CONTENTS

	PAGE NO
LIST OF TABLES	iii
LIST OF FIGURES	iv
CHAPTER 1: INTRODUCTION	
1.1 Evolution of thermal comfort study	2
1.2 Approaches in thermal comfort study	3
1.3 Thermal comfort models	5
1.3.1 Heat balance models	5
1.3.2 Adaptive thermal comfort models	6
1.3.2.1 Behavioral adaption	. 7
1.3.2.2 Physiological adaption	7
1.3.2.3 Psychological adaption	8
CHAPTER 2: LITERATURE REVIEW	
2.1 Thermal comfort models for office buildings	9
2.1.1 Studies done in AC buildings	9
2.1.1.1 China	9
2.1.2 Studies done in NV office buildings	10
2.1.2.1 United Kingdom	10
2.1.2.2 Italy	10
2.1.2.3 India	11
2.2 Thermal comfort models for residential buildings	. 12
2.2.1 Studies done in AC residential buildings	12
2.2.1.1 Singapore	12
2.2.2 Studies done in NV residential buildings	13
2.2.2.1 United Kingdom	13
2.2.2.2 Indonesia	13
2.2.2.3 India	14

2.3 Thermal comfort models for school buildings	16
2.3.1 Studies done in NV school buildings	16
2.3.1.1 Iran	16
2.3.1.2 Israel	17
2.3.1.3 Taiwan	17
2.3.1.4 Italy	18
2.3.1.5 India	19
2.3.1.6 United Kingdom	19
2.3.2 Studies done in mixed mode school buildings	20
2.3.2.1 Brazil	20
CHAPTER 3: OBJECTIVES AND METHODOLOGY	
3.1 Objectives	21
3.2 Methodology	21
3.2.1 ASHRAE scale	21
3.2.2 Clothing	22
3.2.3 Metabolic rate	24
3.3 Developing the Questionnaire based comfort survey	25
3.4 PMV-PPD	25
CHAPTER 4: RESULTS AND DISCUSSION	
4.1 Subject's description	27
4.2 Indoor and outdoor thermal environmental conditions	27
4.3 Clothing rate	28
4.4 Metabolic rate	28
4.5 Thermal sensation and thermal preference	28
4.6 PMV, PPD, and cPMV	28
CHAPTER 5: CONCLUSIONS	40
REFERENCES	42
APPENDIX	47

LIST OF TABLES

Table	Particulars	Page No.
3.1	ASHRAE Thermal Sensation Scale	22
3.2	Clothing insulation value, Icl (clo) for different ensembles	23
3.3	Metabolic rate at different activity levels	24
4.1	Details of the respondent of thermal comfort survey	27
4.2	Comfort temperature recommended by ASHRAE and obtained	38
	from survey	

LIST OF FIGURES

Figure	Particulars	Page No.
3.1	PPD as the function of PMV	26
4.1	Relationship between PMV, thermal sensation and clothing rate with temperature	30
4.3	Relationship between outdoor temperature and clothing rate	31
4.4	Relationship between thermal sensation and clothing rate	31
4.5	Relationship between the PMV and PPD values (ISO method)	32
4.6	Relationship between the PMV and PPD values (CBE/Berkley method)	32
4.7	Relationship between AMV and cPMV (CBE/Berkley) during winter	33
4.8	Relationship between AMV and cPMV (ISO) during winter	34
4.9	Relationship between AMV and cPMV (CBE/Berkley) during summer	34
4.10	Relationship between AMV and cPMV (ISO) during summer	35
4.11	Relationship between AMV and cPMV (CBE/Berkley: summer and winter)	35
4.12	Relationship between AMV and cPMV (ISO method: summer and winter)	36
4.13	Winter month monitoring	37
4.14	Summer month monitoring	38