ratio mixing with IH and m3 = 0.001 eV, all other mixing pat-

terns give rise to correct θ13.

• We also calculate the other neutrino parameters ∆m2
21, ∆m2

23 (IH), ∆m2
31 (NH),

sin2 θ23 and sin2 θ12 and plot them against the type II seesaw strength w. We

find that bimaximal mixing with IH, tribimaximal mixing with both IH and

NH and hexagonal mixing with m3 = 0.001 give rise to correct values of all the

neutrino parameters in 3σ range.

• We then compute baryogenesis through the process of leptogenesis. We ob-

served that bimaximal mixing and tribimaximal mixing with IH and m3 = 0.001

can produce correct baryon asymmetry in 1 flavor and 2 flavor regimes. The

values of Dirac CP-phase δ which give rise to exact baryon asymmetry for

TBM with IH and m3 = 0.001 ranges from 0.003298676 − 0.0043982297 &

3.1376656−3.13860814 (1 flavor regime) and 3014190681 (2 flavor regime). For

BM with IH and m3 = 0.001, we get the values of δ as 0.000314159, 1.40711935,

4.8754376 (1 flavor regime) and 0.0001570769 (2 flavor regime). Moreover, tribi-

maximal mixing and hexagonal mixing with NH and m1 = 0.0001 show proper

baryon asymmetry in the 1 flavor regime. For these two cases, we get approx-

imately same values of δ. The range of δ for TBM(NH) with m1 = 0.0001

are 3.14269221-3.14300637 & 6.282085749-6.282242829 and for HEX(NH) it is

3.182276-3.1981413 & 6.28020079-6.2808291.

• The golden ratio mixing is disfavored in our framework for both IH and NH

cases.
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5.1.2 Chapter 3

In chapter 3, we study different possible one-zero and two-zero texture Majorana mass

matrices allowed from neutrino oscillation data. For the case of onbe-zero texture, we

assume the two Majorana phases to be equal and then calculate it as a function of

Dirac CP phase. For two-zero texture case, we calculate all the three CP phases and

the lightest neutrino mass separately. Then we adopt a type I seesaw framework, we

evaluate the baryon asymmetry through the mechanism of leptogenesis for all possible

texture zero mass matrices. The results are pointed below:

• In case of one-zero texture with IH, the patterns G1 and G2 do not have real so-

lutions to the lightest neutrino mass and hence they are excluded in calculating

baryon asymmetry. Only the patterns G3,4,5,6 have solutions. G3 can produce

correct baryogenesis in one and two flavor regime. In our study, only the case

G4 and G6 (IH) can generate the required baryogenesis in all flavor regimes.

The pattern G5 shows good agreement in one and three flavor regimes.

• Similarly, for one-zero texture with NH, the patterns G1,2,3 have real solutions to

the lightest neutrino mass and therefore only these cases are taken into account

for the study of baryogenesis. We find that G1 can produce correct baryogenesis

in all flavor regimes whereas G2 and G3 can produce exact baryogenesis in one

flavor regime only.

• For two-zero texture case, all the patterns A1,2, B1,2,4 except B3 can give rise

to correct YB in one flavor regime depending on the neutrino mass hierarchy.

For two flavor regime, only B2,3,4 with IH can produce the required baryon

asymmetry. Similarly, in three flavor regime B2 with both IH & NH and B3,4

with only IH can give rise to correct YB. This implies that if the lightest right-

handed neutrino mass M1 < 1012 GeV, then among the six allowed two-zero
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textures, only three of them respectively B2,3,4 are favored in the light of baryon

asymmetry.

5.1.3 Chapter 4

In chapter 4, we study the effect of RGE’s on neutrino masses and mixing in MSSM

with µ − τ symmetric neutrino mass model giving rise to TBM type of mixing in

the higher energy scale. We solve the RGE equations for both neutrino masses and

mixing angles for different values of tan β ranging from 15 to 55. We choose the three

neutrino mass eigenvalues as free parameters at high energy scale and calculate all the

neutrino parameter space that can give rise to correct values of oscillation parameters

at low energy scale. The results are itemized below:

• Moderate or large hierarchy (both normal and inverted) of neutrino masses at

high energy scale does not give rise to correct output at low energy scale.

• Very mild hierarchy (with all neutrino mass eigenvalues having same order of

magnitude values and |m1,2,3| = 0.08−0.12 eV) give correct results at low energy

provided the tan β values are kept high, close to 55. Such a preference towards

large mass eigenvalues with all eigenvalues having same order of magnitude

values can have tantalizing signatures at oscillation as well as neutrino-less

double beta decay experiments.

• No significant changes in running of sin2 θ23, sin2 θ12 with tan β are observed.

• Sum of absolute neutrino masses at low energy lie above the Planck upper bound

Σ|mi| < 0.23 eV hinting towards non-standard cosmology to accommodate a

larger Σ|mi| or more relativistic degrees of freedom.

• The preference for high tan β regions of MSSM could go through serious tests

at collider experiments pushing the model towards verification or falsification.
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5.2 Future Prospects

The thesis mainly consists of study on different neutrino mass models in different

prospects to give a rough idea about which hierarchy pattern is most favorable. Since

the degenerate hierarchy is already discarded by the oscillation data and hence we

constrain our study with NH and IH patterns only. In the present thesis, we discuss

different neutrino mass models, different Majorana texture zero mass matrices and

evolution of neutrino parameters using RGE considering both type of hierarchies and

summarize our results regarding which hierarchy pattern give us better aggrement

with the oscillation data. However, it can be made comment easily that we can

expand our work by incorporating different approach.

• In our first study, we consider different µ− τ symmetric neutrino mass matrices

and evalute the neutrino parameters after adding a µ − τ symmetry breaking

type II seesaw perturbative term. Here, we also study baryogenesis through

the mechanism of leptogenesis arising from the decay of lightest right-handed

neutrino by considering the presence of both type I and type II seesaws. This

work can be further extended by using different perturbative terms which fit

under the theory. Again, more precise experimental data from the neutrino

oscillation experiments can able to falsify or verify some of the models discussed

in this work.

• In our second work, we make a systematic study on one-zero and two-zero

Majorana textures and lastly we end with the evaluation of baryon asymmetry

considering both NH and IH patterns. We make our final conclusions in the basis

of which texture pattern exactly can produce correct baryogenesis depending

on the neutrino mass hierarchy. Similar work can be done if we consider the

hybrid texture, a combination of both one and two-zero texture. Moreover,
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one can also expand studies by incorporating the different Yukawa texture zero

patterns.

• In the last chapter, our study is mainly based on RGE effects on the neutrino

masses and mixing in MSSM. Here we have not considered the CP phases. This

work will be more interesting if the running of the Dirac and Majorana CP

phases is taken into account. This work can be further studied by adding the

seesaw threshold effects and considering all the right handed neutrinos to de-

couple at the same high energy scale. Such threshold effects could be important

for large values of tan β.
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