TABLE OF CONTENTS

Page no.

LIST OF FIGURES			i-ii
LIST OF TABLES			iii-iv
LIST OF ABBRIVLA	ATION		v
Chapter 1: I	NTRODUCTION		1
1.1	Renewable energy in India		3
<u>1.2</u>	Biomass		6
1.2.1	Biomass utilization in India		7
1.3	Pyrolysis		8
1.4	Bio-oil		10
1.4.1	Physicochemical properties of bio-oil	,	10
1.4.2	Bio-oil from biomass		10
1.4.3	Components of bio-oil		11
1.5	Biochar	•	12
1.6	World wide tea production		13
1.6.1	Tea production in India		14
1.6.2	Main tea producing region in India		15
1.6.3	Source of tea factory waste		15
1.7	Energy from waste		16
1.7.1	Generation of solid waste in India		17
1. <u>8</u>	Justification of the work		19
1.9	Objective of the work	ť	21
1.10	Organization of thesis	<i>9</i> ,	22
Chapter 2: L	ITERATURE RIVEW		23
2.1	Waste to energy conversion		23
2.2	Pyrolysis		24

	2.3	Pyrolysis heating rate	25
	2.4	Vapour rescedence time	27
	2.5	Literature reviews related to bio-oil	28
	2.6	Chemical nature of bio-oil	28
	2.7	Upgrading of bio-oil	29
	2.8	Lignocellulosic composition	31
	2.9	Biochar	32
	2.10	p ^H of biochar	34
	2.11	Porosity and surface area	35
	2.12	Thermogravimetric analysis of biomass	36
Chapter 3: N	IATER	IALS AND METHODS	38
	3.1	Material used	38
	3.2	Methodology	40
·	3.2.1	Pretreatment (drying)	40
	3.2.2	Pyrolysis at different temperature	40
	3.3	Proximate analysis of samples	40
	3.3.1	Determination of moisture content	40
	3.3.2	Determination of ash content	41
	3.3.3	Determination of volatile matter	41
	3.3.4	Determination of fixed carbon content	42
	3.4	Component analysis of the biomass samples	42
	3.4.1	Analysis of extractives	42
	3.4.2	Analysis of hemicellolose	42
ж	3.4.3	Analysis of lignin	43

	3.4.4	Analysis of cellulose	43
ъ.	3.5	Ultimate analysis	43
	3.6	Determination of p ^H	44
	3.7	Calorific value	44
	3.8	Experimental setup for pyrolysis	44
	3.9	Product yield	46
	3.10	Carbon sequestration potential (CS)	46
	3.11	Conductivity of biochar	46
	3.12	Cataion excenge capacity	47
	3.13	Cherecterization of bio-oil	47
	3.13.1	Calorific value	47
	3.13.2	Total acid number	47
	3.14	Instrumental Cherecterization	48
Chapter 4: R	ESULT	'S AND DISCUSSION	49
	4.1	Characterization of the selected biomass sample	49
	4.1.1	Proximate analysis	49
	4.1.2	Ultimate analysis	49
	4.1.3	Bio-chemical and inorganic element analysis	52
	4.2	FTIR TFW samples	52
	4.3	SEM-EDX analysis	54
	4.4	TGA analysis	55
	4.5	Pyrolysis product yeilds of TFW	58
	4.6	Cherecterization of biochar	61
	4.6.1	Elemental analysis of biochar	62

.

4.6.2	p ^H of biochar	62
4.6.3	FTIR spectroscopy of biochar	63
4.6.4	SEM image of biochar at different temperature	63
4.6.5	EDX-analysis of biochar at 500°C	67
4.7	Carbon sequestration potential (cs)	68
4.8.	Cataion exchange capacity (CEC) of TFW biochar	68
4.8	Conductivity of TFW biochar	69
4,9	Cherecterization of bio-oil yeilded from TFW	69
4.9.1	Ultimate analysis	69
4.9.2	FTIR spectra of bio-oil	70
4.10	¹ H NMR of bio-oil	73
4.11	GC-MS of bio-oil	78

Chapter 5: CONCLUSION 79			
5.1	Pictorial presentations -Appendix	80	
5.2	References	82	
5.3	publications	83	

LIST OF FIGURES

Page no.

		1 450 101
Fig 1	2012 fuel shares in world Total Primary Energy Supply	2
Fig 2	Potential and current installed capacity of renewable	
	sources of energy in India.	4
Fig 3	Renewable Energy Potential in India	6
Fig 4	· Available biomass sources	7
Fig 5	Simplified representation of biomass pyrolysis	8
Fig 6	Tea producing countries of the world	13
Fig 7	Waste management hierarchy	18
Fig 8	Green tea leaves	36
Fig 9	Tea Factory Waste samples	36
Fig 10	Flow diagram of methodology adopted for study	37
Fig 11	Schematic figure of the experimental setup	43
Fig 12	Experimental set up available in the lab	43
Fig 13	Vertical reactor tube of glass	43
Fig 14	FTIR of Tea Factory Waste	51
Fig 15	SEM analysis of FTW	52
Fig 16	EDX analysis of FTW	53
Fig 17	TGA of TFW	55
Fig 18	TGA and DTG of TFW	55
Fig 19	Yield of pyrolysis products of TFW at different	
	temperature with 10°C/min heating rate	57
Fig 20	Yield of pyrolysis products of TFW at different	
,	temperature with 40°C/min heating rate	58
Fig 21	Effect of temperature on P^{H} of biochar produced	
	from TFW at different heating rates	61
Fig 22	FTIR Spectra of TFW biochar obtained at	
	Different temperature	62
Fig 23	Biochar at 400°C	63
Fig 24	Biochar at 500°C	64
Fig 25	Biochar at 600°C	64
Fig 26	Biochar at 700°C	65

Fig 27	EDX graph of biochar at 500°C	65
Fig 28	FTIR of TFW bio-oil at 400°C, 500°C respectively	69
Fig 29	FTIR of TFW bio-oil at 600°C, 700°C respectively	70
Fig 30	¹ H-NMR of FTW Bio-oil yielded at 400°c	72
Fig 31	¹ H-NMR of FTW Bio-oil yielded at 500°c	73
Fig 32	¹ H-NMR of FTW Bio-oil yielded at 600°c	74
Fig 33	¹ H-NMR of FTW Bio-oil yielded at 700°c	75
Fig 34	GC-MS of TFW bio-oil	76
Fig 35	TIC of TFW bio-oil	77

LIST OF TABLES

Page no.

Table1.1	Total renewable energy installed capacity	5
Table1.2	Typical product yields (dry wood basis) obtained by	
	different modes of thermochemical conversion of wood	9
Table1.3	Components of crude biomass oil	11
Table1.4	The top ten tea producing countries in the world, with the	
	number of tons of tea produced in 2013	12
Table1.5	Chemical composition of Tea Factory Waste	
	and Decaffeinated Tea Wastes (Camellia assamica)	15
Table 4.1	Proximate analysis and heating value of selected samples	48
Table 4.2	Component analysis of TFW (%wt dry basis)	50
Table 4.3	Metal content in the TFW (wavelength/nm)	50
Table 4.4	Functional groups present in TFW	51
Table 4.5	EDX of TFW	53
Table 4.6	Effect of temperature and heating rate on the	
	pyrolysis product yield of TFW	56
Table 4.7	Proximate analysis of biochar produced from TFW	
	at different temperatures and heating rates	59
Table 4.8	Elemental analysis of biochar produced at	
	different temperature and heating rate	60
Table 4.9	P^{H} of biochar at different temperature with	
	different heating rate.	60
Table 4.10	EDX analysis of biochar at 500°C	65
Table 4.11	Carbon sequestration potential of biochar	66
Table 4.12	CEC of TFW biochar	66
Table 4.13	Conductivity of TFW biochar	67
Table 4.14	Ultimate analysis of bio-oil obtained at 500°C	67
Table 4.15	¹ H NMR results of bio-oils of TFW	71
Table 4.16	Results of chemical compounds	
	of TFW bio-oil obtained at 500°C	78

.

LIST OF ABBRIVIATION

	,
ATS	Automatic Transfer Switch
CEC	Cation Excenge Capacity
CS	Carbon Sequestration
DCTW	Decaffeinated Tea Waste
GHG	Green House Gases
HHR	High Heating Rate
HVF	Hot Vapour Filtration
MSW	Municipal Solid Waste
PGM	Plasma Gasification Melting
SHR	Slow Heating Rate
TFW	Tea Factory Waste
WTE	Waste To Energy