Table of Contents

Acknowled	dgement	i
Abstract		
Table of Contents		iv
List of Fig	gures	vi
List of Tal	bles	viii
Nomenclature		ix
Chapter 1	l: Introduction	1
1.1	Motivation	1
1.2	Fluidized bed technology	2
1.3	Fluidized bed drying	4
1.4	Objectives of the present work	6
1.5	Outline of the thesis	6
Chapter 2	2: Literature Review	8
2.1	Introduction	8
2.2	Bed hydrodynamics and mass transfer behaviour	8
2.3	Effect of operating parameters on fluidized bed drying	10
2.4	Drying mechanism	12
2.5	Summary of the literature review	14
Chapter 3	3: Methodology	15
3.1	Introduction	15
3.2	Description of the Fluidized Bed Dryer Setup	15
3.3	Description of the Ergun's Simulation Software	18
3.4	Design of Air heater	20
	3.4.1 Air heater Design	20
	3.4.2 Heating Coil calculation	21

	3.5	Experimental procedure	23
	3.6	Summary of the chapter	23
Chapter 4: Results and Discussion			25
	4.1	Ergun's Fluidization Software Results	25
		4.1.1 Solid Characteristics	25
		4.1.2 Grid Design	26
		4.1.3 Flow Structure	27
		4.1.4 Cyclone Design	27
		4.1.5 Pressure Drop Calculation	28
		4.1.6 Heat transfer Co-efficient Calculation	29
4.2 Experimental results			29
4.3 Validation of results			39
Chapter 5: Conclusions and scope for future work		: Conclusions and scope for future work	40
Refer	ence		41
Apper	ndice	es	45
Ι	Cal	culation of minimum fluidization velocity	45
п	Des	sign of distributor plate	46
III	Des	sign of cyclone separator	51
IV	Cal	ibration of Blower for air supply	54
V	List	t of Equipment/Instruments used	55

List of Figures

Fig. 1.1	Various forms of contacting of a batch of solids by fluid	3
Fig. 2.1	Geldart classification of particles for air at ambient conditions	9
Fig. 2.2	Types of moisture	13
Fig. 2.3	Batch drying curve, constant drying condition	13
Fig. 3.1	Schematic of the fluidized bed paddy dryer Experimental setup	16
Fig. 3.2	Photograph of the fluidized bed paddy dryer Experimental setup	17
Fig. 3.3	Pitot tube connected with manometer	18
Fig. 3.4	Photographs of the designed cyclone separator	18
Fig. 3.5	Straight hole type distributor plate	18
Fig. 3.6	Photograph of glass wool insulation	18
Fig. 3.7	Schematic representation of different section of the FB	19
Fig. 3.8	Schematic Air heater design	21
Fig. 3.9	Photographs of the designed electric air heater	22
Fig. 3.10	Photographs of the blower used connected with variac for	22
	speed regulation	
Fig. 4.1.1	Solid Characteristics of the Fluidized Bed	25
Fig. 4.1.2	Grace Diagram	26
Fig. 4.1.3	Pressure drop profile of the Grid	26
Fig. 4.1.4	Flow Structure within the BFB	27
Fig. 4.1.5	Cyclone Design curve	28
Fig. 4.1.6	Pressure Drop at different section of the FB	28
Fig. 4.1.7	Variation of HTC with Solid Volume fraction	29
Fig. 4.2.1	Drying rate curve for I= 600g, U=10.2 m/s, T=75°C, P=2 KW	30
Fig. 4.2.2	Drying rate curve for I= 600g, U=10.75 m/s, T=60°C, P=2 KW	31
Fig. 4.2.3	Drying rate curve for I= 600g, U=10.67 m/s, T=60°C, P=1.5 KW	32
Fig. 4.2.4	Drying rate curve for I= 500g, U=10.67 m/s, T=60°C, P=1.5 KW	33
Fig. 4.2.5	Drying rate curve for I= 500g, U=14 m/s, T=60°C, P=2 KW	34
Fig. 4.2.6	Drying rate curve for I= 500g, U=9.5 m/s, T=75°C, P=2 KW	35
Fig. 4.2.7	Drying rate curve for I= 400g, U=9.5 m/s, T=60°C, P=2 KW	36
Fig. 4.2.8	Drying rate curve for I=600g at different operating conditions	37
Fig. 4.2.9	Drying rate curve for I=500g at different operating conditions	37

.

Fig. 4.2.10 Drying rate curves for the experiments performed at different 38 operating conditions

List of Tables

•

Table 4.1.1	HTC Obtained from the different models	29
Table 4.2.1	Moisture removed against time for I= 600g, U=10.2 m/s, T=75°C, P=2 KW	30
Table 4.2.2	Moisture removed against time for I= 600g, U=10.75 m/s, T=60°C, P=2 KW	31
Table 4.2.3	Moisture removed against time for I= 600g, U=10.67 m/s, T=60°C, P=1.5 KW	32
Table 4.2.4	Moisture removed against time for I= 500g, U=10.67 m/s, T= 60° C, P=1.5 KW	33
Table 4.2.5	Moisture removed against time for I= 500g, U=14 m/s, T=60°C, P=2 KW	34
Table 4.2.6	Moisture removed against time for I= 500g, U=9.5 m/s, T=75°C, P=2 KW	35
Table 4.2.7	Moisture removed against time for I= 400g, U=9.5 m/s, T=60°C, P=2 KW	36
Table 4.3.1	Comparison of the experimental results with other researchers results	39

Nomenclature

- A_b : Cross-sectional area of the bed (m²)
- C_d : Orifice discharge co-efficient
- *d*_{or} : Orifice diameter (m)
- d_p : Particle diameter (m)
- ε : Voidage
- ε_{mf} : Voidage at minimum fluidization
- H_{mf} : Height of the bed at minimum fluidization (m)
- h : Heat transfer co-efficient (W/m²-K)
- Δh : Difference in height of manometric fluid of water column (cm)
- *I* : Bed inventory (Kg)
- Nor : Number of orifices in the distributor
- ΔP_b : Bed pressure drop (N/m²)
- ΔP_d : Distributor pressure drop (N/m²)
- *t* : Time required for drying (min)
- T : Temperature (°C)
- U_{mf} : Minimum fluidization velocity (m/s)
- U_t : Terminal Velocity (m/s)
- *V* : Supply Voltage (volts)
- ρ_g : Gas Density (Kg/m³)

. .