Table of Contents

1	Intr	oduction	1
	1.1	Problem Definition	2.
4	1.2	Proposed Solution Overview	3
7	1.3	Existing Security Overview	4
		1.3.1 μ TESLA	4
		1.3.2 LEAP	5
		1.3.3 RM - μ TESLA	5
	1.4	Motivation behind the New Technique	6
2	Ove	rview of Sensor Network	7
	2.1	Feature and Requirements	7
	2.2	Network Architecture	8
	2.3	Differences between WSN and MANET	10
	2.4	Sensor Network Applications	13
		2.4.1 Disaster/Crime Prevention and Military Applications	14
		2.4.2 Environmental Applications	14
		2.4.3 Home Applications	. 14
		2.4.4 Industrial Applications	15

B. Tech Final Project Report

3	Ove	rview of Security Issues in Sensor Network	16
	3.1	General Study of Security Issues	16
		3.1.1 Traffic in Sensor Network	16
		3.1.2 Security Requirements	19
		3.1.3 Attack and Attacker	22
		3.1.4 Security Classes	24
		3.1.5 Threat Models	25
	3.2	Overview of Attacks & their Security Approaches	26
	3.3	Classification of Attacks against WSN	34
4	Ove	rview of the Protocol CHEESPSN	35
	4.1	Protocol Description	35
	4.2	Possible Attack on the Protocol	36
		• •	
5	Ove	rview of the Implementation of CHEESPSN	38
	5.1	nesC Language	38
	5.2	TinyOS	41

B. Tech Final Project Report

6	Pro	posed Security Solution for Protocol CHEESPSN	43
	6.1	Proposed Method	43
		6.1.1 Proposed Algorithm	43
		6.1.2 Proposed Code Hopping Technique	46
	6.2	Security Analysis	47
	6.3	Cost Analysis	50
	ý	6.3.1 Computational Cost	50
		6.3.2 Communication Cost	50
		6.3.3 Storage Requirement	51
7	Con	clusion and Future Work	52
8	Refe	erences	53

List of Figures and Tables

Fig 1: Architecture of a Sensor Network	
Fig 2: Sensor information forwarding with and without clustering	19
and aggregation	
Fig 3: Classification of Attackers	24
Fig 4, 5 and 6: Spoofed, altered or replayed routing information Attack	28
Fig 7 and8: Selective Forwarding Attack	29
Fig 9: Sinkhole Attack	30
Fig 10: Sybil Attack	30
Fig 11: HELLO Flood	31
Fig 12: Sniffing Attack	32
Fig 13: Node Replication Attack	33
Fig 14: nesC Interface	40
Fig 15: nesC Components	40
Fig 16: An example mapping of data blocks to time slots	46
Table 1: Shows the summarized report of the differences	13
between WSN and MANET	
Table 2: Classification of attacks against WSN	34

List of Variables

- K_i Node Specific Private Key
- K_b Base Station Key
- $K_{i,\,b}$ Key generated by XOR'ing K_i and K_b
- h() One way Hash function
- T_p Transmission Power
- d Distance
- ID# Id number of a sensor node