CONTENTS

Contents	Page no.
List of Figures	J.
List of Tables	11.
Chapter 1: Introduction	
1.1 Introduction	1
1.2 Solar Energy	2
1.3 Solar Radiation	3
1.4 Solar Photovoltaic Technology	5
1.5 Type of Tracking	7
1.5.1 Mechanical or Passive Trackers.	. 8
1.5.2 Microprocessor based solar tracker	10
1.5.3 Electro - optically controlled base tracker	11
1.5.4 Auxiliary bifacial solar cell based	12
1.5.5 Date and time based solar tracker	14
1.6 Photovoltaic power generation	15
1.7 Maximum power point tracking and its needs	16
1.8 Background and scope of this thesis	16
1.9 Objectives	17
Chapter 2: Methods and Methodology 2.1. Tracker design.	

	19
2.3. Description of components used for the design of single axis sun tracker	
	23
2.3.1.1. Light sensors for position control	23
2.3.1.2. The Photo-resistive cell	24
2.3.1.3. Light Dependent Resistor	24
2.3.2. Diodes	27
2.3.2.1. pn Junction diodes	28
2.3.2.2 .Forward bias region	28
2.3.2.3. Reverse bias region	29
2.3.2.4. IN 4007 diode	29
2.3.3. Transistor	30
2.3.3.1. Operation of transistor	31
2.3.3.2 Transistor BC547	32
2.3.4. Resistor	-33
2.3.4.1. Theory of operation of resistor	33
2.3.4.3. Power dissipation of resistor	33
2.3.5. Capacitor	34
2.3.5.1. Theory of operation of transistor	34
2.3.6. DC motor	35
2.3.6.1 Detailed description of DC motor	36
2.3.7. Relay	39
2.3.7.1. Basic operation of relay	-39
2.3.7.2. Types of relay	40
2.3.7.3. Solid state relay	40
2.4. Design process of electronic circuits for sun tracking system	42
2.4.1. Primary design circuit	42
2.4.1.1 Operation principle of primary circuit	42
2.4.1.2. Circuit diagram of primary circuit	43
2.4.1.3. Value of component	43
2.4.1.4. Working principle of primary circuit	44
2.4.2. Secondary Design circuit	46
2.4.2.1. Operation principle of secondary circuit	46
2.4.2.2. Circuit diagram of secondary circuit	46

2.4.2.3. Value of components	47
2.4.2.3 Working principle of secondary circuit	47
Chapter 3: Results and discussion	
3.1. Calibration of LDR sensor	50
3.2. Performance of complete single axis solar tracking system	51
3.2.1. The solar insolation receives by fixed and tracking PV panel	52
3.2.2. Powered delivered by fixed PV panel and tracking PV panel	-53
Chapter 4: Conclusions	
4.1. Conclusion	56
4.2. Difficulties and Future work	57

References

List of figure:

Figure no.	Рg
•	no.
Figure 1.1: Sun rays strikes on earth surface	3
Figure 1.2: Sun rays in summer	4
Figure 1.3: Sun rays in winter	4
Figure 1.4: Curve for maximum power point	7
Figure 1.5: A passive solar tracker using two identical cylindrical tubes	10
Figure 1.6: Scheme of terrestrial tracker	13
Figure 2.1: General procedure in machine design and construction	18
Figure 2.2: Worm and worm gear design	19
Figure 2.3: Schematic of mechanical design of the prototype sun track	22
Figure 2.4: the LDR used for the prototype	24
Figure 2.5: Illumination Vs Resistance change.	25
Figure 2.6: the spectral response characteristics of a typical commercially	25
available	
Figure 2.7: Symbol of diode	28
Figure 2.8: A simple circuit diagram of n-p-n bipolar transistor	32
Figure 2.9: NPN transistor BC 547	33
Figure 2.10: Basic internal diagram of capacitor	35
Figure 2.11: Fleming's left hand rule	36
Figure 2.12: Diagram for working principal of DC motor	37
Figure 2.13: 12 V DC motor	38
Figure 2.14: Simple electro- mechanical relay	40
Figure 2.15: Circuit diagram primary design circuit	43
Figure 2.16: circuit diagram of secondary design circuit	46
Figure 2.17: During performance analysis between Fixed and tracking PV system	49
Figure 3.1: Photo taken during calibration of photo sensor	50
Figure 3.2: Short circuit Current from the fixed PV panel and tracking PV panel	52
Figure 3.3: Solar insolation receive by fixed PV panel and tracking PV panel	53

Figure 3.4: Power Vs Time graph for fixed and tracking PV

55

List of Table:

Table no	Pg
	no
Table2.1. Maximum ratings and Electrical Characteristics of IN4007	30
Table2.2. Absolute maximum ratings at ambient temperature of BC547	33
Table2.3. Specification of used DC motor in the project	38
Table2.4. Characteristic and features of SC5-S- DC6V	41
Table3.1. Current gain by Fixed and Tracking PV panel with respect to time	51
Table 3.2. Solar insolation receive by fixed and tracking PV panel in	52
correspondence to time	
Table3.3. Power delivered by fixed and Tracking PV panel with respect to Time	54