Table of Contents

Chapter	Content	Page
no.		no.
	List of tables	viii
	List of figures	ix
	List of Abbreviations	x
	Abstract	xii
1	Introduction	2
	1.1. Biodiesel as an alternative for diesel fuel	4
	1.2. Feedstock for biodiesel	5
	1.3. Biodiesel production	6
	1.3.1 Biodiesel synthesis via transesterification	6
	1.3.2 Transesterification mechanism	8
	1.3.3 Factors influencing transesterification reaction	9
	1.4. Homogeneous Vs Heterogeneous catalyst	11
	1.5. Catalyst characterization	12
	1.6. Objectives of the study	14
2	Literature survey	15
	2.1. Heterogeneous catalyst in biodiesel production	16
·	2.1.1 Solid base catalyst	17
	2.1.2 Solid acid catalyst	21

3	Materials and methods		25
	3.1.	Materials	26
,	3.2.	Experimental procedure	27
		3.2.1 Pre-treatment of WCO	27
	3.3	Catalyst preparation	28
	3.4	Feedstock analysis	29
4	Result	and discussion	33
	4.1.	Feedstock analysis	34
	4.2.	Catalyst characterization	36
		4.2.1 XRD analysis	36
		4.2.2. FT-IR analysis	37
		4.2.3. SEM analysis	38
		4.2.4. EDX analysis	39
	4.3.	Biodiesel analysis by NMR spectroscopy	40
		4.3.1. ¹ H NMR analysis	40
		4.3.2. ¹³ C NMR analysis	40
	4.4.	Effect of different parameters on transesterification	45
		4.4.1. Effect of catalyst amount	45-46
,		4.4.2. Effect of Sr loading	47
		4.4.3. Effect of reaction time	48
		4.4.4. Effect of reaction temperature	49
		4.4.5. Effect of methanol to oil	50
5	Conclu	usion	51
	Refere	ences	53-61

List of tables

Table no.	Table name	Page no.
MO.		110.
Table 1.1.	Different methods of biodiesel production	7
Table 2.1.	Typical solid acid and base catalyst employed for transesterification	16
Table 2.2.	An overview of different heterogeneous catalyst used for biodiesel synthesis	24
Table 4.1.	Fuel properties of waste cooking oil	34
Table 4.2.	Fatty acid composition of waste cooking oil	35
Table 4.3.	EDX analysis of waste egg shells	39

List of figures

Fig no.	Figure name	Page no.
Fig.1.1	Renewable energy source	2
Fig.1.2.	Generalized reaction scheme for biodiesel production	6
Fig.1.3,	Conversion of triglycerides into biodiesel	8
Fig.3.1.	Flow diagram of methodology adopted for the study	26
Fig.3.2,	Collected waste cooking oil	27
Fig.3.3.	Images of the waste egg shells	28
Fig.3.4.	Images of the prepared catalyst	29
Fig.3.5.	Cloud point and pour point bath	32
Fig.3.6.	HAAKE Falling Ball viscometer type C	32
Fig.4.1	XRD patterns of calcined egg shells and doped egg shells	36
Fig.4.2	FT-IR patterns of Sr doped E-CaO catalyst	37
Fig.4.3	SEM images of Sr doped E-CaO catalyst	38
Fig.4.4	¹ H NMR spectra of (a)feedstock (b)biodiesel	42
Fig.4.5	¹³ C NMR spectra of (c)feedsock (d)biodiesel	44
Fig.4.6.	Effect of catalyst amount (parent catalyst)	45
Fig.4.7	Effect of catalyst amount (doped catalyst)	46
Fig.4.8	Effect of Sr loading on methyl ester conversion	47
Fig.4.9	Effect of reaction time on the biodiesel conversion	48
Fig.4.10	Effect of reaction temperature	49
Fig.4.11	Effect of methanol to oil ratio on biodiesel conversion.	50

List of Abbreviations

ASTM American Society for Testing and Materials

DSC Differential Scanning Calorimetry

EDX Energy-dispersive X-ray spectroscopy

FAME Fatty Acid Methyl Ester

FT-IR Spectrometer Fourier Transform Infrared

JCPDS Joint Committee on Powder Diffraction

Standards

NMR Nuclear Magnetic Resonance Spectroscopy

SEM Scanning Electron Microscope

E-CaO Waste shell catalyst calcined at 800 °C

(parent catalyst)

ESr-1 1 % Sr doped E-CaO

ESr-2 2% Sr doped E-CaO

ESr-3 3% Sr doped E-CaO

TGA Thermogravimetric Analysis

WCO Waste Cooking Oil

XRD X-ray Diffraction