CONTENTS

		Page No		
List of Fig	ures	Ш		
List of Tab	oles	V		
Chapter1:	INTRODUCTION	1		
	1.1 World's Energy scenario	1		
	1.2 Power Scenario of India	1		
	1.3 Electrical Grid: An Overview	2.		
	1.4 Background of the project	4		
Chapter2:	LITERATURE REVIEW			
	2.1 Key Drivers of Smart Grid	5 5		
	2.1.1 Unrelenting increase in electricity demand	5		
	2.1.2 Global warming	6		
	2.1.3 Reliability	6		
	2.2 Smart Grid Concept	7		
	2.3 Role of information and communication technology in the Smart Grid	8		
	2.4 Potential of Smart Grid	11		
	2.5 Impact of Smart Grid	11		
	2.5.1 Facilities enhanced demand response and load control	11		
	2.5.2 Improve operational efficiency	13		
	2.5.3 Enhance customer services	14		
	2.5.4 Enhanced energy saving by greater integration of renewable energy sources			
	2.6 Barriers to Smart Grid implementation in India	15		
Chapter3:	OBJECTIVES AND METHODOLOGY	17		
•	3.1 Solar Energy Centre: An overview	17		
	3.2 Objectives	17		
	3.3 Expected Outcomes	17		
	3.4 Methodology	18		
Chapter4:	DATA COLLECTIONS AND ANALYSIS	19		
•	4.1 Identification of generation points	19		
	4.1.1 Configuration of 20kW PV rooftop power plant	20		
	4.2 Identification of consumption points	22		
	4.3 Preparation of Single line diagram of 11kV substation	22		
	4.4 Load calculation of Block A, B, C and D	27		
Chapter5:	INTELLIGENT ENERGY MONITORING UNIT			
r	5.1 Installation of Intelligent Energy Monitoring Unit (IEMU)	38 38		
	5.2 Real Time Consumption data of Block A and Block B	39		
	5.3 Demand Side Management (DSM)	44		
	5.4 Installation of Intelligent Home Energy Monitoring Unit (IHEMU)	47		

Chapter6:	RESULTS AND DISCUSSIONS		
		Analysis of existing renewable energy sources	52
		6.1.1 Thin Film PV Plant 2.8 kWp connected across 3.3 kVA Delta	52
		Inverter	
		6.1.2 Thin film PV plant 3.2 kWp connected across 5KVA Delta Inverter	61
		6.1.3 Analysis of Sterling Engine 3X3 kWp	71
	6.2	Economic Analysis	81
Chapter7	CONCLUSION		85
	REF	ERENCES	86

•

.

.

LIST OF FIGURES

Figure No.		Page No.
1.1	World Electricity consumption (Quadrillion Btu)	2
1.2	Electric power system	3
2.1	Example of Smart Grid Map	5
2.2	Comparison of life cycle emission	6
2.3	Two way communication	7
2.4	Smart Grid software Layers	9
2.5	Impact of Smart grid	15
4.1	Block diagram of 10 KW grid interactive PV power plant	20
4.2	Block diagram of 5 KW grid interactive PV power plant	21
4.3	Block diagram of 5 KW standalone PV power plant	22
4.4	Block Diagram of 11 kV sub-station	23
4.5	Block Diagram of Mini Grid With Proposed Positions of Energy Meters	26
5.1	Block Diagram for communication link between inverter and various load priority	45
	for DSM	
5.2	Components used in Smart Micro Grid at SEC	46
5.3	IHEMU device with an open box view	48
5.4	Block diagram of the mini grid at Solar Energy Centre	51
6.1	Energy generation vs. average GHI and average day time temperature for 2.8 kWp	56
	thin film PV plant	
6.2	Energy generated versus rated Peak Power on daily basis for 2.8kwp thin film PV	58
	plant	
6.3	Capacity utilization factor in relation with energy generated and maximum power	60
	generated in a day for 2.8 kWp PV plant	
6.4	Electricity generated (kWh/day) vs average GHI (W/m2) and average day time	66
	temperature for 3.2 kWp thin film PV plant	
6.5	Energy generated (kWh/day) versus rated Peak Power (kWp) and Maximum	68
	Generated power (kW) on daily basis for 3.2kWp thin film PV Plant	
6.6	Capacity utilization factor in relation with energy generated and maximum power	70
	achieved in a day for 3.2kWp thin film PV plant	
6.7	Electricity generated (kWh/day) vs average GHI(W/m2) and average day time	76
	temperature for Stirling engine	

6.8	Energy generated (kWh/day) versus rated Peak Power (kWp) and Maximum	78
	Generated power (kW) on daily basis for Stirling engine	
6.9	Capacity utilization factor in relation with energy generated and maximum power	80
	achievedin a day for Stirling Engine	

,

.

,

LIST OF TABLES

Table No	0.	Page No.
4.1	List of energy resources	19
4.2	Ratings of all the gadgets/Appliances	27
4.3	Load estimation of block A	28
4.4	Load estimation of block B	31
4.5	Load estimation of block C	35
4.6	Load estimation of block D	36
5.1	Location of IEMU installed at SEC campus	39
5.2	Real time consumption of block A and B	40
5.3	List of 36 nonessential load point for DSM	47
5.4	Location of IHEMU installed	50
6.1	Real time generation data of 28kWp Thin film	52
6.2	Real time generation data of 3.2kWp Thin Film	62
6.3	Real time generation data of 3X3 kWp sterling Engine	72
6.4	Energy generation, saving per day for different scenario	84