List of abbreviations

O ⁰	Degree Celsius
AFLP	Amplified fragment length polymorphism
ANOVA	Analysis of Variance
ATP	Adenosine Triose Phosphate
BLAST	Basic Local Alignment Search Tool
C/N ratio	Carbon/ Nitrogen ratio
CCD	Central Composite Design
CVD	Cardiovascular Disease
DNA	Deoxy Ribose Nucleic Acid
dNTP	Deoxyribo Nucleotide Triose phosphate
ECLT	Euglobulin Clot Lysis Time
ECLT EDTA	Euglobulin Clot Lysis Time Ethylene Diammine Tetraacetatetae
	-
EDTA	Ethylene Diammine Tetraacetatetae Fibrinolytic activity/ Caseinolytic activity
EDTA F/C ratio	Ethylene Diammine Tetraacetatetae Fibrinolytic activity/ Caseinolytic activity ratio
EDTA F/C ratio FC reagent	Ethylene Diammine Tetraacetatetae Fibrinolytic activity/ Caseinolytic activity ratio Folin-Ciocalteu's Reagent
EDTA F/C ratio FC reagent FFD	Ethylene Diammine Tetraacetatetae Fibrinolytic activity/ Caseinolytic activity ratio Folin-Ciocalteu's Reagent Fractional Factorial Design

kDa	Kilo Dalton
М	Molar
MEGA	Molecular Evolutionary Genetic Algorithm
MI	Mili Liter
mM	Mili Molar
MR	Methyl Red
NB	Nutient Broth
NCBI	National Center for Biotechnological Information
NE, India	North-East, India
NK	Natto kinase
O.D	Optical Density
PCR	Polymerase Chain Reaction
PEG	Poly Ethylene Glycol
RAPD	Rapid Amplification of Polymorphic DNA
RFLP	Restriction Fragment Length Polymorphism
RNA	Ribose Nucleic Acid
RPM	Rotation Per Minute
rRNA	Ribosomal Ribose Nucleic Acid
RSM	Response Surface Methodology
S.D	Standard Deviation
SDS	Sodium Dodecyl Sulphate

SIM	Sulfur Indole Motility
SMA	Skimmed Milk Agar
SmF	Submerged Fermentation
TAE	Tris Acetate EDTA
ТСА	Tricholoacetic acid
t-PA	Tissue plasminogen activator
TSI	Triple Sugar Iron
U	Unit (Enzyme activity unit)
VP	Voges proskaure
w/v	Weight/ Volume
w/w	Weight/ Weight
WHO	World Health Organization
hð	micro- gram
μί	micro-liter

.

Contents

Legends		Page
		No
	Chapter 1: Introduction	1-17
1.0	Introduction	2-6
1.2	Information on Cardiovascular diseases, available using	7-8
	thrombolytic drugs and its limitations	
1.3	Microbial protease (fibrinolytic enzymes) a boon for health sector	8-11
1.4	Classification of protease (fibrinolytic enzymes)	11-14
1.4.1	Type of serine proteases	11-12
1.4.2	Chymotrypsin-like proteases	12-13
1.4.3	Subtilisin-like protease or Subtilases	13
1.4.4	Wheat serine carboxypeptidase II-like protease	13
1.4.5	Prolyloligopeptidae-like serine protease	13
1.4.6	Myxobacter ∝-lytic proteases	13
1.4.7	Staphylococcal protease	13-14
1.5	Protease (fibrinolytic) enzyme fermentation and yield	14
	improvement	
1.5.1	Fermentation methods	14-17
1.5.2	Aim and objectives	16-17
	Chapter 2: Review of literature	18-25
2.1	Non-food sources	19-20

2.2	Food sources	20-22
2.3	Comprehensive review on fibrinolytic enzyme production	23-24
	by submerged fermentation	
2.4	Application and perspectives	25
	Chapter 3: Materials and Methods	26-43
3.1	Materials	27
3.1.1	Plastic ware / Glass ware /Columns	27
3.1.2	Chemicals	27-28
3.1.2.1	Analytical grade	27
3.1.2.2	Microbiological grade culture media/chemicals	27
3.1.2.3	Molecular biology grade chemicals /kits	28
3.1.2.4	The bacterial strain	28
3.2	Methods	28
3.2.1	Pure culture preparation of fibrinolytic protease secreting	28
	bacterial isolates	
3.2.1.1	Spread plate technique	28-29
3.2.1.2	Streak-plate technique	29
3.2.2.3	Routine maintenance and preservation of Microorganism	29
3.2.3	Taxonomic identification of alkaline protease (Fibrinolytic	29-36
	enzyme) producing bacteria	
3.2.3.1	Morphological test	29-30
3.2.3.1.1	Gram staining	29-30

3.2.3.2	Biochemical test	30-33
3.2.3.2.1	Hydrolysis test for casein, starch, lipid and gelatin	30
3.2.3.2.2	Carbohydrate fermentation test	30.
3.2.3.2.3	Triple sugar iron (TSI) agar test	31
3.2.3.2.4	IMVIC test	31
3.2.3.2.5	Hydrogen sulphide test	32
3.2.3.2.6	Urease test	32
3.2.3.2.7	Litmus –milk test	32
3.2.3.2.8	Nitrate reduction test	32
3.2.3.2.9	Catalase test	32-33
3.2.3.2.10	Oxidase test	33
3.2.3.3	Ribotyping using 16S rRNA gene amplification	33-36
3.2.3.3.1	Isolation of DNA	33-34
3.2.3.3.2	PCR amplification of 16S rRNA gene	34-35
3.2.3.3.3	PCR amplification of the 16S-23S inter spacer region (ISR)	35
	region of the isolated DNA	
3.2.3.4	Phylogenetic analysis	36
3.2.4	Determination of protease activity	36-37
3.2.5	Optimization of culture condition for optimum growth and	37
	Maximum fibrinolytic protease production by by selected bacteria	
	under SmF systems	
3.2.5.1	Fibrinolytic protease production under submerged Fermentation	37

(SmF) systems

3.2.5.2	Effect of various carbon sources on fibrinolytic protease	38	
	production		
3.2.5.3	Effect of various inorganic and organic nitrogen sources on	38	
	fibrinolytic protease production		
3.2.5.4	Effect of pH on fibrinolytic protease production	38	
3.2.5.5	Effect of incubation time on fibrinolytic enzyme Production	38	
3.2.6	Fibrinolytic protease production under submerged fermentation	38	
	system		
3.2.6.1	Statistical optimization of protease production in SmF	38-43	
3.2.6.1.1	Screening of factors effecting fibrinolytic protease Production	39-40	
	using Plackett-Burman design		
3.2.6.1.2	Statistical optimization of fibrinolytic protease production using	41-42	
	Response Surface Methodology(RSM)		
3.2.7	Validation of response surface; Batch fermentation Under	43	
	optimized condition		
	Chapter 4: Results	44-83	
Results			
4.1	Pure culture preparation of the bacterial strain: FF02B	45	
4.2	Taxonomic identification of fibrinolytic enzyme producing FF02B	46-58	
	bacterial isolate		
4.2.1	Phenotypic study of FF02B bacterial isolate	46	

4.2.1.1	Morphological identification: Gram staining of The bacterial strain	46
4.2.1.2	Biochemical identification	47-50 ·
4.3.2	Genotyping profiling of FF02B bacterial isolate	51
4.3.2.1	PCR amplification of 16S rRNA gene of FF02B Bacterial isolate	51-52
4.3.2.2	Phylogenetic tree construction using 16S-rRNA gene	53-54
4.3.2.3	PCR amplification of 16S-23S rRNA gene of FF02B bacterial	55-56
	isolate	
4.3.2.4	Phylogenetic tree construction using 16S-23S rRNA gene	57
4.3.2.5	Bacterial naming and identification	58
4.4	Screening of initial process parameters for fibrinolytic enzyme	58-73
	production from FF02B bacterial isolate under submerged	
	fermentation	
4.5	Statistical optimization of influencing parameters for Plackett-	74
	Burman design	
4.5.1	Screening of influencing parameters by Plackett-Burman design	74-76
4.5.2	Statistical optimization of fibrinolytic enzyme production using	76-82
	Central composite design (CCD)	
4.5.3	Validation of the model	82-83
	Chapter 5: Discussion	84-90
5.1	Isolation and culture maintenance techniques	85
5.1.1	Pure culture techniques	85
5.1.2	Streak plate method	85-86

V

Reference and Appendix			
	Chapter 6: Conclusion	91-93	
5.3.1.2	Response surface method	90	
5.3.1.1	Plackett-Burman Design	89	
	fibrinolytic protease production using statistical tools		
5.3.1	Screening of influencing process parameters for microbial	89-90	
	fermentation system (SmF)		
5.3	Microbial fibrinolytic protease production under submerged	88-89	
5.2.2	Genotypic approach	87-88	
5.2.1	Phenotypic approach	87 ·	
5.2	Bacterial identification	86	
5.1.3	Pour plate Method	86	

List of Tables

Table No.	Table Legends	Pages
	Chapter 1: Introduction	1-17
1.1	Enzymes in various industrial segments and their	4-6
	applications	
1.2	Sources of microbial fibrinolytic enzymes	9
1.3	Fibrinolytic enzyme producing Bacilli, isolated from traditional	10
	fermented food	
1.4	Statistical method to improve protease production from	16
	microorganisms	
	Chapter 2: Review of Literature	18-25
2.1	Recent reports on isolation of fibrinolytic enzymes from	21
	various sources from India	
2.2	Some latest and selected reports on isolation of fibrinolytic	22
	enzymes from various sources from abroad	
2.3	Recent reports on statistically optimized process parameters	24
	for fibrinolytic enzyme prouction under submerged	
	fermentation	
		00 40

26-43

Chapter 3: Materials and Methods

- 3.1 Optimal PCR reaction conditions or amplification of 35 conserved region of 16S-rRNA gene of selected fibrinolytic protease secreting bacterial strain
- 3.2 Independent variables for fibrinolytic protease production 40
 under SmF systems using Plackett-Burman design.
- 3.3
 Independent variables for fibrinolytic protease production
 42

 under SmF system using Central Composite Design
- 3.4 Validation of response surface for fibrinolytic protease 43 production

- 4.1 Biochemical and morphological tests of bacteria FF02B 50 isolate. Experiments were repeated thrice to assure reproducibility
- 4.2 Homologous search results of 16S-rRNA gene sequence 52 . using BLAST tool from NCBI.
- 4.3 Homologous search results of 16S-23S ISR gene sequence 56 using BLAST tool from NCBI
- 4.4 Representation of bacterial identification and designated 58 names

4.5	Plackett-Burman store design showing three variables with	75
	coded values along with the observed results for fibrinolytic	
	enzyme production by FF-02B bacterial isolate	

- 4.6 Statistical analysis of Plackett–Burman design showing 76 coefficient values, t- and p-value for each variable for fibrinolytic enzymes from FF-02B bacterial isolate (p-value <0.05).</p>
- 4.7 Observed responses and predicted values of fibrinolytic 77 enzyme production by FF02B bacterial isolates.
- 4.8 Analysis of Variance (ANOVA) of fibrinolytic enzyme 78 produced by FF02B bacterial isolate
- 4.9 Model coefficients estimated by multiple linear regressions 79 (significance of regression coefficients) for fibrinolytic enzyme production by FF02B bacterial isolate in SmF under shake-flask study (p<0.05).</p>

)

Chapter 6: Conclusion 91-93

List of Figure legends				
Figure	Figure Legends	Page		
No.		No.		
Chapter 1: Introduction				
1.1	The steps involved in classical versus state-of the- art	3		
	development of enzymes			
1.2	The proportion of deaths by causes in WHO regions, estimates for	7		
	2000 (WHO, 2001)			
	Chapter 2: Review of Literature			
	Chapter 3: Materials and Methods			
	Chapter 4: Results			
4.1	Preparation of pure culture	45		
4.2	Gram staining of FF02B cells at a magnification of 1000x under	46		
	compound microscope			
4.3	Biochemical fingerprints of FF02B bacterial isolate	47		
4.4	Biochemical profile of FF02B bacterial isolate	48		
4.5	Biochemical property of FF02B bacterial isolate	49		
4.6	PCR amplification of 16S rRNA gene from FF02B bacterial isolates	51		
4.7	Phylogenetic tree construction of 16S-rRNA gene using Neighbor-	53		
	Joining method			
4.8	Phylogenetic tree construction using minimum evolutionary	54		
	method			
4.9	PCR amplification of 16s-23s ISR region amplification	55		
4.10	Phylogenetic tree construction off 16S-23S ISR gene using	57		
	Neighbor-Joining method			
4.11	Effect of pH on bacterial growth (\blacksquare) and dry biomass (\blacktriangle) post	59		
	incubated for 24h at 37°C. Values are means ± S.D are of			
	triplicate experiments.			

4.12	Effect of pH on protein content (♦), Caseinolytic activity (■),and fibrinolytic activity (△) of culture supernatant from FF02B bacterial isolate. Value are means ± S.D are of triplicate experiments.	60
4.13	Effect of pH on F/C ratio of culture supernatant FF-02B bacterial isolates. Value are means ± S.D are of triplicate experiments	61
4.14	Effect of carbon sources on bacterial growth (☑) and bacterial dry biomass (◆) from FF02B bacterial isolate. Values are mean ± S.D are of triplicate value.	63
4.15	Effect of carbon sources on protein content (\blacklozenge), Caseinolytic activity (\blacksquare) and fibrinolytic activity ($▲$) production from FF02B bacterial isolate. Values are mean \pm SD are of triplicate value.	64
4.16	Effect on Carbon source on F/C ratio on Fibrinolytic enzyme production by FF02B bacterial isolates. Values are mean \pm S.D of triplicate values.	65
4.17	Effect of nitrogen sources on bacterial growth (▲) and bacterial dry biomass (■) of FF02B bacterial isolates. Values are mean ± S.D are of triplicate experiments.	67
4.18	Effect of nitrogen sources on protein yield (\blacklozenge), Caseinolytic activity (\blacksquare) and fibrinolytic activity (\blacktriangle) of FF02B bacterial isolates. Values are mean ± S.D are of triplicate experiments	68
4.19	Effect of nitrogen sources on F/C ratio of fibrinolytic enzymes from FF02B bacterial isolates. Values are mean \pm S.D are of triplicate experiments	69
4.20	Effect of incubation time on bacterial growth (■)and bacterial dry biomass (▲) of FF02B bacterial isolates. Values are mean ± S.D are of triplicate experiments	71
4.21	Effect of incubation time on protein content (\blacktriangle), Caseinolytic activity (\blacksquare), and fibrinolytic activity (\blacklozenge) of FF2B bacterial isolate. Values are mean ± S.D are of triplicate experiments.	72
4.22	Effect of incubation time on F/C ratio of protease enzymes	73

XI

	produced by FF-02B bacterial isolates. Values are mean \pm S.D	
	are of triplicate experiments.	
4.23 (a)	Response Surface Methodology plots for F/C ratio for fibrinolytic	80
	enzymes from FF02B bacterial isolates response surface plot.	
4.23 (b)	RSM plots for F/C ratio for fibrinolytic enzymes from	81
	FF02B bacterial isolates	
	Chapter 5: Discussion	84-90
	Chapter 6: Conclusion	91-93
	Reference and Appendix	

,