Nomenclature

- $\mathbf{T} =$ Simulation time
- * = Superscript denotes optimum value;
- $\mathbf{J} = \text{Cost Index};$
- $\mathbf{M} =$ Inertia constant
- **D**= Damping Constant
- T_{DE} = Time Constant of Diesel Generator
- K_{DE} = Gain of Diesel Generator
- $\mathbf{P} = \text{Rated Power}$
- $\Delta \mathbf{P} =$ Incremental change in load
- f = Nominal System Frequency
- Δf = Incremental Change in Frequency
- $\mathbf{k} =$ Frequency Bias Constant
- $\mathbf{K}_{\mathbf{P}}$ = Proportional Gain of Controller
- K_I = Integral Gain of Controller
- $\mathbf{K}_{\mathbf{D}}$ = Derivative Gain of Controller
- \mathbf{K}_{Φ} = Gain of the TCPS controller
- T_{PS} = Time Constant OF TCPS
- $\Delta \Phi$ = Phase Shifter Angle

Abbreviations

- DGS : Distributed Generation System
- AGC : Automatic Generation Control
- PV : Photovoltaic
- WTG : Wind Turbine Generator
- DC : Direct Current
- AC : Alternating Current
- ACE : Area Control Error
- PID : Proportional Integral Derivative
- ISE : Integral Square error
- BF : Bacteria Foraging
- FACT : Flexible AC Transmission
- TCPS : Thyristor Controlled Phase Shifter

List of Figures

,

Figure No.	Particular				
Figure 3.1	Block diagram of DGS with solar and diesel power generations	18			
Figure 3.2	Flow chart of Bacteria Foraging Algorithm	24			
Figure 4.1	Transfer function model of Distributed Generation System with Diesel and Solar power generation schemes	28			
Figure 4.2	Frequency deviations of DGS using different classical controllers	30			
Figure 4.3	Power deviations of DGS using different classical controllers	31			
Figure 4.4	Load power demand for different classical controllers	31			
Figure 4.5	Power generated by DG for different classical controllers	31			
Figure 4.6	Transfer function model of Distributed Generation System with Diesel and Solar power generation schemes with TCPS in tie-line	32			
Figure 4.7	Frequency deviations of DGS using PID controller with and without TCPS	33			
Figure 4.8	Power deviations of DGS using PID controller with and without TCPS	34			
Figure 4.9	Load power demand for PID controller with and without TCPS	34			
Figure 4.10	Power generated by DG for PID controller with and without TCPS	34			
Figure 4.11	Comparison of dynamic response of Δf with TCPS at 25 % loading conditions	36			
Figure 4.12	Comparison of dynamic response of ΔP with TCPS at 25 % loading conditions	36			
Figure 4.13	Comparison of dynamic response of PL with TCPS at 25 % loading conditions	37			

Figure 4.14	Comparison of dynamic response of Pdg with TCPS at 25 % loading conditions	37
Figure 4.15	Comparison of dynamic response of Δf with TCPS at 75 % loading conditions	38
Figure 4.16	Comparison of dynamic response of ΔP with TCPS at 75 % loading conditions	38
Figure 4.17	Comparison of dynamic response of PL with TCPS at 75 % loading conditions	39
Figure 4.18	Comparison of dynamic response of Pdg with TCPS at 75 % loading conditions	39

.

. . .

Table No.	Particular	Page No.
Table 4.1	Optimal gain of Integral controller for diesel generation system	29
Table 4.2	Optimal gain of proportional controller for diesel generation system	29
Table 4.3	Optimal gain of proportional-integral controller for diesel generation system	29
Table 4.4	Optimal gain of proportional-integral-derivative controller for diesel generation system	30
Table 4.5	Optimal gain of PID controller for diesel generation system with and without TCPS	33
Table 4.6	PID controller gains at 50% and 25% loading condition for DGS with TCPS	36
Table 4.7	PID controller gains at 50% and 75% loading condition for DGS with TCPS	38

i.

Contents					
Forwarding Certificate					
Certificate of Approval					
Dec	laration		iii		
Acknowledgement					
Abst	tract		v		
Non	nenclatu	re	vi		
Abb	reviatio	ns	vii		
List	of Figu	res	viii		
List	of Tabl	es	х		
CHA	APTER	1 - Introduction	1-7		
1.1	Introd	uction to Distributed Generation	1		
	1.1.1	Classic Electricity Paradigm Compared to Distributed Generation	2		
		System			
	1.1.2	Benefits of Distributed Generation System	3		
	1.1.3	Technologies for Distributed Generation	3		
	1.1.4	Government Policies regarding Distributed Generation System	4		
1.2	System Natural Performance				
1.3	Automatic Generation Control (AGC)				
1.4	Objec	tives of the Project	7		
1.5	Outline of the Chapters				
CHA	APTER	2 Literature Review	8-16		
CHA	APTER	3 - Methodology	17-27		
3.1	Syster	n Investigated	17		
3.2	Brief	Description Different Controllers and ISE criterion	18		
	3.2.1	Integral Controller	18		
	3.2.2	Proportional Controller	18		
	3.2.3	Proportional plus Integral Controller	18		
	3.2.4	Proportional plus Integral plus Derivative (PID) Controller	19		
	3.2.5	Integral Square Error (ISE) Performance Index	19		

Contents

·	3.3	Bacter	rial Forag	ing (BF) Optimization Technique	20
		3.3.1	Stages of	of Bacteria Foraging	20
		3.3.2	Bacteria	a Foraging Algorithm	21
	3.4	Thyris	stor Contr	rolled Phase Shifter (TCPS)	25
		3.4.1	Increme	ental Tie Power Flow Model considering TCPS	25
		3.4.2	Control	Strategy for TCPS in Tie-line	26
	3.5	Exper	imental P	rocedure	27
	СНА	PTER	4 – Resu	llts and Discussion	28-39
	4.1	Auton	natic Gen	eration Control of Distributed Generation System	28
		4.1.1	Automa	tic Generation Control of a Distributed Generation System	28
			using C	lassical Controllers	
			4.1.1.1	Optimization of Integral (I) Controller	29
			4.1.1.2	Optimization of Proportional (P) Controller	29
			4.1.1.3	Optimization of Proportional-Integral (PI) Controller	29
			4.1.1.4	Optimization of Proportional-Integral-Derivative (PID)	30
				Controller	
			4.1.1.5	Comparison of Dynamic Responses of Distributed	30
				Generation System with Different Controllers	
		4.1.2	Automa	tic Generation Control of a Distributed Generation System	32
			using Pl	D Controller with TCPS in Tie Line	
			4.1.2.1	Optimization of Proportional-Integral-Derivative (PID)	33
				Controller with and without TCPS	
			4.1.2.2	Comparison of Dynamic Responses of Distributed	33
				Generation System using PID Controller with and without	
				TCPS	
		4.1.3	Sensitiv	ity Analysis of Automatic Generation Control of a	35
			Distribu	ted Generation System using PID Controller with TCPS in	
			Tie Line		
•			4.1.3.1	Sensitivity Analysis of AGC of a Distributed Generation	35
				System using PID Controller with TCPS in Tie Line with	
				25% Loading Condition	
			4.1.3.2	Sensitivity Analysis of AGC of a Distributed Generation	37
				System using PID Controller with TCPS in Tie Line with	
				75% Loading Condition	

,

СНА	40-41	
5.1	Summary of project work	40
5.2	Scope for Future Work	40

*

References

а

42-46