## **CONTENTS**

|    | ABSTRACT                                                              | i    |
|----|-----------------------------------------------------------------------|------|
|    | LIST OF TABLES                                                        | ii   |
|    | LIST OF FIGURES                                                       | iii  |
| 1. | Introduction                                                          | 1    |
|    | 1.1 Global energy scenario                                            | 1    |
|    | 1.2 Indian energy scenario                                            | 3    |
|    | 1.3 Energy and industrial scenario in North East India                | 4    |
|    | 1.4 Technology prospect of renewable energy in North East India       | 4    |
|    | 1.5 Biomass gasification                                              | 5    |
|    | 1.5.1 Gasification process and reactor types                          | 6    |
|    | 1.5.2 Feedstock characteristics and gasifier performance              | 9    |
|    | 1.5.3 Assessment of gasifiers performance                             | 10   |
|    | 1.5.4 Prediction of performance of gasifiers through modelling        | 11   |
|    | 1.6 Justification for present study and objectives                    | 12   |
| 2. | Review of Literature                                                  | 14   |
|    | 2.1 Biomass gasification for heat and power generation in India       | 14   |
|    | 2.2 Thermodynamic equilibrium models for prediction of producer gas   | . 15 |
|    | composition and performance of gasifiers                              |      |
| 3. | Methods and materials                                                 | 20   |
|    | 3.1. Use of stoichiometric equilibrium model for determination of     | 20   |
|    | composition of producer gas                                           |      |
|    | 3.2. Determination equilibrium constants                              | 23   |
|    | 3.3. Model inputs                                                     | 25   |
|    | 3.3.1. Elemental composition of feedstock                             | 25   |
|    | 3.3.2. Moisture content of feedstock                                  | 26   |
|    | 3.3.3. Moles of air supplied for specific values of equivalence ratio | 26   |
|    | 3.3.4. Temperature of gasification zone                               | 26   |

|    | 3.4. Model outputs                                                                                                                                                                                                                                                              | 27             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | 3.4.1. Composition of producer gas                                                                                                                                                                                                                                              | 27             |
|    | 3.4.2. Lower heating value of the producer gas                                                                                                                                                                                                                                  | 27             |
|    | 3.4.3. Overall conversion efficiency                                                                                                                                                                                                                                            | 28             |
|    | 3.5. Experimental Procedure                                                                                                                                                                                                                                                     | 29             |
|    | 3.5.1. Feedstock characterization 3.5.2. Experimental set up 3.5.3. Test procedure                                                                                                                                                                                              | 29<br>29<br>29 |
| 4. | Results and Discussion                                                                                                                                                                                                                                                          | 34             |
|    | 4.1 Feedstock characterization                                                                                                                                                                                                                                                  | 34             |
|    | 4.2 Model inputs                                                                                                                                                                                                                                                                | 35             |
|    | <ul> <li>4.2.1 Elemental composition of the feedstock</li> <li>4.2.2. Moisture content of feedstock</li> <li>4.2.3. Assessment of moles of air supplied for specific values of equivalence ratio</li> <li>4.3 Simulation results of stoichiometric equilibrium model</li> </ul> | 35<br>36<br>36 |
|    | 4.3.1 Composition of producer gas                                                                                                                                                                                                                                               | 37             |
|    | 4.3.2 Lower heating value of the producer gas                                                                                                                                                                                                                                   | 42             |
|    | 4.3.3. Overall conversion efficiency                                                                                                                                                                                                                                            | 44             |
|    | 4.4. Experimental results                                                                                                                                                                                                                                                       | 46             |
| 5. | Conclusions                                                                                                                                                                                                                                                                     | 48             |
| Re | ferences                                                                                                                                                                                                                                                                        | 49             |

.

•

## LIST OF TABLES

| Table 1.1 | World's total energy consumption by fuel, for year 2006-2035 (Quadrillion                                   | 3  |
|-----------|-------------------------------------------------------------------------------------------------------------|----|
|           | Btu)                                                                                                        |    |
| Table 1.2 | Typical gasification reactions at 25 °C                                                                     | 7  |
| Table 3.1 | Gibbs free energy, heat of formation at 298 K, 1 atm and empirical coefficients for gases used in the model | 24 |
| Table 3.2 | Equilibrium constants used in the model                                                                     | 25 |
| Table 3.3 | Test procedure for the analysis                                                                             | 25 |
| Table 3.4 | Lower heating value of constituents of producer gas at 25 °C                                                | 28 |
| Table 3.5 | Dimensions of gasifier system, Ankur make, closed top downdraft throated                                    | 30 |
| Table 4.1 | Local and scientific name of wood species of the study                                                      | 34 |
| Table 4.2 | Proximate analysis and lower heating value of feedstocks                                                    | 35 |
| Table 4.3 | Ultimate analysis of feedstocks                                                                             | 35 |
| Table 4.4 | Chemical representation of the feedstocks                                                                   | 36 |
| Table 4.5 | Moles of steam (d) for considered moisture contents                                                         | 36 |
| Table 4.6 | Moles of air supplied for specific values of equivalence ratio                                              | 37 |
| Table 4.7 | Conversion efficiency for bamboo assessed through experiments                                               | 47 |
| Table 4.8 | Conversion efficiency for wood mixture assessed through experiments                                         | 47 |

## LIST OF FIGURES

| Fig. 1.1  | Potential path for gasification                                             | 6  |
|-----------|-----------------------------------------------------------------------------|----|
| Fig. 3.1  | Inputs and outputs of stoichiometric equilibrium model                      | 23 |
| Fig. 3.2  | Schematic of test gasifier system                                           | 31 |
| Fig. 3.3  | Gasification System at laboratory                                           | 31 |
| Fig. 3.4  | Junker's calorimeter                                                        | 32 |
| Fig. 3.5  | Digital anemometer                                                          | 32 |
| Fig. 4.1  | Producer gas composition vs. equivalence ratio for Bamboo at 800 □C, 10%    | 38 |
|           | MC, wb                                                                      |    |
| Fig. 4.2  | Producer gas composition vs. equivalence ratio for Wood mixture at 800 □C,  | 38 |
|           | 10% MC, wb                                                                  |    |
| Fig. 4.3  | Gas composition vs. gasification temperature for Bamboo at ER 0.25, 10%     | 39 |
|           | MC, wb                                                                      |    |
| Fig. 4.4  | Gas composition vs. gasification temperature for wood mixture at ER 0.25,   | 40 |
|           | 10% MC, wb                                                                  |    |
| Fig. 4.5  | Gas composition vs. Moisture content for bamboo at 800 $\Box$ C and ER 0.25 | 41 |
| Fig. 4.6  | Gas composition vs. Moisture content for wood mixture at 800 □C and ER      | 41 |
|           | 0.25                                                                        |    |
| Fig. 4.7  | LHV of producer gas vs. ER at different temperatures for bamboo at 10% MC   | 43 |
| Fig. 4.8  | LHV vs. moisture content for bamboo at 800 □C and ER 0.25                   | 44 |
| Fig. 4.9  | Conversion efficiency vs. ER at different temperature for bamboo, 10% MC,   | 45 |
|           | (wb)                                                                        |    |
| Fig. 4.10 | Conversion efficiency vs. ER at different Temperature for wood mixture, 10% | 46 |
|           | (wb)                                                                        |    |
|           |                                                                             |    |