Table of Content

List of Figures i		i-ii		
List of Tables			iii	
Nomenclature iv-			iv-v	
CH	IAP'	TEF	R 1. INTRODUCTION	1-17
1.	1		Introduction	1-7
1.	2		History of water distillation	8-11
1.	3		Solar still and its types	11
1.	3.	1	Basin type Solar Still	11-12
1.	3	2	Tilted Solar Still	12-13
1.	3.	3	Wick Solar Still	14
1.	4		Energy and Exergy	15-16
1.	5		Major Objectives of the Study	16
1.	6		Organization of the Thesis	16-17
CE	[AP	TEF	R 2. LITERATURE REVIEW	18-24
2.	1		Introduction	18
2.	2		Effect of various parameters on distillate production and solar still efficiency	18
2.	2.	1	Ambient Temperature	18
2.	2.	2	Wind speed	18
2.	2.	3	Water emissivity	19
2.	2.	4	Depth of water	20
2.	2.	5	Solar insolation	20
2.	2.	6	Glass cover angle	21
2.	2.	7	Insulation	21
2.	3		Novel developments in design	21-23
2.	4		Energy and exergy analysis	23-24
CE	IAP	TEI	R 3. METHODOLOGY	25-33
3.	1		Experimental setup	25-26
3.	2		Experimental procedure	26-29
3.	3		Formulation	29-33
CE	IAP	TEI	R 4. RESULTS AND DISCUSSION	34-49
4.	1		Variation of solar insolation	34

4.	2	Investigation of temperature variation	35-37
4.	3	Investigation of distillate output for various configurations of solar still	37-39
4.	4	Investigation of heat transfer coefficients	39-4 1
4.	5	Fractional exergy	41-43
4.	6	Comparison of exergy and energy efficiency	43-45
4.	7	Instantaneous efficiency variation with climatic parameter	45-47
4.	8	Comparison with some of past solar stills in terms of exergy efficiency	48
4.	9	Comparison of solar stills on the basis daily distillate output	48-49
CHAPTER 5. CONCLUSIONS AND SCOPE FOR FUTURE WORK 50-			50-51
5.	1	Conclusions	50-5 1
5.	2	Scope for future work	51
	Referen	ces	52-57
	Appendix		58

List of Figures

List of Figures		
1.1	Areas in India with Arsenic and Fluoride Contamination of its groundwater	7
1.2	Basin type solar still	12
1.3	Tilted solar still	13
1.4	Wick solar still	14
3.1	Solar still coupled to a flat plate collector	25
3.2	Double stepped absorber plate	27
3.3	Solar still with two stepped absorber plate	28
3.4	Solar still with two stepped absorber plate having jute wick	28
3.5	Solar still with four stepped absorber plate having jute wick	29
4.1	Variation of solar insolation with time	34
4.2	Variations of temperatures with time for still with double stepped absorber	36
4.3	Variation of temperatures with time for still with double stepped absorber having jute	36
	wick	
4.4	Variation of temperatures with time for four stepped absorber plate still having jute	37
4.5	Distillate production for solar still with double stepped absorber	.38
4.6	Distillate production for solar still with double stepped absorber plate having jute	38
4.7	Distillate production for solar still with four stepped absorber plate having jute wick	39
4.8	Internal heat transfer coefficient variation with time for still having double stepped	40
	absorber plate	
4.9	Internal heat transfer coefficient variation with time for still having double stepped	40
	absorber plate having jute wick	
4.10	Internal heat transfer coefficient variation with time for still having four stepped	41
	absorber plate having jute wick	
4.11	Relative influence of fractional exergy with water temperature for still with double	42
	stepped absorber plate	
4.12	Relative influence of fractional exergy with water temperature for still with double	42
	stepped absorber plate having jute wick	
4.13	Relative influence of fractional exergy with water temperature for still with four	43
	stepped absorber plate having jute wick	
4.14	Comparison of Instantaneous exergy and energy efficiency for still with double	44

· •

stepped absorber plate

- 4.15 Comparison of instantaneous exergy and energy efficiency for still with double 45 stepped absorber plate having jute wick
- 4.16 Comparison of instantaneous exergy and energy efficiency for sill with four stepped 45 absorber plate having jute wick
- 4.17 Characteristic curves of instantaneous energy and exergy efficiencies for still with 46 double stepped absorber plate
- 4.18 Characteristic curves of instantaneous energy and exergy efficiencies for still with 47 double stepped absorber plate having jute wick
- 4.19 Characteristic curves of instantaneous energy and exergy efficiencies for still with 47 four stepped absorber plate having jute wick
- 4.20 Comparison of various solar stills on the basis of instantaneous exergy efficiency 48
- 4.21 Comparison of solar stills on the basis daily distillate output 49

List of Tables

F

1.1	Occurrence of fluoride in ground water of India	3
1.2	Comparison of different methods of water purification	6
3.1	Specification of the flat plate collector	26
3.2	Important properties of PVC	26
3.3	Specifications of equipment's and apparatus used for data collection	29
4.1	Average output of standard simple solar stills	49

Nomenclature

	$\int dx = \int dx = \frac{1}{2} \int dx = \frac{1}{$
A_b	Area of basin (m ²)
A_{g}	Area of glass cover (m ²)
С	Thermal capacity(J/m ² /K)
C_p	Specific heat(J/kg/K)
D	Thermal diffusivity(m ² /s)
$\dot{E}_{x_{in}}$	Exergy input from sun (W)
	Upward exergy flow rate by convection (W)
$\dot{E}_{x_{ew}}$	Upward exergy flow rate by evaporation (W)
È _{xrv}	Upward exergy rate by radiation (W)
\dot{E}_{x_t}	Total upward exergy flow rate with in solar still (W)
F_{ex}	Fraction of evaporative exergy
F _{cx}	Fraction of convective exergy
F _{rx}	Fraction of radiative exergy
Gr	Grashof number
g	Gravitational acceleration (m ² /s)
h_{cw}	Convective heat transfer coefficient from water surface to glass cover (W/m^2K)
h _{cw}	Evaporative heat transfer coefficient from water surface to glass cover (W/m ² K)
h _{fg}	Latent heat of vaporization (J/kg)
h _{rw}	Radiative heat transfer coefficient from water surface to glass cover (W/m^2K)
h_{1w}	Total heat transfer coefficient from water surface to glass cover (W/m ² K)
$I_s(t)$	Solar radiation on the glass cover of solar still (W/m^2)
K	Thermal conductivity (W/m K)
L	Characteristic length scale of convection
m _d	Distillate output

Nu	Nusselt number	
P_{g}	Partial vapor pressures at inner glass cover temperature (N $/m^2$)	
Pr	Prandtl number	
P_w	Partial vapor pressure at water surface temperature (N /m ²)	
ġ _{ew}	Rate of evaporative heat transfer within still from water to glass cover (W)	
T _a	Ambient temperature (K)	
T _g	Inside surface temperature of glass cover (K)	
T_s	Sun temperature (K)	
T_w	Water temperature (K)	
Greek symbols		
σ	Stephan Boltzman constant (5.6697 \times 10 ⁻⁸ W /m ² K ⁴)	

×

σ	Stephan Boltzman constant (5.6697 \times 10 ⁻⁸ W /m ² K ⁴)
η_{e}	Energy efficiency
З	Exergy efficiency
E _i	Instantaneous exergy efficiency