Table of Contents

Contents		Page no.	
List o	i		
List of Tables		ii	
Nomenclature		iv	
1.	Introduction	1	
1.1	Indian Energy Scenerio	1	
1.2	Prospects of renewable energy sources	2	
1.3	Importance of solar energy	2	
1.4	Solar photovoltaics	3	
1.5	Solar cells	4	
1.5.1	Crystalline silicon	4	
1.5.2	Amorphous silicon	6	
1.6	Brief history of solar cells	8	
1.7	The photovoltaic effect	9	
1.8	Effect of temperature of PV cells/modules	10	
1.9	Objectives of the work	11	
1.10	Outline of the report	11	
2.	Literature review	12	
2.1	Introduction	12	
2.2	Literature review on temperature dependence on solar cells	12	
2.3	Conclusion	16	
3.	Temperature dependence of PV performance parameters	17	
3.1	Introduction	17	
3.2	Solar radiation spectrum	17	
3.3	General formulation of a solar PV cell	18	
3.4	Calculation of theoretical limits	22	
3.5	Experimental setup	28	
3.5.1	Heater	29	
3.5.2	Lamp	29	
3.5.3	Thermocouple	30	
3.5.4	AutoLab PG –stat	31	
3.6	Conclusion	33	

4.	Results and discussion	34
4.1	Introduction	34
4.2	Results	34
4.3	Discussion	40
5.	Conclusion	42
5.1	Conclusion	42
5.2	Future work	42

List of figures:

Figure:1.1	Polycrystalline solar cell showing its grain boundaries
Figure: 1.2	Typical working diagram of a solar cell
Figure: 3.1	Reference solar spectrum data as per ASTM G173-03 reference spectra
Figure 3.2	Equivalent circuit model of an ideal solar cell
Figure: 3.3	Photon flux from the sun at the earth's surface (1000Wm ⁻² , AM1.5G) and the integrated short circuit current density as a function of wavelength
Figure: 3.4	Temperature vs. J_{sc} plot showing their linear rate of change
Figure: 3.5	Temperature vsV_{oc} and FF plot showing their linear rate of change
Figure: 3.6	Temperature vs η plot showing its linear rate of decrease
Figure: 3.7	Images of (a) a- Si cell, (b) mono-crystalline Si cell and (c) Polycrystalline Si cell
Figure: 3.8	Images of (a) Flat plate heater used for changing the temperature of the cells (b) the halogen lamp (along with the heater) used for illuminating the cells.
Figure: 3.9	Metravi 305XL K-type thermocouple
Figure: 3.10	AutoLab P-G stat used for tracing the I-V curve (b) I-V curve monitored by P-G stat being recorded in NOVA 1.6
Figure: 3.11	Basic diagram of a potentiostat / galvanostat
Figure: 3.12	Complete setup of PG-stat for performing experiment
Figure: 4.1	I-V plots of the amorphous cell measured at different cell temperatures
Figure: 4.13	Variation of η with temperature (30-70 °C) for the a-Si cell

Figure: 4.2	Variation of V _{oc} with temperature (30-70 °C) for the 3 types of silicon cells
Figure: 4.3	Variation of I_{sc} (A) with temperature (30-70 $^{\circ}$ C) for the 3 types of silicon cells
Figure: 4.4	Variation of FF with temperature (30-70 °C) for the 3 types of silicon cells
Figure: 4.5	Variation of η with temperature (30-70 °C) for the mono and poly c-Si cells
Figure: 4.6	Variation of η with temperature (30-70 °C) for the amorphous Si cell

List of Tables:

Table: 3.1	Energy band gap parameters of the semiconducting material Silicon
Table: 3.2	List of values of band gaps, cut-off wavelength and J_{sc} at different temperatures
Table: 3.3	List of theoretical maximum values of parameters for crystalline silicon solar cells
Table: 4.1	Experimental values obtained for amorphous silicon cell at different temperatures
Table: 4.2	Experimental values obtained for polycrystalline silicon cell at different temperatures
Table: 4.3	Experimental values obtained for mono-crystalline silicon cell at different temperatures
Table: 4.4	Rate of change of performance parameters in comparison with the theoretical values.

Nomenclature

```
Band gap energy (eV)
E_{g}
          Open circuit voltage (V)
V_{oc}
          Short circuit current density (A)
J_{sc}
          Reverse saturation current density (A)
J_{o}
          Short circuit current (A)
I_{sc}
          Reverse saturation current(A)
I_0
          Photo current (A)
I_{ph}
          Fill factor
FF
          cell efficiency
η
          Voltage at the maximum power point (V)
V_{\rm m}
          Current at the maximum power point (A)
I_m
T
          Temperature of the PV cell ( K or °C )
          Series resistance (\Omega)
R_s
          Shunt resistance (\Omega)
R_{sh}
          reciprocal of slope of the I–V characteristic of the cell for V=V_{oc} and I=0 (\Omega)
R_{so}
          reciprocal of the slope of the I-V characteristic of the cell for V=0 and I= I_{sc}(\Omega)
R_{sho}
          Boltzmann constant (1.381x10<sup>-23</sup> J/K)
k_B
          diode quality factor
n
          electron charge (1.602x10<sup>-19</sup> C)
q
```