Contents

÷

CHAPTER-1

1 Introduction	1
1.1 Types of Wind turbine	2
1.1.1 Horizontal axis wind turbines (HAWT)	2
1.1.2 Vertical axis wind turbines (VAWT)	2
1.2 Classification of Sun tracking system	3
1.3 Tracker type selection	3
1.3.1 Based on working characteristics of solar tracking	. 4
1.4 Maximum Power Point Tracking	5
1.4.1 MPPT definition	6
1.5 Solar-wind energy hybrid system	6
1.6 Stage chargers selection	9
1.6.1 Types of Charger	10
1.7 Background and scope of the project	10
1.8 Objectives	11
CHAPTER-2	
2.1 Solar wind hybrid system	12
2.2 Solar photovoltaic system	14
2.3 Wind energy system	15
2.4 Back-up/or Storage system (battery)	16
2.5 Criteria for solar wind hybrid system optimizations	18
CHAPTER-3	
3.1 System component	19
3.2 Methodology	22
3.3 Circuit design methodology	23 ·

3.4 Assumptions

CHAPTER-4

Designing of control units	25
4.1 Continuous and discontinuous modes of operation in buck and boost converters	25
4.1.1 Boost converter	25
4.1.1.1 Continuous mode	25
4.1.1.2 Discontinuous mode	27
4.1.2 Buck converter	28
4.1.2.1 Continuous mode	28
4.1.2.2 Discontinuous mode	31
4.2 Design of the Buck and Boost converter	32
4.2.1 Inductor Selection	33
4.2.2 Output Voltage Setting	34
4.2.3 Capacitor Selection	3 4
4.2.4 Calculating Maximum Switch Current	35
4.3 Voltage Comparator Circuits	37
4.3.1 Differential voltage	37
4.3.2 Single power supply comparator equivalent schematic	38
4.3.3 Dual supply comparator equivalent schematic	39
4.3.4 Multi -level voltage detector	40
4.3.5 Effect of input offset voltage and hysterysis	40

.

46
47
47
47
52
52
53

Photo-views

59

£,

,

List of Figures

Fig.1.1.	Showing MPPT voltage with respect to current and power	5
Fig.1.2	(a) Showing power coefficient curve for a typical wind turbine & (b) Showing	7
	power curves for a typical wind turbine.	
Fig.1.3	Showing the equivalent circuit of a PV cell.	8
Fig.1.4	(a) Showing the resultant ideal voltage-current characteristic of a photovoltaic	9
	cell & (b) Showing the PV cell power characteristics	
Fig.3.1	Showing the design method of hybridization of PV-wind system.	22
Fig.3.2	Block diagram showing general procedure in circuit design and	
	implementation	
Fig.4.1	Evolution of the voltages and currents with time in an ideal boost converter	26
	operating in discontinuous mode.	
Fig.4.2	Evolution of the voltages and currents with time in an ideal boost converter	27
	operating	
Fig.4.3	Showing evolution of the voltages and currents operating in continuous mode	29
	with time of an ideal buck converter	
Fig.4.4	Evolution of the voltages and currents with time in an ideal buck converter	31
	operating in discontinuous mode.	
Fig.4.5	Showing comparator input versus output rules.	38
Fig.4.6	Showing Single power supply comparator equivalent schematic	38
Fig.4.7	Showing dual power supply comparator equivalent circuit	39.
Fig.4.8	Showing 4-levels voltage detection using LED.	40
Fig.4.9	ADC0804 Pin-out diagram.	41
Fig.4.10	Showing the interfacing ADC to 8051	42
Fig.4.11	Showing display system circuit with ADC & LCD with 8051 interfacing	43
c	diagram.	
Fig.5.1	Showing buck converter circuit design in multisim11	44

÷

Fig.5.2	Showing the boost converter circuit design in multisim11.	45
Fig.5.3	Showing multiple battery charging system circuit design in multisim11.	45
Fig.5.4	Showing the prototype grid of PV-Wind turbine generator system.	45
Fig.5.5	Showing the time (hours) vs. irradiation (mw/cm sq.) dated 06/05/14, Napam, Tezpur.	47
Fig.5.6	Showing irradiation (mw/cm ²) vs. PV module voltage (V).	48
Fig.5.7	Showing wind speed (m/s) vs. output voltage (V) of wind turbine generator	48
Fig.5.8	Showing the input voltage (V) vs. output voltage (V) across the boost converter in the wind turbine generator	49
Fig.5.9	Showing the input voltage (V) vs. output voltage (V) across the buck converter.	49
Fig.5.10	Prototype grid voltage (Vo) w.r.t input voltage at buck converter voltage (V), and boost converter with 8V	50
Fig.5.11:	Prototype grid voltage (Vo) w.r.t input voltage at buck converter voltage (V), and boost converter with 9V.	50

•

List of tables

Table 1: Showing other equipment or component	v	23
Table 2: Showing the different Vref/2 voltages and corresponding analog input voltage	e spans	42

List of abbreviations

ACS	Minimum Annualized Cost of the	IGBT	Insulated-gate bipolar transistor
	System		
ADC	Analog to Digital Conversion	LED	Light Emitting Diode
D	Duty cycle for Converter	MPP	Maximum Power Point
DER	Distributed Energy Resource	MPPT	Maximum Power Point Tracking
DOD	Battery's Depth of Discharge	PBC	Passivity-Based Control
	. (
DSP	Digital Signal Processor	SMA	Shape Memory Alloys
ESR	Equivalent Series Resistance	SMC	Sliding Mode Control
	·		
FPGA	Field Programmable Gate Array	VAWT	Vertical Axis Wind Turbine
HAWT	Horizontal Axis Wind Turbine	V _{i,max}	Maximum Input Voltage
LCD	Liquid Crystal Display	WECS	Wind Energy Conversion Systems
HOMER	Hybrid Optimization Model for	ZVS-ZCS	Zero Voltage Switching-Zero
	Electric Renewable		Current Switching

2