CONTENTS

List	List of Tables			i
List	List of Figures			11-111
Non	Nomenclature			
I	INTRODUCTION			1-15
	1.1	Solar e	nergy and its availability	1-2
	1.2	Prospe	ect of solar energy application in industrial sector	2-5
	1.3	Workir	ng and classification of solar air heaters	5-6
		1.3.1	Classification based on air flow pattern	6-10
		1.3.2	Classification based on air flow channel design	10-13
	1.4	Perform	mance analysis of solar air heaters	13-14
	1.5	Resear	rch gap	14
	1.6	Object	ives	15
11	REV	EW OF I	LITERATURE	16-30
	2.1	Single	flow single pass solar air heater	16-20
	2.2	Double	e flow single pass solar air heater	21-22
	2.3	Single	flow double pass solar air heater	22-24
	2.4	Single i	flow recycled double pass solar air heater	24-25
	2.5	Flat pla	ate solar air heater	25-26
	2.6	Solar a	ir heater with extended surface	26-27
	2.7	Solar a	ir heater equipped with packed bed of porous media	27-30
111	ΜΑΤ	ERIALS /	AND METHODS	31-47
	3.1	Design parameters of packed bed		31
		3.1.1	Material of packed bed	31-32
		3.1.2	Geometry of packed bed material	32-33
		3.1.3	Surface color of packed bed material	33-34
		3.1.4	Porosity of packed bed	34-38
	3.2	Perform	mance assessment of solar air heater fitted with packed bed	39-41
		3.2.1	Centrifugal blower	41
		3.2.2	Measuring instruments	42-46

	3.3	Field te	esting to investigate the techno economic feasibility of packed	
		bed so	lar air heater in Tea industry	47
IV	RESU	LTS AN	D DISCUSSION	48-64
	4.1	Investi	gation of effect of surface color of packed bed material on	
		perforr	nance	48-49
	4.2	Validat	ion of experimental set up used to check the effect of porosity	
		in the p	performance of packed bed	49-50
	4.3	Investi	gation of effect of varying porosity on performance	
		parame	eters	50
		4.3.1	Heat transfer coefficient between packed bed and flowing	
			fluid	51-52
		4.3.2	Thermal Efficiency variation due to varying porosity	52-53
		4.3.3	Friction factor due to the introduction of packed bed with	
			varying porosity	53
	4.4	Perforr	nance of solar air heater equipped with packed bed	54
		4.4.1	Outlet temperature of packed bed solar air heater for	
			different solar insolation	54-57
		4.4.2	Variation of outlet temperature with varying mass flow rate	57-58
		4.4.3	Thermal efficiency of the packed bed solar air heater with	
			varying solar insolation and mass flow rates	58-59
		4.4.4	Thermal output power of packed bed solar air heater with	
			varying mass flow rate	59-60
		4.4.5	Pressure drop for varying mass flow rate	60-61
		4.4.6	Variation of thermohydraulic efficiency with mass flow rate	61-62
	4.5		nic analysis of packed bed solar air heater for tea industry	62-64
V	CONC	ONCLUSIONS 65		65
	REFE	RENCES		66-68

LIST OF TABLES

Table	Particulars	
No.		
Table 1.1	Few industrial processes and the required operational temperatures	3
Table 1.2	Uses of solar air heaters in some of the tea processing units of India	5
Table 1.3	Performance analysis of different solar air heaters	14
Table 2.1	Summary of some of the important literatures	29
Table 3.1	Thermal conductivity for some common packed bed materials at 300 K	32
Table 3.2	Performance parameters and the relationships used for assessment	38
Table 3.3	Specification of the centrifugal blower used in the experiment	41
Table 3.4	List of measured parameters along with the measuring instruments	42
Table 3.5	Specifications of thermocouples used	42
Table 3.6	Specifications of Pyranometer used	43
Table 4.1	Cost estimation of packed bed solar air heater	63

LIST OF FIGURES

Figure		Particulars	Page		
No.					
Fig. 1.1	Global cumulative PV capacity in MW since1992				
Fig. 1.2	Schematic view of single flow single pass solar air heater				
Fig. 1.3	Sche	Schematic view of double flow single pass solar air heater 8			
Fig. 1.4	Schematic view of a single flow double pass solar air heater with absorbe				
	plate	e '	9		
	(a)	solar air heater with glass separator	9		
	(b)	solar air heater with absorber separator	9		
Fig. 1.5	Sche	ematic view of a single flow recycled double pass solar air heater	10		
Fig. 1.6	Sche	ematic view of a fin assisted solar air heater	12		
Fig. 1.7	Sche	ematic view of a porous assisted solar air heater	13		
Fig. 3.1	Experimental set up for investigation of effect of surface colour on				
	absorptivity				
Fig. 3.2	Expe	erimental set up to investigate the effect of porosity	36		
	(a)	Schematic diagram of experimental set up	36		
	(b)	Cross sectional view of both the ducts	36		
Fig. 3.3	Different views of packed bed solar air collector		40		
	(a)	Front view	40		
	(b)	Side view	40		
	(c)	Top view	40		
Fig. 3.4	Cent	rifugal blower	41		
Fig. 3.5	Tem	perature measuring instruments	43		
	(a)	Manual K-type thermocouple	43		
	(b)	K-type thermocouples	43		
	(c)	Data logger	43		
Fig. 3.6	Pyranometer 44				
Fig. 3.7	Multimeter 44				

Fig. 3.8	Pitot tube along with U-tube manometer	45		
Fig. 3.9	Front view of the experimental set up (packed bed solar air heater)			
Fig. 3.10	Side view of the experimental set up (packed bed solar air heater)	46		
Fig. 3.11	Overall experimental set up of packed bed solar air heater	46		
Fig. 3.12	Testing unit at Chandraprabha Tea factory			
Fig. 4.1	Effect of surface colour on the temperature of packed bed			
Fig. 4.2	Comparison of experimental values of Nusselt numbers with the predicted			
	values.	49		
Fig. 4.3	Comparison of experimental values of friction factors with the predicted	50		
	values.			
Fig. 4.4	Effects of mass flow rate and porosity on heat transfer coefficient.	51		
Fig. 4.5	Effect of mass flow rate and porosity on volumetric heat transfer	52		
	coefficient.			
Fig. 4.6	Effect of mass flow rate and porosity on efficiency	52		
Fig. 4.7	Effect of mass flow rate and porosity on friction factor	53		
Fig. 4.8	Experimental results of packed bed SAH at 0.01 kg/s mass flow rate	55		
Fig. 4.9	Experimental results of packed bed SAH at 0.02 kg/s mass flow rate	56		
Fig. 4.10	Experimental results of packed bed SAH at 0.03 kg/s mass flow rate	56		
Fig 4.11	Experimental results of packed bed SAH at 0.04 kg/s mass flow rate	57		
Fig. 4.12	Air outlet temperatures for varying solar insolation	58		
Fig. 4.13	Thermal efficiency for varying mass flow rate	59		
Fig. 4.14	Variation of thermal output power for varying mass flow rate	60		
Fig. 4.15	Total pressure drop across the packed bed solar air heater	61		
Fig. 4.16	Thermohydraulic efficiency for varying mass flow rates	62		
Fig. 4.17	Payback period for different percentage of fuel substitution	64		

iii

Nomenclature

А	Effective heat transfer area (m ²)
Ac	Collector plate area (m ²)
A _f	Frontal area (m²)
Ao	Cross-sectional area of pitot tube (m ²)
a _v	Specific surface area per unit volume (m ⁻¹)
С _р	Specific heat of air (J/Kg K)
Cv	Coefficient of velocity for pitot tube
D	Depth of rectangular duct (m)
d _e	Equivalent diameter of aluminium wool (m)
fp	Friction factor of packed bed
G。	Relative mass flow rate of air in the duct (kg/s m ²)
g	Acceleration due to gravity (m/s ²)
h	Average heat transfer coefficient (W/m ² K)
hv	Volumetric heat transfer coefficient, h av
I	Intensity of solar radiation (W/m ²)
L	Length of rectangular duct (m)
m	Mass flow rate of air (kg/s)
Р –	Porosity
ΔP	Pressure drop across the duct (N/m ²)
Q	Heat transfer rate (W)
Rep	Reynolds number of packed bed, $4r_hG_o/\mu$
r _h	Hydraulic radius, Pd _e /4(1-P)
t _ŕ	Average air temperature (K), (t _i + t _o) / 2
ti	Air inlet temperature (K)
to	Air outlet temperature (K)
t _p	Average packed bed temperature (K)
u	air velocity in the packed duct, $u=G_0/\rho$
۷	Volume of packed bed (m ³)
Ve	Volume of material element (m ³)
Vs	Total volume of storage material packed in the duct (m ³)
W	Width of rectangular duct (m)
x	Manometer reading (m)
Greek letters	
μ	Dynamic viscosity of air (N s/m²)
ρ	Density of air (kg/m³)
ρ _m	Density of manometer fluid (kg/m³)
η	Thermal efficiency

.

· .