CONTENTS

I.	Certificate of the Head of the Department	i
2.	Certificate of the Supervisor	ii
3.	Declaration of the candidate	iii
4.	Acknowledgement	iν
5.	List of Figures and tables	v-vii
6.	List of Abbreviations	viii-ix
7.	Abstract	x

	Chapters	Page No.
1.	Introduction	1-8
1.1	Soil	2
1.2	Accessing the diversity of soil microorganisms	3
1.3	Metagenomics-a culture independent insight	4
1.4	Approaches to metagenomic analysis	6
1.5	Applications of cellulase enzyme	7
2.	Objectives	9
3.	Review of literature	10-15
4.	Materials and Methods	16-31
4.1	Glass wares, equipments and other requirements	16
4.2	2 Methodology and steps followed	17
4.2.	.1 Culture dependent study	18-28
4.2	2 Culture independent study	28-30
5.	Results	31-49
6.	Discussion	50-51
7.	Conclusions	52
8.	Future prospects	53
	References	54-57
	Appendix	58-61

Scientists may be able to make any molecule that they imagine on a computer, but Mother Nature is an infinitely more ingenious and exciting chemist......

Edward Hammond

List of Figures and Tables

List of Figures	Title	Page No.
1.	General approaches in Metagenomics. DNA isolation	5
	ultimately leading to construction of gene library	
2.	Photographs showing some of the serial dilutions of	31
	one set (PB3) of soil samples.	
3.	Photographs of pure cultures of some of the bacterial	32
	isolates (21 out of 38 shown).	
4.	Some of the amylase positive strains out of 38 strains	35
	along with their positive (Bacillus subtillis) and negative	
	controls (E. coli).	
5.	Some of the results (out of 38 strains) of catalase test with \cdot	35
	positive control (S. aureus).	
6.	Some of the results (out of 38 strains) of casein	36
	hydrolysis test with positive control (B.subtilis),	
	negative control (E.coli), and blank.	
7.	Some of the results (out of 38 strains) of cellulase test	36
	with a negative (blank) control	
8.	Some of the results (out of 38 strains) of lipase test with	37
	a positive control (Pseudomonas) along with a negative	
	control (blank).	
9.	Results of gelatinase test (all 38 strains shown) with	37
	negative control.	
10.	Results of triple sugar test (all 38 strains shown with	38
	negative control).	
11.	Growth of cellulase positive bacterial isolates in	42
	culture media	
12.	Standard plot for protein estimation, protein amount	44
	for unknown strains also shown through extrapolation	

13.	Standard plot for glucose with amount of glucose	45
	for unknown strains shown through extrapolation	
14.	Bacterial genomic DNA of 3 out of 5 cellulase	46
	positive strains	
15.	Restriction digestion of isolated DNA with Bam H1	47
16.	Metagenomic DNA isolation	48
17.	Restriction digestion of isolated Metagenomic DNA	49

List of Tables	Title	Page No.
1	Important biocatalysts with their cloning vector,	7
	number of clones and sampling site	
2.	Preliminary soil and rumen sample characterization	20
3.	Morphological study of bacterial isolates from PB1 soil sample	32
4.	Morphological study of bacterial isolates from PB2 soil sample	33
5.	Morphological study of bacterial isolates from PB3 soil sample	33
6.	Morphological study of bacterial isolates from PB4 soil sample	34
7.	Biochemical screening for the presence of various extracellular enzymes in bacterial isolates from PB1 soil sample	39
8	Biochemical screening for bacterial isolates from PB2 soil sample	39
9	Biochemical screening for bacterial isolates from PB3 soil sample	41

10	Biochemical screening for bacterial isolates from PB4	41
	soil sample	
11	Gram's staining data with photographs of corresponding	43
	strains and their pure culture	
12	Protein estimation for cellulase positive strains	44
13	Cellulase enzyme activity and specific activity for cellulase	45
	positive activity	
14	Purity determination and quantification of isolated DNA	46
	from cellulase positive strains	
15	Purity determination and quantification of Metagenomic	48
	DNA samples	

List of Abbreviations

Bam HI	Bacillus amyloliquefaciens H (Source organism)
BSA	Bovine Serum Albumin
CMC	Carboxy Methyl Cellulose
СТАВ	Cetyl Trimethyl Ammonium Bromide
CaCo ₃	Calcium carbonate
CHCl ₃	Chloroform
CuSO₄	Copper sulphate
D.radiodurans	Deinococcus radiodurans
DDW	Double Distilled Water
DNA	Deoxyribo Nucleic Acid
DNS	Dinitrosalicyclic acid
ds.	Double stranded
E.coli.	Escherichia coli
EcoR1	Escherichia coli Ry13 (Source organism)
EtBr	Ethidium Bromide
Hind III	Haemophilus influenzae Rd (Source organism)
EDTA	Ethylene Diamine Tetra Acetic acid
H ₂ O ₂	Hydrogen peroxide
HgCl ₂	Mercuric chloride
KAc	Potassium acetate
KCI	Potassium chloride
kDa	KiloDalton
KP	Potassium phosphate
LB	Luria Broth
LBA	Luria Bertini Agar
MgSO₄	Magnesium sulphate
μ]	Microlitre
M	Molar

mì	Millilitre	
NaCl	Sodium chloride	
NaNO3	Sodium nitrate	
NaAc	Sodium acetate	
Na ₂ CO ₃	Sodium carbonate	
NH₄Ac	Ammonium acetate	
NH₄CI	Ammonium chloride	
nm	Nanometre	
PCR	Polymerase Chain Reaction	
PEG	Poly Ethylene Glycol	
PVP	Poly Vinyl Chloride	<u></u> ,
rpm	Revolutions per minute	
SDS	Sodium Dodecyl sulphate	
TAE	Tris Acetate Buffer	
TE	Tris EDTA Buffer	
Tris	Tris(hydroxyl methyl) amino methane	

.