· · · · · · · · · · · · · · · · · · ·	Page No.
LIST OF FIGURES	iii
LIST OF TABLES	v
LIST OF ABBREVIATIONS	vi
LIST OF NOMENCLATURE	vi
CHAPTER 1: INTRODUCTION	1
1.1 Thermal performance	2
1.2 Building envelope	4
1.2.1 Orientation of the building	5
1.2.2 Building constituents	5
1.2.3 Window glazing	5
1.2.4 Thermo-physical properties of building envel	ope 6
1.2.5 Time lag and decrement factor	6
1.2.6 Role of thermal mass	7
1.3 Thermal insulation	7
1.3.1 Thermal insulation materials	8
1.3.2 How thermal insulation works	9
1.3.3 Benefits of thermal insulation	10
1.4 TRNSYS simulation tool	10
CHAPTER 2: LITERATURE REVIEW	13
CHAPTER 3: OBJECTIVES AND METHODOLOGY	20
3.1 Objectives	20
3.2 Methodology	21
3.2.1 TRNSYS model generation	23
3.2.2 Thermal transmittance or U value calculation	26
3.2.3 Time lag and decrement factor calculation	27
3.2.4 Window to wall ratio	28
3.2.5 Procedure for plotting the graphs	28
CHAPTER 4: RESULTS AND DISCUSSION	29
4.1 Variation of overall heat transfer coefficient	29
4.2 Comparison of different insulation materials	33

CONTENTS

4.3 Different positions of insulation materials	35
4.4 Window glazing	36
4.5 Analysis for different orientation	38
4.6 Increasing window to wall ratio	40
4.7 Roof with and without insulation	41
4.8 Windows with overhang and without overhang	42
4.9 Comparison of inside and outside wall temperatures	44
4.10 Time lag and decrement factor for different wall thickness	45
4.11 Time lag and decrement factor for different positions of	46
insulation materials	
4.12 Optimized building model analysis	47
CHAPTER 5: CONCLUSIONS	50
REFERENCES	52
PUBLICATION	57

Figure **Particulars** Page No. 1.1 Thermal simulation flow paths of a building 3 1.2 Heat transfer processes occurring in a wall 4 7 1.3 Schematic representation of time lag and decrement factor 1.4 Thermal comparison of common building materials 9 1.5 Utilization share of TRNSYS among other simulation programs 11 3.1 Methodology for the study 21 3.2 2-D layout of the house with single zone 22 3.3 Systematic approach for building simulation 23 25 3.4 Configurations considered for different locations of insulation material 3.5 Building layout for different orientations considered for the simulation 26 4.1 Daily minimum zone temperature for different wall thickness 29 4.2 Daily maximum zone temperature for different wall thickness 30 4.3 Minimum zone temperature for wall with same thickness 31 4.4 Maximum zone temperature for wall with same thickness 31 32 4.5 Minimum zone temperature for wall with maximum thickness 4.6 Maximum zone temperature for wall with maximum thickness 33 4.7 Surface temperature of three different insulation materials for January 34 34 4.8 Surface temperature of three different insulation materials for July 4.9 Inner surface temperature for January for three different positions of insulation 35 4.10 Inner surface temperature for July for three different positions 36 of insulation 4.11 Daily minimum zone temperature in January for glazed windows 36 4.12 Daily maximum zone temperature in July for glazed windows 37 4.13 Minimum and maximum zone temperatures for different orientations 38 4.14 Daily minimum zone temperature in January for different 40 window to wall ratio 4.15 Daily maximum zone temperature in January for different window to wall ratio 41 4.16 Daily minimum zone temperature in January for roof with insulation and without insulation 41

LIST OF FIGURES

and without insulation	42
4.18 Daily minimum zone temperature for windows with and without overhang	42
4.19 Daily maximum zone temperature for windows with and without overhang	
4.20 Inside and outside wall surface temperatures for different	
thicknesses (January)	44
4.21 Inside and outside wall surface temperatures for different thicknesses (July)	45
4.22 Time lag and decrement factor for different wall thickness (January)	45
4.23 Time lag and decrement factor for different wall thickness (July)	46
4.24 Time lag and decrement factor for various position of insulation	47
4.25 Comparison of optimized temperature profile to the original temperature	
profile for the month of January and July	48
к -	

LIST OF TABLES

Table	Particulars	Page No.	
3.1 Physical	properties of the selected vernacular house of base case	21	
3.2 Thermo	22		
construe	ction of Building Envelope		
3.3 Wall Co	24		
3.4 Configu	24		
4.1 Paramet	ers of the building model considered and the		
optimize	d building model	47	

LIST OF ABBREVIATIONS

HVAC	Heating, Ventilation and Air-conditioning
ASHRAE	American Society of Heating, Refrigerating, and Air conditioning
AAC	Autoclaved Aerated Concrete
XPS	Extruded Polystyrene
EPS	Expanded Polystyrene
ACH	Air Change Per Hour
PPD	Predicted Percentage of Dissatisfied
PMV	Predicted Mean Vote
TRNSYS	Transient Simulation Tool
WWR	Window to Wall Ratio

LIST OF NOMENCLATURE

U-value	Overall heat transfer coefficient
Ø	Time lag
f	Decrement factor
R _T	Thermal resistance
К	Thermal conductivity
T _o ^{max}	Inside maximum temperature
T _o ^{min}	Inside minimum temperature
T _c ^{max}	Outside maximum temperature
T_e^{min}	Outside minimum temperature
A _o	Amplitude of inside wave
A _e	Amplitude of outside wave
	•

.