CONTENTS

	Page No.
LIST OF ABBREVIATIONS USED IN THE LITERATURE	j-ji
LIST OF FIGURES	iii-iv
LIST OF TABLES	V
CHAPTERS	
1. ABSTRACT	1
2. INTRODUCTION	2-7
3. REVIEW OF LITERATURE	8-13
4. OBJECTIVE OF THE LABORATORY	14
5. AIM AND OBJECTIVE	15
6 .MATERIALS AND METHOD	16-19
6.1 MATERIALS	16-17
6.1.1 GLASSWARES AND PLASTICWARES	
6.1.2 EQUIPMENTS	
6.1.3CHEMICALS	
6.2 MEDIA PREPARATION	18-19
6.2.1 PSA MEDIUM	
6.2.2 STARCH AGAR MEDIUM	
6.2.3 MILK AGAR MEDIUM	
6.2.4 TRI-BUTYRIN AGAR MEDIUM	
6.2.5 CZAPEK-MINERAL SALT AGAR MEDIUM	

0.2.0 LURIA BERTANI BRUTH	
6.3 COLLECTED PLANTS	19
6.4 SOIL SAMPLE	19
7. EXPERIMENTAL PROCEDURE	20-40
7.1 COLLECTION OF PLANTS AND SOIL	21
7.2 WATER OOZING FROM PLANTS FOR BACTERIA ISOLATION	21
7.3 ISOLATION OF BACTERIA FROM PLANTS AND SOIL BY SERIAL DILUPLATING PROCEDURES	
7.3.1 PROTOCOL FOR BACTERIAL ISOLATION FROM PLANTS	
 7.3.2 PROTOCOL FOR BACTERIAL ISOLATION FROM SOIL 7.4 ISOLATION OF PURE CULTURE BY STREAKING	25
ISOLATES	26-29
7.7.1 AMYLASE PRODUCTION	
7.7.2 PROTEASE ASSAY	
7.7.3 LIPASE ASSAY	
7.7.4 ANTI-MICROBIAL TEST	
7.8 GRAM'S STAINING OF BACTERIAL ISOLATES	29-31
7.9 MICROSCOPIC OBSERVATION OF TWITCHING MOTILITY	32
7.10 CELLULASE ASSAY	33
7.11 16S rDNA AMPLIFICATION OF BACTERIAL ISOLATES	34-37

7.11.1 PROTOCOL FOR COLONY PCR	
7.11.2 PREPARATION OF AGAROSE GEL ELECTROPHORESIS	
7.11.3 GEL EXTRACTION OF PCR AMPLIFIED DNA SAMPLE	
7.12 SEQUENCING OF 16S rDNA OF BACTERIAL ISOLATES	38-40
7.12.1 CHAIN (BIG DYE) TERMINATION PCR	
7.12.2 BIG DYE TERMINATION V3.1 CLEAN UP	
8. RESULTS AND DISCUSSION	38-70
8.1 ISOLATION OF BACTERIA	41-50
8.1.1 ISOLATION OF BACTERIA FROM BRINJAL PLANT	
8.1.2 ISOLATION OF BACTERIA FROM CHILI PLANT	
8.1.3 ISOLATION OF BACTERIA FROM SOIL	
8.2 BIOCHEMICAL CHARACTERISATION OF BACTERIAL ISOLATES	51-52
8.3 TWITCHING MOTILITY OF BACTERIAL ISOLATES	53-59
8.4 CELLULASE ASSAY OF BACTERIAL ISOLATES	60-64
8.5 AMPLIFICATION OF 16S rDNA OF THE BACTERIAL ISOLATES	65-66
8.6 SEQUENCE ANALYSIS OF 16S rDNA OF TWO BACTERIAL ISOLATES	67-70
9. CONCLUSION	71
10. FUTURE PROSPECTS	72
11. REFRENCES	73-76

LIST OF ABBREVIATIONS USED IN THE LITERATURE

bp	Base pairs
kb	Kilobase
⁰ C	- Degree Celsius
Cfu	- Colony forming unit
DNA	Deoxyribonucleic acid
Fig	Figure
g	Gram
hr	Hour(s)
μl	Microlitre
mg	- Milligram
min	· Minute(s)
rpm	- Revolution per minute
ml	Millilitre
w/v	Weight by volume
%	Per cent
V	Volt
mA	Milliampere
EDTA	Ethylenediaminetetraacetate
TAE	Tris Acetate EDTA

LBA	Luria Bertani Agar
PSA	- Peptone Sucrose Agar
PCR	- Polymerase Chain Reaction
rDNA	- Ribosomal Deoxyribonucleic acid
dNTP	-Deoxyribonucleosidetriphosphate
EPS	-Exopolysaccharide

LIST OF FIGURES USED IN THIS LITERATURE

(Fig. 1) Summary of known bacterial secretion system	4
(Fig. 2) Bacterial characteristics putatively involved in endophtye	7
(Fig. 3A) Twitching Motility positive	11
(Fig. 3B) Twitching Motility negative	11
(Fig. 4)Serial dilution of isolates and spread plate on PSA	23
(Fig. 5)Pure colonies of after streaking	25
(Fig. 6) Gram's staining of bacterial isolate	31
(Fig. 7) Bacterial isolates from brinjal plant	42
(Fig. 8) Differential abundance of bacterial isolate of brinjal plant within a	
habitat	44
(Fig. 9) Bacterial isolates from chilli plant	45
(Fig. 10) Differential abundance of bacterial isolate of chilli plant within a	
habitat	47
(Fig.11)Bacterial isolates from soil	48
(Fig. 12) Differential abundance of bacterial isolate of soil within a	
habitat	50

(Fig. 13) Bacterial isolates showing no Twitching motility53
(Fig. 14) Twitching Motility positive54
(Fig. 15) Cellulase Degradation60
(Fig. 16) 16S rDNA PCR amplification of plant bacterial isolates65
(Fig. 17) Gel extraction of PCR amplified DNA66
(Fig.18) Chromatograph of 16S rDNA sequence obtained by sequence analyzer67

LIST OF TABLES USED IN THIS LITERATURE

1.	Bacterial isolate from brinjal plant (TABLE 1A)43	
2.	Bacterial isolate from chilli plant (TABLE 1B)46	
3.	Bacterial isolate from soil (TABLE 1C)48-5	50
4.	Biochemical characterisation of bacterial isolates from	
	brinjal plant (TABLE 2A)51	
5.	Biochemical characterisation of bacterial isolates from chilli plant(TABLE 2B)52	
6.	Twitching Motility in bacterial isolates from brinjal plant (TABLE 3A)56	
7.	Twitching Motility in bacterial isolates from chilli plant (TABLE 3B) 57	
8.	Twitching Motility in bacterial isolates from soil (TABLE 3C)57	-59
9.	Comparison of Twitching Motility of Plant bacterial isolates and soil bacterial isolates. (TABLE 4)59)
10	Cellulase activity in brinjal bacterial isolates (TABLE 5A)61	
11	. Cellulase activity in chilli bacterial isolates(TABLE 5B)62	2
12	2. Cellulase activity in soil bacterial isolates (TABLE 5C)62	2-64
13	6. Comparison of Cellulase Activity of Plant bacterial isolates and soil bacterial isolates (TABLE 6)64	1