CONTENTS

Particulars Page	Number
List of Figures	iii
List of Tables	viii
CHAPTER 1 INTRODUCTION	1
1.1 Gasifier types and process	3
1.2 Types of gasifying medium	8
1.3 Coal and biomass co-gasification	9
1.4 Single particle study	10
CHAPTER 2 LITERATURE REVIEW	11
2.1 Gasification	11
2.2 Co-gasification	18
2.3 Single particle study	20
CHAPTER 3 OBJECTIVES OF THIS STUDY	22
CHAPTER 4 METHODOLOGY	24
4.1 Equilibrium modeling	24
4.2 Simulation input parameters	26
4.3 Temperature and pressure for gasification	27
4.4 Carbon conversion	28
4.5 Experimental tools and techniques	28
CHAPTER 5 RESULTS AND DISCUSSION	30
5.1 Simulation results for various coal biomass mixture at various gasific	cation
temperature and equivalence ratio and different gasifying medium	31
5.1.1 Effects of moisture in gasification	32
5.1.2 Gasification of biomass with air and oxygen as gasifying m	edium 36
5.1.3 Gasification of coal and biomass mixture with air and oxyg	en
as gasifying medium	43
, ì	

5.1.4 Gasification of different fuel mixture with air and oxygen as	
gasifying medium	49
5.1.5 Gasification of biomass with different percentage of carbon	
conversion with air and oxygen as gasifying medium	57
5.1.6 Gasification of 90% biomass + 10% coal fuel mixture for	
different percentage of carbon conversion with air and oxygen as	
gasifying medium	60
5.1.7 Gasification of biomass with air + steam as gasifying medium	63
5.1.8 Gasification of biomass with oxygen + steam as gasifying medium	ւ 65
5.2 Single particle study	69
CHAPTER 6 CONCLUSIONS	75
REFERENCES	77

List of Figures

Particulars	P	age
Number		Y
Figure 1.1Up Draft Ga	sifier	7
Figure 1.2 Down Draf	t Gasifier	7
Figure 1.3 Entrained F	low Gasifier	7
Figure 1.4 Bubbling F	luidized Bed Gasifier	7
Figure 1.5 Circulating	Fluidized Bed Gasifier	7
Figure 1.6 Dual Fluidi	zed Bed Gasifier	7
Figure 1.7 Plasma Gas	sifier	8
Figure 4.1 Spherical b	alls	29
Figure 4.2 Experiment	tal setup	29
Figure 5.1 Variations	of CO and CO2 mole fractions with respect to ER and moistur	re 32
Figure 5.2 Variations	of H ₂ mole fractions with respect to ER and moisture	33
Figure 5.3 Variations moisture	of CO and CO ₂ mole fractions with respect to temperature and	d 34
Figure 5.4 Variations	of H ₂ mole fractions with respect to temperature and moisture	34
Figure 5.5 Variations	of LHV with moisture content at a particular temperature	35
Figure 5.6 Variations	Figure 5.6 Variations of CO, H ₂ and CO ₂ mole fractions with temperature for gasification of	
biomass with air as ga	sifying medium	37
Figure 5.7 Variations with air as gasifying n	of CO, H_2 and CO_2 mole fractions with ER for gasification of nedium	biomass 37
Figure 5.8 Variations with air as gasifying n	of LHV of producer gas with temperature for gasification of b	oiomass 38
Figure 5.9 Variations as gasifying medium	of LHV of producer gas with ER for gasification of biomass v	with air 38
Figure 5.10 Variations biomass with oxygen	s of CO, H_2 and CO_2 mole fractions with ER for gasification cas gasifying medium	of 39

Figure 5.11 Variations of CO, H_2 and CO_2 mole fractions with temperature for gasification of biomass with oxygen as gasifying medium 39
Figure 5.12 Variations of LHV of producer gas with ER for gasification of biomass with oxygen as gasifying medium 40
Figure 5.13 Variations of LHV of producer gas with temperature for gasification of biomass with oxygen as gasifying medium 40
Figure 5.14 Variations of CO and CO ₂ mole fractions with temperature for gasification of biomass with oxygen and air as gasifying mediums 41
Figure 5.15 Variations of H_2 mole fractions with temperature for gasification of biomass with oxygen and air as gasifying mediums 41
Figure 5.16 Variations of LHV with temperature for gasification of biomass with oxygen and air as gasifying mediums 42
Figure 5.17 Variations of CO, H ₂ and CO ₂ mole fractions with ER for gasification of 90% biomass and 10% coal with air as gasifying medium 43
Figure 5.18 Variations of CO, H ₂ and CO ₂ mole fractions with temperature for gasification of 90% biomass and 10% coal with air as gasifying medium 44
Figure 5.19 Variations of LHV with ER for gasification of 90% biomass and 10% coal with air as gasifying medium 44
Figure 5.20 Variations of LHV with temperature for gasification of 90% biomass and 10% coal with air as gasifying medium 45
Figure 5.21 Variations of CO, H ₂ and CO ₂ mole fractions with ER for gasification of 90% biomass and 10% coal with oxygen as gasifying medium 45
Figure 5.22 Variations of CO, H ₂ and CO ₂ mole fractions with temperature for gasification of 90% biomass and 10% coal with oxygen as gasifying medium 46
Figure 5.23 Variations of LHV with ER for gasification of 90% biomass and 10% coal with oxygen as gasifying medium 46
Figure 5.24 Variations of LHV with temperature for gasification of 90% biomass and 10% coal with oxygen as gasifying medium 47
Figure 5.25 Variations of CO and CO ₂ mole fractions with temperature for gasification of 90% biomass and 10% coal with oxygen and air as gasifying mediums 47

Figure 5.26 Variations of H_2 mole fractions with temperature for gasification of 90% biomass and 10% coal with oxygen and air as gasifying mediums	48
Figure 5.27 Variations of LHV with temperature for gasification of 90% biomass and 10 coal with oxygen and air as gasifying mediums	0% 48
Figure 5.28 Variations of CO and CO ₂ mole fractions with temperature for gasification of different fuel mixtures fuel with air as gasifying medium	of 49
Figure 5.29 Variations of H_2 mole fractions with temperature for gasification of different fuel mixtures fuel with air as gasifying medium	it 50
Figure 5.30 Variations of LHV with temperature for gasification of different fuel mixtur fuel with air as gasifying medium	res 50
Figure 5.31 Variations of CO and CO ₂ mole fractions with ER for gasification of different fuel mixtures fuel with air as gasifying medium	ent 51
Figure 5.32 Variations of H_2 mole fractions with ER for gasification of different fuel mixtures fuel with air as gasifying medium	51
Figure 5.33 Variations of LHV with ER for gasification of different fuel mixtures fuel wair as gasifying medium	vith 52
Figure 5.34 Variations of CO and CO ₂ mole fractions with ER for gasification of different fuel mixtures fuel with oxygen as gasifying medium	ent 52
Figure 5.35 Variations of H ₂ mole fractions with ER for gasification of different fuel mixtures fuel with oxygen as gasifying medium	53
Figure 5.36 Variations of LHV with ER for gasification of different fuel mixtures fuel woxygen as gasifying medium	vith 53
Figure 5.37 Variations of CO and CO ₂ mole fractions with temperature for gasification of different fuel mixtures fuel with oxygen as gasifying medium	of 54
Figure 5.38 Variations of H ₂ mole fractions with temperature for gasification of different fuel mixtures fuel with oxygen as gasifying medium	nt 54
Figure 5.39 Variations of LHV with temperature for gasification of different fuel mixtur fuel with oxygen as gasifying medium	res 55
Figure 5.40 Variations of CO and CO ₂ mole fractions with ER for gasification of bioma- with air as gasifying medium for various carbon conversions	.ss 57

Figure 5.41 Variations of H ₂ mole fractions with ER for gasification of biomass with air gasifying medium for various carbon conversions	as 57
Figure 5.42 Variations of LHV with ER for gasification of biomass with air as gasifying medium for various carbon conversions	58
Figure 5.43 Variations of CO and CO ₂ mole fractions with ER for gasification of biomas with oxygen as gasifying medium for various carbon conversions	ss 58
Figure 5.44 Variations of H_2 mole fractions with ER for gasification of biomass with oxy as gasifying medium for various carbon conversions	yger 59
Figure 5.45 Variations of LHV with ER for gasification of biomass with oxygen as gasif medium for various carbon conversions	ying 59
Figure 5.46 Variations of CO and CO ₂ mole fractions with ER for gasification of fuel mixture with air as gasifying medium for various carbon conversions	60
Figure 5.47 Variations of H_2 mole fractions with ER for gasification of fuel mixture with as gasifying medium for various carbon conversions	air 60
Figure 5.48 Variations of LHV with ER for gasification of fuel mixture with air as gasify medium for various carbon conversions	ying 61
Figure 5.49 Variations of CO and CO ₂ mole fractions with ER for gasification of fuel mixture with oxygen as gasifying medium for various carbon conversions	61
Figure 5.50 Variations of H_2 mole fractions with ER for gasification of fuel mixture with oxygen as gasifying medium for various carbon conversions	62
Figure 5.51 Variations of LHV with ER for gasification of fuel mixture with oxygen as gasifying medium for various carbon conversions	62
Figure 5.52 Variations of H_2 mole fractions with temperature for gasification of biomass with air + steam as gasification medium for various SBR	63
Figure 5.53 Variations of H_2 mole fractions with ER for gasification of biomass with air steam as gasification medium for various SBR	+ 64
Figure 5.54 Variations of H ₂ mole fractions with SBR for gasification of biomass with a steam as gasification medium for various ER	ir + 64
Figure 5.55 Variations of H ₂ mole fractions with temperature for gasification of biomass with oxygen + steam as gasification medium for various SBR	65

Figure 5.56 Variations of H_2 mole fractions with ER for gasification of biomass with oxy + steam as gasification medium for various SBR	gen 65
Figure 5.57 Variations of H_2 mole fractions with SBR for gasification of biomass with oxygen + steam as gasification medium for various ER	66
Figure 5.58 Variations of H_2 mole fractions with SBR for gasification of biomass with oxygen + steam as gasification medium for various ER in adiabatic conditions	66
Figure 5.59 Variations of H_2 mole fractions with adiabatic temperature for gasification of biomass with oxygen + steam as gasification medium for various ER	f 67
Figure 5.60 Variations of $\rm H_2$ with ER for gasification of biomass with oxygen + steam as gasification medium for various SBR	68
Figure 5.61 Mass losses with time for a sphere of 25 mm diameter of different fuel sample with air as oxidizer	les 71
Figure 5.62 Burning rate with time for a sphere of 25mm diameter of different fuel sample with air as oxidizer	les 71
Figure 5.63 Flaming time with surface area to volume ratio for a sphere of different fuel samples with air as oxidizer	72
Figure 5.64 Char glowing time with surface area to volume ratio for a sphere of different fuel samples with air as oxidizer	72
Figure 5.65 Ignition mass flux with diameter for sphere of different fuel samples	73
Figure 5.66 Burning time/density with diameter for sphere of different fuel samples	73

List of Tables

Particulars	Page Number
Table 4.1 Input matrixes for simulations	27
Table 5.1 Proximate analysis	30
Table 5.2 Ultimate analysis	30
Table 5.3 Adiabatic flame temperatures with different oxidizing medium by simulation	using 30
Table 5.4 Density for different composition for 25 mm diameter sphere	69
Table 5.5 Surface area to volume ratio for different compositions	69
Table 5.6 Different properties of coal and biomass	69
Table 5.7 Flaming time, char glowing time, burning time of different equivalent diameter for different samples	70