	Page no.
LIST OF FIGURES	iv
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii
	1.20
CHAPTER 1: INTRODUCTION	1-20
1.1 Solar Photovoltaic (PV)	1
1.1.1 Principle of PV	2
1.1.2 Commercially used PV technologies	2
1.1.2.1 Crystalline silicon PV (C-Si) 1.1.2.1.1 Mono-crystalline Silicon (Mono C-Si)	· 3
1.1.2.1.2 Multi-crystalline Silicon (Multi C-Si)	3
1.1.2.2 Thin film PV technology	4
1.1.2.2.1 Amorphous Silicon (a-Si)	. 4
1.1.2.2.2 Cadmium Telluride (CdTe)	. 5
1.1.2.2.3 Copper Indium Di-selenide (CuInSe ₂ , or CIS)	5
1.1.3 Equivalent electrical circuit of Solar Cell	6
1.1.4 I-V Characteristics	7
1.1.4.1 Open circuit voltage	7
1.1.4.2 Short-Circuit Current	8
1.1.4.3 Fill Factor	8
1.1.4.4 Efficiency	9
1.1.5 Factors affecting the output of PV module	10
1,1.5.1 Effect of Irradiance	10
1.1.5.2 Efficiency at Different Irradiance	11
1.1.5.3 Effect of Solar Spectrum	• 11-
1.1.5.4 Effect of temperature and temperature co-efficient	11
1.1.5.5 Degradation of PV module	12
1.1.6 Types of PV systems	13
1.1.6.1 Stand-alone systems	13
1.1.6.2 SPV hybrid systems	14
1.1.6.3 Grid-interactive systems	14
1.2 Jawaharlal Nehru National Solar Mission (JNNSM)	15
1.2.1 Grid connected solar power plants under JNNSM	16

CONTENTS

· i

1.3 Solar radiation	16
1.3.1 Classification of Solar Radiation	16
1,3.1.1 Direct radiation	17
1.3.1.2 Diffuse radiation	17
1.3.1.3 Diffuse Horizontal Radiation	18
1.3.1.4 Global Horizontal Radiation	18
1.3.1.5 Global Radiation	18
1.3.2 Solar Resource Assessment	19
1.3.2.1 NREL-MNRE Solar resource map	19
1.3.2.2 Indian Meteorological Department (IMD) Stations	19
1.3.2.3 Solar Radiation Resource Assessment (SRRA) Stations	20
CHAPTER 2: LITERATURE REVIEW	21-32
2.1 Technology choice for PV	21
2.2 Analysis of PV modules performance in different climates	23
2.3 Effect of Temperature and temperature co-efficient on output of PV modules	28
2.4 Nominal Operating Cell Temperature (NOCT) of PV modules	29
2.5 Cadmium Telluride (CdTe) PV technology	31
CHAPTER 3: OBJECTIVES, MATERIALS AND METHODS	33-42
3.1 Objectives	33
3.2 Material and Methods	33
3.2.1 Radiation assessment	33
3.2.2 Temperature co-efficient and NOCT calculation	33
3.2.2.1 Equipment Set-up	33
3.2.2.1.1 QuickSun 700A Large Area Solar Simulator	33
3.2.2.1.2Environmental Test Chamber	35
3.2.2.1.3 Nominal Operating Cell Temperature (NOCT) Test Bed	36
3.2.2.2 Experimental Procedures	38
3.2.2.2.1 Performance at STC according to IEC 61215	38
3.2.2.2.2 Measurement of temperature Coefficients of	
Photovoltaic modules according to IEC 61215	
and IEC 61646	39
3.2.2.3 Measurement of Nominal Operating Cell	
Temperature (NOCT)	40
3.2.3 Energy output calculation from $1 kW_p$ plant	42
3.2.4 Error Calculation	42
	ii

CHAPTER: 4 RESULTS AND DISCUSSION	43-80
4.1 Classification of India on the basis of annual average insolation and temperature	43
4.2 Temperature Co-efficient of different PV technologies	45
4.2.1 Temperature co-efficient calculation of Mono C-Si samples	45
4.2.1.1 Determination of temperature co-efficient	45
4.2.1.1.1 Determination of temperature co-efficient of current	45
4.2.1.1.2 Determination of temperature co-efficient of voltage	47
4.2.1.1.3 Determination of temperature co-efficient of power	49
4.2.2 Temperature co-efficient calculation of Multi C-Si samples	51
4.2.2.1 Determination of temperature co-efficient	52
4.2.2.1.1 Determination of temperature co-efficient of current	52
4.2.1.2.2 Determination of temperature co-efficient of voltage	54
4.2.1.2.3 Determination of temperature co-efficient of power	56
4.2.3 Temperature co-efficient calculation of a-Si sample	59
4.2.3.1 Determination of temperature co-efficient	59
4.2.3.1.1 Determination of temperature co-efficient of current	59
4.2.3.1.2 Determination of temperature co-efficient of voltage	59
4.2.3.1.3 Determination of temperature co-efficient of power	59
4.2.4 Temperature co-efficient calculation of CdTe samples	60
4.2.4.1 Determination of temperature co-efficient	60
4.2.4.1.1 Determination of temperature co-efficient of current	60
4.2.4.1.2 Determination of temperature co-efficient of voltage	61
4.2.4.1.3 Determination of temperature co-efficient of power	61
4.3 Nominal Operating Cell Temperature of PV modules	64
4.3.1 NOCT Calculation	64
4.4 Temperature correction on energy output from different commercially	
available photovoltaic modules	67
4.5 Are Thin Film PV module technologies better option for Indian conditions?	68
4.6 Energy output (kWh) of different PV technologies in different climatic	
zones of India	72
4.7 SEC Test Bed data analysis and verification with theoretical output	78
CHAPTER: 5 CONCLUSIONS	81
REFERENCES	82-88
PUBLICATIONS	89
·	111

.

LIST OF FIGURES

Figure Particulars	Page No.
Figure 1.1 Working Principle of Photo-Voltaic Cell	2
Figure 1.2 Different types of PV modules	6
Figure 1.3 Equivalent Circuit Diagram of a Solar Cell	6
Figure 1.4 V_{oc} and I_{sc} in I-V curve of a Solar Cell	7
Figure 1.5 Fill factor shown in I-V Curve	8
Figure 1.6 Efficiency vs band gap energy	9
Figure 1.7 Reported efficiency of Solar cell	10
Figure 1.8 I-V curve at different irradiance level	11
Figure 1.9 Spectrum response of Solar cell	11
Figure 1.10 Effect of temperature shown in I-V curve	12
Figure 1.11(a) Block diagram of a directly coupled stand alone PV system	13
Figure 1.11 (b) Stand alone PV systems with battery storage powering DC and	
AC loads	14
Figure 1.12 Block diagram representation of a Hybrid PV system	14
Figure 1.13 Block diagram representation of a grid-connected PV system	15
Figure 1.14 Different Components of solar radiation	18
Figure 1.15 NREL-MNRE Solar resource map of India	20
Figure 1.16 IMD stations	20
Figure 1.17 SRRA Stations	20
Figure 3.1 QuickSun 700A large area solar simulator	34
Figure 3.2 Environmental Test Chamber	36
Figure 3.3 NOCT correction factor	36 .
Figure 3.4 Schematic diagram of NOCT Set-up	38
Figure 3.5 NOCT test bed at SEC	38
Figure 4.1 Classification of India on the basis of annual average insolation	
and temperature (From NASA satellite data)	44
Figure 4.2 Temperature co-efficient of current of sample 1	45
Figure 4.3 Temperature co-efficient of current of sample 2	46
Figure 4.4 Temperature co-efficient of current of sample 3	46
Figure 4.5 Temperature co-efficient of current of sample 4	46
Figure 4.6 Temperature co-efficient of current of sample 5	47
Figure 4.7 Temperature co-efficient of current of sample 6	47
Figure 4.8 Temperature co-efficient of Voltage of sample 1	47

iv

Figure 4.9 Temperature co-efficient of Voltage of sample 2	48
Figure 4.10 Temperature co-efficient of Voltage of sample 3	.48
Figure 4.11 Temperature co-efficient of Voltage of sample 4	48
Figure 4.12 Temperature co-efficient of Voltage of sample 5	49
Figure 4.13 Temperature co-efficient of Voltage of sample 6	49
Figure 4.14 Temperature co-efficient of power of sample 1	49
Figure 4.15 Temperature co-efficient of Power of sample 2	50
Figure 4.16 Temperature co-efficient of power of sample 3	50
Figure 4.17 Temperature co-efficient of power of sample 4	50
Figure 4.18 Temperature co-efficient of power of sample 5	51
Figure 4.19 Temperature co-efficient of power of sample 6	51
Figure 4.20 Temperature co-efficient of current of sample 1	52
Figure 4.21 Temperature co-efficient of current of sample 2	52
Figure 4.22 Temperature co-efficient of current of sample 3	52
Figure 4.23 Temperature co-efficient of current of sample 4	53 ,
Figure 4.24 Temperature co-efficient of current of sample 5	53
Figure 4.25 Temperature co-efficient of current of sample 6	53
Figure 4.26 Temperature co-efficient of current of sample 7	54
Figure 4.27 Temperature co-efficient of Voltage of sample 1	54
Figure 4.28 temperature co-efficient of Voltage of sample 2	54
Figure 4.29 Temperature co-efficient of Voltage of sample 3	55
Figure 4.30 Temperature co-efficient of Voltage of sample 4	55
Figure 4.31 Temperature co-efficient of Voltage of sample 5	55
Figure 4.32 Temperature co-efficient of Voltage of sample 6	56
Figure 4.33 Temperature co-efficient of Voltage of sample 7	56
Figure 4.34 Temperature co-efficient of power of sample 1	56
Figure 4.35 Temperature co-efficient of power of sample 2	57
Figure 4.36 Temperature co-efficient of power of sample 3	57
Figure 4.37 Temperature co-efficient of power of sample 4	57
Figure 4.38 Temperature co-efficient of power of sample 5	58
Figure 4.39 Temperature co-efficient of power of sample 6	58
Figure 4.40 Temperature co-efficient of power of sample 7	58
Figure 4.41 Temperature co-efficient of current of sample 1	59
Figure 4.42 Temperature co-efficient of voltage of sample 1	59
Figure 4.43 Temperature co-efficient of power of sample 1	59
Figure 4.44 Temperature co-efficient of current of sample 1	60
Figure 4.45 Temperature co-efficient of current of sample 2	60 .

v

.

Figure 4.46 Temperature co-efficient of voltage of sample 1	61
Figure 4.47 Temperature co-efficient of voltage of sample 2	61
Figure 4.48 Temperature co-efficient of power of sample 1	61
Figure 4.49 Temperature co-efficient of power of sample 2	62
Figure 4.50 Comparison of temperature coefficient of power for mono and	
multi crystalline silicon PV modules	63
Figure 4.51 Average temperature co-efficient of different PV technologies	63
Figure 4.52 T_j - T_{amb} vs radiations	64
Figure 4.53 T_{j} - T_{amb} vs radiations	65
Figure 4.54 NOCT Value of multi crystalline Si PV modules	65
Figure 4.55 NOCT values of mono crystalline Si PV modules	66
Figure 4.56 Comparison of NOCT values of mono and multi crystalline Si PV module	s 66
Figure 4.57 SEC outdoor test bed	69
Figure 4.58 Variation of cell efficiencies of different PV technologies with irradiance	70
Figure 4.59 Generation of a-Si and multi C-Si test bed during the year of 2011	80

· · ·

Table Particulars	Page No.
Table 1.1 National Solar Mission targets on capacity addition	16
Table 1.2 Few MW Scale grid interactive PV power plants under JNNSM	17
Table 3.1 Details of QuickSun 700A large area solar simulator	34
Table 3.2 Specification of QuickSun 700A large area solar simulator	34
Table 3.3 Details of Environmental test chamber	35
Table 3.4 Specification of Environmental Chamber	35
Table 3.5 NOCT Set- up details	36
Table 4.1 Temperature co-efficient of different PV technologies	62
Table 4.2 Energy output for same watt PV modules of different technologies	
installed in same climatic condition	68
Table 4.3 Cell efficiency variation at different irradiance	71
Table 4.4 Energy output range at different climatic zones of India for	
different PV technologies	72
Table 4.5 Net exported energy-summary for the month February 2013	76
Table 4.6 Average Energy (kWh) generation in 2011 year	79
Table 4.7 Error calculation between actual generation and prediction	80

LIST OF TABLES

LIST OF ABBREVIATIONS

PV	Photovoltaic
NASA	National Aeronautics and Space Administration
GHI	Global Horizontal Irradiance
STC	Standard Test Condition
Mono C-Si	Mono Crystalline Silicon
Multi C-Si	Multi Crystalline Silicon
a-Si	Amorphous Silicon
CdTe	Cadmium Telluride
CIGS	Copper Indium (gallium) diselenide
CIS	Copper Indium Di-selenide
NOCT	Nominal Operating Cell Temperature
SEC	Solar Energy Centre
SPV	Solar Photovoltaic
JNNSM	Jawaharlal Nehru National Solar Mission
NREL	National Renewable Energy Laboratory
MNRE	Ministry of New and Renewable Energy
IMD	Indian Meteorological Department
SRRA	Solar Radiation Resource Assessment
IEC	International Electrotechnical Commission
GIS	Geographic Information System
C-WET	Centre for Wind Energy Technology
SRE	Standard Reference Environment
BIPV	Building Integrated Photovoltaic
NAIST	Nara Institute of Science and Technology
LCA	Life Cycle Assessment
GHG	Greenhouse Gases
EPBT	Energy Payback Time
HIT	Hetero-Junction with thin Intrinsic layer