Table of Contents

Acknowledgment

Abstract

1	Introduction		1
	1.1 Data mining: an overview	•	1
	1.2 Fundamentals of Association Rule Mining		3
	1.3 Association Rule Mining: State-of-the-art		4
si .	1.4 Motivation		4
	1.5 Aim of the Work		4
	1.6 Report Organization	<i>a</i>	5
2	Background of Association Rule Mining		6
	2.1Definition	7	6
	2.2 Useful Concepts	¥	6
	2.3 Process		7
	2.4 Example	•	8
	2.5 Discussion	44	9
3.	Related Works		11
	3.1 Frequent Itemset Mining		11
	3.2 Association Rule Generation		17
2	3.3 Discussion	ř.	18
4.	Frequent Itemset Mining	76	19
	4.1 Missing Value Prediction	9	19
	4.2 Conversion of the given dataset into market backet dataset		20

4.3 Frequent Itemset Mining	21
4.3.1 Apriori Algorithm	22
4.4 Discussion	24
5. Association Rule Mining and Classification	25
5.1 Discovering association rules	25
5.2 Finding the set of Strong Rules	27
5.2.1 Extraction of small and non redundant set of rules.	27
5.2.2 Rule tuning	28
6. ARM in Cancer Data Classification	32
6.1Dataset Description	33
6.2 Project Environment	35
6.3 Experimental Results	35
6.3.1 Summarized Experimental Result	36
6.3.2 Screen Shots	37
6.4 Discussion	40
7. ARM in Intrusion Data Classification	41
7.1 Dataset Description	42
7.2 Experimental Results	42
7.2.1 Summarized Experimental Results	43
7.2.2 Screen Shots	43
8. Conclusion and Future Work	
8.1 Conclusion	46
8.2 Future Work	46
Deferences	
References	48

List of Figures

Figure 1.1: Data mining as a part of knowledge discovery process	2
Figure 2.1: Generation of frequent itemsets from transactional data	
of AllElectronics branch	9
Figure 4.1: A portion of the breast cancer dataset	20
Figure 4.2: Converted market basket dataset	21
Figure 5.1: Flow diagram for extracting non- redundant set of asso-	4
citation rules	30
Figure 5.2: Flow diagram for rule tuning	31
Figure 6.1: A portion of the frequent itemset generated from breast	
cancer dataset	37
Figure 6.2: A portion of association rules generated from breast	
cancer dataset(1)	37
Figure 6.3: A portion of association rules generated from breast	
cancer dataset(2)	38
Figure 6.4: A portion of strong rules after pruning (1)	38
Figure 6.5: A portion of strong rules after pruning (2)	39
Figure 6.6: Classification results	. 39
Figure 7.1: Description of 19 features of KDD 99 dataset	· 42
Figure 7.2: A portion of the generated frequent itemsets from the KDD	
99 sample dataset	43
Figure 7.3: A portion of the generated rules	44
Figure 7.4: Association rules after pruning	44
Figure 7.5: Classification result	45

List of Tables

Table 2.1: Transactional data from AllElectronics branch	8
Table 3.1: Characteristics of different AM Techniques	18
Table 6.1: Experimental results of association mining in breast	
cancer dataset	36
Table 7.1: Experimental results of association mining in KDD	
99 sample dataset	43