ABSTRACT

Renewable energy sources and technologies have the potential to provide

solutions to the long-standing energy problems being faced by the developing countries.

Solar photovoltaic technology could be reliable solution for energy security. Variations

in the current-voltage characteristics of photovoltaic cells can lead to significant power

loss "due to mismatch" when the cells are connected together in a network. This study

explores how this mismatch loss depends on temperature of a cell. Further reliability of

PV technology is subjected to many variable parameters like availability of sun

shadowing effect, manufacturing technology and material used. Hot spot is one of the

technical requirements of PV modules for qualification. According to the standard IEC

61215 passing the hot spot endurance test is necessary criteria. Hot spot situation is

existent when a solar cell within a module generates less current than the string current

of the module or of the PV generator. This occurs when the cell is totally or partially

shaded, damaged, or when cells are electrically mismatched. The hot spot risk of

crystalline silicon modules is the only reliability and safety issue, which is attributed to

cell properties. The increased hot spot risk results from local shunts or deformations of

the pn-junction, which might origin from inhomogeneity in the raw material of the

wafer or bad cell processing too.

The relation between hotspot area and increase in temperature is analyzed to

determine the stability of module in various photovoltaic technologies; this could help

in determining the stability of large photovoltaic systems.

Keywords: p-n junction, hot spot

Deepak Sagar

ENE11009