CONTENTS

.

		Page No.	
LIST OF TABLES			
LIST OF FIGURES			
LIST OF SYMB	OLS	ν	
LIST OF ABBRE	EVIATIONS	vi	
1. INTROI	DUCTION	1	
1.1	Power scenario of India	1	
1.1.1	Importance of renewable energy	1	
1.1.2	Global status of renewable energy	2	
1.1.3	Status of renewable energy in India	3	
1.1.4	Grid connected renewable energy vs. decentralized renewable energy in India	3	
1.2	Government sponsored Remote Village Electrification Programme and relevance of resource assessment	5	
1.3	Advantages of wind energy over other renewable energy sources	7	
1.3.1	Global and National status of wind energy utilization	8	
1.3.2	Characterization of wind resources	9	
1.3.3	Technology of wind energy utilization	10	
1.4	Objectives	10	
2. REVIEV	V OF LITERATURE	12	
3. METHO	DS AND MATERIAL	14	
3.1	Characterization of wind speed	14	
3.2	Description of locations and nature of wind data	14	
3.3	Methodology of data analysis	15 [.]	
3.3.1	Weibull density function	16	
3.3.2	Least square linearization method	17	
3.3.3	Justus approximation method	18	
3.3.4	Maximum likelihood method	18	
3.3.5	Standard deviation method	18	
3.3.6	Power density method	19	
3.4	Selection of best method for determination of Weibull parameter	19	
3.5	Characterization of wind regime	20	
3.6	Design procedure of wind energy generator	20	
3.6.1	Design of Rotor	21	
3.6.2	Shaft	23	
3.6.3	Power transmission system	23	
3.6.4	Generator	24	
3.6.5	Frame	24	
3.7	Instrumentation	24	

i

3.7.1	Anemometer	2
3.7.2	Tachometer	2
3.7.3	Clamp Meter	2
3.8	Performance	2
4. RESU	LTS AND DISCUSSIONS	
4.1	Identification of the most suitable method for estimation of Weibull parameters for the available wind speed data of three locations	23
4.1.1	Weibull parameters for the available wind speed data at Mao (Manipur)	23
4.1.2	Weibull parameters for the available wind speed data at Pashighat (AP)	32
4.1.3	Weibull parameters for the available wind speed data at Tezpur (Assam)	3'
4.2	Development of the laboratory scale wind generator	40
4.3	Testing of the laboratory scale wind generator	42
5. CONC	LUSIONS	4
6. REFE	RENCES	4

Table	Particulars	Page No
No.		0
1.1	The current status of grid connected renewable power Source	4
1.2	The current status of off-grid renewable power Source	4
1.3	Remote un-electrified villages of Assam as on 31.3.2006 (As per 2001 Census)	6
1.4	Comparative assessments of green house gas emission form different energy sources	7
1,.5	Distribution and growth of wind energy in different regions of world during 2006 to 2009	8
1.6	Distribution and growth of wind energy in India 2006 to 2009	9
3.1	Description of data used for analysis	14
3.2	Specification of anemometer	25
3.3	Specification of tachometer	26
3.4	Specification of clampmeter	26
4.1	Weibull parameters estimated by five different methods along with values of R^2 and RMSE for the available wind speed data at Mao (Manipur)	29
4.2	Monthly variations of wind speed characteristics at Mao, Manipur	30
4.3	Weibull parameters estimated by five different methods along with values of R2 and RMSE for the available wind speed data at Mao (Manipur)	32
4.4	Monthly variations of wind speed characteristics at Pashighat, (AP)	33
4.5	Yearly variations of wind speed characteristics at Pashighat, (AP)	35
4.6	Sesonal variations of wind speed characteristics at Pashighat, (AP)	36
4.7	Weibull parameters estimated by five different methods along with values of R^2 and RMSE for the available wind speed data at Tezpur (Assam)	37
4.8	Monthly variations of wind speed characteristics at Tezpur, Assam	39
4.9	Designed parameters of the rotor used in wind energy generator	40
4.10	Test results of the laboratory model vertical axis wind energy generator	42

LIST OF TABLES

.

Figure	Particulars	Page No
No.		
3.1	Systematic diagram of rotor	21
3.2	Anemometer	25
3.3	Tachometer	25
3.4	Clamp Meter	26
4.1	Wind speed probability density function of five different methods	29
	Mao,(Manipur)	
4.2	Number of hour wind speed ina year Mao, (Manipur)	31
4.3	Monthly variation of wind power density at Mao, (Manipur)	31
4.4	Wind speed probability density function of five different methods	33
	Pashighat, (AP)	
4.5	Number of hour wind speed availability in a year Pashighat, (AP)	34
4.6	Monthly variation of wind power density Pashighat, (AP)	35
4.7	Comparison of seasonal probability density function Pashighat, (AP)	37
4.8	Wind speed probability density function of five different methods	38
	Tezpur (Assam)	
4.9	Number of hour wind speed availability in a year Tezpur, Assam	39
4.1	Monthly variation of wind power density at Tezpur, Assam	40
4.11	Design Savonious vertical axis wind turbine	41
4.12	(a) Top view of the rotor	41
	(b) Front view of the rotor	41
4.13	Variation of co-efficient performance with tip speed ratio	43

LIST OF FIGURES

· .

Symbols	Details
k	Weibull shape parameter
С	Weibull scale parameter
, v	velocity
$-v_m$	Mean wind speed
v_{MP}	Most probable wind speed
<i>v_{MaxE}</i>	Wind speed carrying maximum energy
ρ	Rho
Р	Power
А	Area
Н	Height
D	Diameter
β	Overlap ratio
α	Aspect ratio
λ	Tip speed ratio
C_p	Co efficient of performance
F(v)	Cumulative distribution function
f(v)	Probability density function
P_{GS}	Power at generator shaft
P_{IS}	Power at intermediate shaft
P_{RS}	Power at generator shaft
σ	Standard deviation
Γ()	Gamma function
V	voltage
Ι	current
Т	Torque
f_s	Shearing stress of mild steel

.

LIST OF SYMBOLS

.

LIST OF ABBREVIATIONS

,

ABBREVIATION	Full form
MNRE	Ministry of New and Renewable Energy
CEA	Central Electricity Authority
MW	Mega-Watt
GW	Giga-Watt
OCED	Organization for Economic Co-Operation and Development
TWh	Tera-Watt Hour
Mtoe	Million Tonnes of Oil equivalent
kWh	Killo-Watt Hour
C-WÉT	Centre for Wind Energy Technology
HAWT	Horizontal Axis Wind Turbine
VAWT	Vertical Axis Wind Turbine
RMSE	Root Mean Square Error
COP	Coefficien of Power
CO ₂	Carbon Di-Oxide
SO ₂	Sulphur Di-Oxide
NO _x	Nitrous Di-Oxide
FGD	Flue-gas desulfurization
CCGT	Combined cycle gas turbine
RPM	Rotation per minute