Table of contents

Chapter	•	Topics	Page No.
		Acknowledgement	I
		Abstract	II
		Table of contents	III-IV
•		List of tables	V
••		List of Figures	VI
I		INTRODUCTION	1-5
	1.1	Energy scenario of India	1
	1.2	Solar energy and its utilization	1-3
,	1.3	Prospect of utilization of solar energy in North East India	3-4
	1. 4	Technology for harnessing solar thermal energy	4-5
	1. 5	Objectives	5
П		REVIEW OF LITERATURE	7-10
	2.1	Energy scenario of India	7
	2.2	Technology for industrial utilization of solar energy	7-8
	2.3	Performance improvement by technological intervention	8-9
:	2.4	Theoretical model development for evaluation of	9-10
		performance	
III		METHODS AND MATERIALS	11-29
	3.1	Study area	11
	3.1.1	Agro climatic Zones of Assam	11
	3.1.2	North Bank Plain Zone	11-13
	3.2	Assessment of solar thermal energy in NBPZ	13
	3.2.1	Data collection from Automatic Weather Station (AWS)	13-14
	3.2.2	Data collection from NASA	14-15
•	3.3	Development of hot air generator (HAG)	15-16
	3.3.1	Entry section	16
	3.3.2	Absorber section	16
	3.3.3	Exit Section	16
	3.3.4	Centrifugal blower	17

	3.3.5	Frame	17-18
	3.3.6	Optimum inclination of HAG	18
	3.3.7	Insulation	18
	3.4	Instrumentation	18
	3.4.1	Thermocouple	18-19
	3.4.2	Thermometer	19
	3.4.3	Pyranometer	19
	3.4.4	Anemometer	19
	3.4.5	Multimeter	19
	3.5	Performance testing of HAG	22
	3.5.1	Thermal Performance of HAG	22-23
	3.6	Development of theoretical model for predicting outlet	23-29
		temperature of HAG	
IV		RESULTS AND DISCUSSION	31-47
	4.1	Prospect of utilization of solar energy	31-33
	4.2	Development of laboratory scale solar hot air generator	33-37
		(HAG)	
	4.3	Testing of laboratory scale hot air generator	37
	4.3.1	Effect of geometry of the absorber plate, different flow	37-40
		rates and modes of air flow on HAG performance	
	4.3.2	Variation of outlet temperature of HAG for different	41-42
		mass flow rates and absorber geometries	
	4.4	Development of theoretical model for predicting outlet	42
		temperature of HAG	
	4.4.1	Variation of Reynolds number	42-43
	4.4.2	Variation of coefficient of convective heat transfer	43-44
	4.4.3	Comparison of theoretical model's result and	44-47
		experimental result	
V		CONCLUSIONS	49-50
		REFERENCES	50-53

.

List of tables

Table No	Particulars	Page No
Table 3.1	Statistics of four districts of NBPZ	13
Table 3.2	District wise grid locations for five districts of NBPZ, Assam	15
Table 3.3	Specification of air blower used in the study	17
Table 3.4	Specification of thermocouples used in the experiment	19
Table 4.1	Detailed specifications of the HAG unit	34
Table 4.2 (a)	Variation of temperature for different mass flow rates and air	41
	flow mode with longitudinal corrugation	
Table 4.2 (b)	Variation of temperature for different mass flow rates and air	42
	flow mode with transverse corrugation	
Table 4.3 (a)	Variation of Reynolds no for air flow modes with longitudinal	43
	corrugation roughness	
Table 4.3 (b)	Variation of Reynolds no for different air flow modes with	43
	transverse corrugation roughness	
Table 4.4 (a)	Variation of coefficient of convective heat transfer for different	44
	air flow modes with longitudinal corrugation roughness	
Table 4.4 (b)	Variation of coefficient of convective heat transfer for different	44
	air flow modes with transverse corrugation roughness	

List of figures

Figure No.	Particulars	Page No
Fig. 3.1	Agro climatic zones and North bank plain zone of Assam	12
Fig. 3.2	Developed HAG model	16
Fig. 3.3	Centrifugal air blower	17
Fig. 3.4	Multi thermocouple	20
Fig. 3.5	Pyranometer	20
Fig. 3.6	Anemometer	20
Fig. 3.7	Multimeter	20
Fig. 4.1(a)	Monthly variation of solar insolation for Sonitpur district	32
Fig. 4.1(b)	Monthly variation of solar insolation for Dhemaji, Lakhimpur, Darrang and Udalguri districs	32
Fig. 4.2	Monthly variations of hours per day solar radiation at Tezpur	33
Fig. 4.3 (a)	Front view of the HAG	34
Fig. 4.3 (b)	Back view of HAG	35
Fig. 4.4 (a)	Front pass (single flow) HAG unit	35
Fig. 4.4 (b)	Back pass (single flow) HAG unit	35
Fig. 4.4 (c)	Double flow (Front and back flow together) HAG unit	36
Fig. 4.5 (a)	Complete assemble of HAG	36
Fig. 4.5 (b)	Longitudinal corrugation	37
Fig. 4.5 (c)	Transverse corrugation	37
Fig. 4.6 (a)	Efficiency vs. mass flow rate	38
Fig. 4.6 (b)	Efficiency vs. mass flow rate	39
Fig. 4.6 (c)	Efficiency vs. mass flow rate	39
Fig. 4.6 (d)	Efficiency vs. mass flow rate	40
Fig. 4.7 (a)	Comparison of theoretical and experimental temperature	45
Fig. 4.7 (b)	Comparison of theoretical and experimental temperature	45
Fig. 4.7 (c)	Comparison of theoretical and experimental temperature	46
Fig. 4.7 (d)	Comparison of theoretical and experimental temperature	46