List of Figures

2.1	Main steps in sediment evolution and principal processes that modify	
	the composition of clastic sediments along the pathway from source	
	area to sedimentary basin (Adopted from [49])	15
2.2	Schematic diagram of the broad linkages between weathering, climate,	
	tectonics, biology, geomorphology and the carbon cycle [70]	17
2.3	Continental aquatic systems in the present day earth system [70]:	
	Black, natural fluxes and pathways of material; red, major impacts	
	of human activities: 1, N fixation; 2, water consumption; 3, fertiliza-	
	tion; 4, food and fibre consumption; 5, waste release; 6, atmospheric	
	pollutants fallout; 7, water abstraction; 8, land use (deforestation,	
	cropping, urbanization); 9, draining; 10, salinization, contamination,	
	depletion; 11, irrigation; 12, diversion; 13, evaporation, regulation,	
	eutrophication; 14, eutrophication; 15, damming, water storage, di-	
	version; 16, silting; 17, mining; 18, industrial transformation; 19,	
	enhanced soil erosion; 20, xenobiotic fluxes; 21, changes of inputs to	
	coastal zone; 22, changes in greenhouse gas emissions	22
2.4	Figure showing geographical locations and features in the Brahma-	
	putra basin. Source: modified from [179]	25
3.1	The Brahmaputra Basin in India with the sampling locations	53
3.2	Locations of various sediment samples collected across the river	53
3.3	The A-CN-K and A-CNK-FM diagram: where $A = Al_2O_3$, $C = CaO$	
	(in silicate fraction only, corrected for phosphates carbonates) $N =$	
	$Na_2O, K = K_2O, F = FeO and M = MgO $	67
4.1	Figure showing the map of the study area	73

4.2	Geology of the Brahmaputra basin. Source: modified from [15] 75	
4.3	Longitudinal profile of the Brahmaputra river (after $[21]$)	
4.4	Figure showing soil map of Assam	
4.5	Map of the Subansiri Basin	
4.6	Map of the Jiabharali Basin	
4.7	Map of the Pagladia River Basin	
4.8	Map of the Burhidihing River Basin	
4.9	Map of the Kopili River Basin	
4.10	Map of the Dikhow River Basin	
4.11	Map of the Brahmaputra Basin with the sampling locations 96	
5.1	Displaying bar diagram representing the textural characteristics of	
	bedload, overbank and flood plain sediments of the Brahmaputra 105 $$	
5.2	Sand-silt-clay diagram of the Brahmaputra river	
5.3	% s and-silt-clay of the channel, bank and flood plain sediments of the	
	tributaries	
5.4	Sand-silt-clay diagram of the south bank tributaries	
5.5	Sand-silt-clay diagram of the north bank tributaries	
6.1	Weathering of primary rock-forming minerals (after [9])	
6.2	Downstream variation in abundances of clay minerals in overbank	
	sediments along Brahmaputra(S-smectite; I-illite; K-kaolinite; C-	
	chlorite). PSG \equiv Pasighat, DBRG \equiv Dibrugarh, SBR \equiv Subansiri,	
	TEZ = Tezpur, GHY = Guwahati, DHBR = Dhubri	
7.1	Major (upper panel) and trace (lower panel) element composition nor-	
	malised with Upper Continental Crust (UCC) data of bulk sediments	
	of the south bank tributaries (Burhidihing, Dikhow and Kopili) 139	
7.2	Major (upper panel) and trace (lower panel) element composition	
	normalised with Upper Continental Crust (UCC) data of suspended	
	sediments of the south bank tributaries (Burhidihing, Dikhow and	
	Kopili)	

- 7.3 Major (upper panel) and trace (lower panel) element composition normalised with Upper Continental Crust (UCC) data of bulk sediments of the north bank tributaries (Jiabharali, Subansiri and Pagladia). . . 141
- 7.4 Major (upper panel) and trace (lower panel) element composition normalised with Upper Continental Crust (UCC) data of suspended sediments of the north bank tributaries (Jiabharali, Subansiri and Pagladia).

7.10 Ternary plot of A-CN-K after [30] of analyzed samples of the Brahmaputra.Granite and Granodioritc composition were also included. The dash arrow indicated the ideal weathering trend and the bold arrow indicated the weathering trend followed by the samples. These samples showed a linear trend that is inconsistent with simple weathering being the sole control of the composition (compare with Figure 7.7). For example, on the A-CN-K diagram the predicted weathering trend is shown for a hypothetical composition derived from extrapolating the sediment trend to an unweathered composition (dashed arrow). This may be due to mixing of a relatively weathered source with an unweathered source of differing primary composition or perhaps some influence from secondary sedimentary process that resulted in redistribution (gains or losses depending on composition) of Ca, Na, and/or K in the silicate fraction or addition of K from the illite rich Total particulate flux during monsoon along the Brahmaputra river. . 163 8.1 ded adjument global average concentration normalized plot of 00

8.2	Suspended sediment global average concentration normalised plot of
	the Brahmaputra river
8.3	The upper and lower panels show the suspended sediment global av-
	erage concentration normalised plot of the southern and northern
	Himalayan tributaries respectively
8.4	Upper continental crust concentration normalised plot of the Brahma-
	putra river
8.5	The upper and lower panels show the suspended sediment global av-
	erage concentration normalised plot of the Southern and northern
	Himalayan tributaries respectively
8.6	Elemental flux of the rivers in tonnes/yr $\times 10^6$

9.2	The lateral and downstream variation of organic carbon along the
	Brahmaputra
9.3	Plots showing the relationship between TOC versus $\%$ silt-clay. $~$ 182
9.4	Plot showing the relationship between TOC and mean grain size
	(channel, overbank and floodplain)
9.5	Plots showing the relationship between (a) POC versus SPM (Upper
	left panel) (b) POC versus LOI (Upper right panel) (c) variation of
	POC concentration with SPM (Lower panel) along the Brahmaputra
	River
9.6	Variation of OC in the north bank tributaries
9.7	Variation of OC in the south bank tributaries
9.8	Plots showing the relationship between TOC versus $\%$ silt-clay in the
	north bank tributaries sediment (channel, overbank and floodplain) 185
9.9	Plots showing the relationship between TOC (%) versus mean grain
	size in the north bank tributaries (channel, overbank and floodplain). 185
9.10	Plots showing the relationship betwee TOC versus $\%$ silt-clay in the
	south bank tributaries sediment (channel, overbank and flood plain). $% \left(186\right) = 100000000000000000000000000000000000$
9.11	Plot showing the relationship between TOC versus mean grain size
	in the south bank bank tributaries (channel, overbank and floodplain).186
9.12	Box plot of TOC versus depositional environment in the Brahmapu-
	tra. Median, percentiles (10th, 25th, 75th and 90th) and error of the
	OC (channel, suspended, overbank and floodplain) of the different
	types of sedimentary deposits within the Brahmaputra catchment 188
9.13	Box plot of TOC versus depositional environment in the North bank
	tributaries. Median, percentiles (10th, 25th, 75th and 90th) and er-
	ror of the OC (channel, suspended, overbank and floodplain) of the
	different types of sedimentary deposits
9.14	Box plot of TOC versus depositional environment in the South bank
	tributaries. Median, percentiles $(10$ th, 25th, 75th and 90th) and error
	of the OC (channel, overbank and floodplain) of the different types
	of sedimentary deposits

List of Tables

3.1	Pipette withdrawal times calculated from Stoke's Law	56
3.2	Showing the d spacing values by XRD for mineral identification	59
3.3	Commonly used wavelengths for major and trace elements analysis	
	on ICP-AES	66
4.1	Salient Features of the Brahmaputra Basin [10]	74
4.2	The geological formations in the Brahmaputra basin covering Assam	
	are summarised into the following stratigraphic sequences. \ldots .	77
4.3	Drainage area of the Brahmaputra Basin in India [10]	78
4.4	Hydrological characteristics of the tributaries of Brahmaputra rivers	
	[22]	79
4.5	Climatic characteristics of the four zones of the Brahmaputra basin	81
4.6	Temperature , humidity and rainfall at diff locations in the Brahma-	
	putra valley [25]. PM and RM refer to pre-monsoon and retreating	
	monsoon respectively	83
4.7	Generalised lithostratigraphy of the Jiabharali basin (after Geological	
	Survey of India, 2010, [11])	89
4.8	Stratigraphic succession of the outcrops of the tertiary rocks in the	
	hilly area and alluvial plains in the Burhidihing basin. (after [41])	93
4.9	The stratigraphic succession of the the Kopili basin between the Mikir	
	Hills and the Shillong Plateau	94
4.10	Showing stratigraphic succession of the Dikhow basin	95
4.11	Sampling locations in the Brahmaputra river with sample codes and	
	coordinates and sampling dates. SS: Suspended, CH: Channel, BNK:	
	Overbank, FP: Floodplain	97

4.12	Sampling locations in the tributaries with the sample codes , dates and coordinates. SS: Suspended, CH: Channel, BNK: Overbank, FP:
	Floodplain
5.1	Sediment classification based on grain size
5.2	% sand-silt-clay and Textural characteristics of bedload, overbank and floodplain sediments of the Brahmaputra river
5.3	% sand-silt-clay of the tributaries
5.4	% sand-silt-clay of the tributaries
5.5	Summary of the ranges and average values for the [4] grain size param- eters in channel, bank and floodplain sediments of the Brahmaputra river
5.6	Summary of the ranges and average values for the [4] grain size parameters in channel, bank and floodplain sediments of the tributaries. 113
6.1	Mineralogy of channel ,overbank and floodplain sediments of the Brahma- putra. $Qtz \equiv Quartz$, ortho \equiv orthoclase, plagio \equiv plagioclase, Musco \equiv Muscovite, bio \equiv biotite, horn \equiv hornblende, chl \equiv Chlorite, dol \equiv Dolomite, cal \equiv Calcite, micro \equiv microcline, apa \equiv apatite, oligo \equiv oligoclase
6.1	putra. $Qtz \equiv Quartz$, ortho \equiv orthoclase, plagio \equiv plagioclase, Musco \equiv Muscovite, bio \equiv biotite, horn \equiv hornblende, chl \equiv Chlorite, dol \equiv Dolomite, cal \equiv Calcite, micro \equiv microcline, apa \equiv apatite, oligo
	putra. $Qtz \equiv Quartz$, ortho \equiv orthoclase, plagio \equiv plagioclase, Musco \equiv Muscovite, bio \equiv biotite, horn \equiv hornblende, chl \equiv Chlorite, dol \equiv Dolomite, cal \equiv Calcite, micro \equiv microcline, apa \equiv apatite, oligo \equiv oligoclase

Major and trace elements composition of sediments from the South 7.1bank tributaries from different locations along with their LOI (Loss on Ignition), CIA, Mean size (Mz) in phi. The major oxides and trace elements are in percentage and ppm respectively. $CH \equiv channel;$ BNK \equiv bank; FP \equiv floodplain, NFP \equiv new floodplain, OFP \equiv old floodplain. $\ldots \ldots 134$ Major and trace elements composition of sediments from the north 7.2bank tributaries from different locations along with their LOI (Loss on Ignition), CIA, Mean size (Mz) in phi. The major oxides and trace elements are in percentage and ppm respectively. $CH \equiv channel;$ Major and trace elements composition of sediments from the Brahma-7.3putra from different locations along with their LOI (Loss on Ignition), CIA, Mean size (Mz) in phi. The major oxides and trace elements 7.4Major and trace elements composition of suspended sediments from the Brahmaputra and its tributaries from different locations. The major oxides and trace elements are in percentage and ppm respectively.137 Major and trace elements composition of clay and sand fraction from 7.5the floodplain sediments of Brahmaputra and its tributaries from different locations. The major oxides and trace elements are in percent-8.1 8.2 8.3 Hydrological features and particulate flux of the Brahmaputra River and its tributaries (Monsoon). $Nm \equiv not measured. \dots \dots \dots \dots 162$ 8.4 The chemical composition of the suspended sediments and world av-8.5 erage concentration of suspended sediments (world average concen-8.6

- 9.2 Total organic carbon(wt %), LOI (Loss on ignition, %), % silt-clay and mean grain size (phi) in various locations in channel , bank ,floodplain and suspended sediments in the tributaries. na ≡ not analysed. 180
- 9.3 Relative abundance of clay minerals smectite (S), illite (I), kaolinite(K) and chlorite (C) present in the sediments of the Brahmaputra and its tributaries.187
- 9.4 Pair wise comparisons between the environmental classes. 190

List of Abbreviations

Abbreviation	Meaning
Corg	Organic carbon
CIA	Chemical Index of Alteration
PIA	Plagioclase Alteration Index
P/F	Plagioclases/feldspars
K-feldspar	Potassium feldspar
Q/F	Quartz/feldspar
TDS	Total dissolved Solids
L	Litre
$\mu { m m}$	Micrometer
m	Metre
kg	Kilogram
ASTM	American Society for Testing and Materials
ICP-AES	Inductively Coupled Plasma-Atomic Emission Spectrometer
IRS	International Rock standard
CEM MARS	Microwave accelerated reactor system- 5
LOI	Loss on Ignition
DW	Dry weight
OC	Organic Carbon
TC	Total Carbon
IC	Inorganic Carbon
NDIR	Non dispersive infra red
PMT	Photo Multipler Tube

P/B	Peak/background
RSD	Relative standard deviation
USGS	United States Geological Survey
XRF	X-ray fluorescence
WD-XRF	Wavelength dispersive- X-ray Fluorescence
A-CN-K	Al_2O_3 -CaO+NaO-K ₂ O
A-CNK-FM	Al_2O_3 -CaO+NaO-K_2O-FeO+MgO
SW	South west
WSW	West-South-West
MCM	Million cubic meters
CWC	Central Water Commission
TPB	Transhimalayan Plutonic Belt
ENE-WSW	East-Northeast-West-Southwest
HFT	Himalayan Frontal Thrust
MBT	Main Boundary Thrust
MCT	Main Central Thrust
MNT	Main Northern Thrust
NE	North east
NBPZ	North Bank Plain Zone
UBVZ	Upper Brahmaputra Valley Zone
CBVZ	Central Brahmaputra Valley Zone
LBVZ	Lower Brahmaputra Valley Zone
CGWB	Central Ground Water Board

PSG	Pasighat
DIB	Dibrugarh
TEZ	Tezpur
GHY	Guwahati
DHBR	Dhuburi
SS	Suspended
СН	Channel
FP	Floodplain
BNK	Overbank
Qtz	Quartz
Ortho	Orthoclase
Plagio	Plagioclase
Musco	Muscovite
Bio	Biotite
Horn	Hornblende
Chl	Chlorite
Dol	Dolomite
Cal	Calcite
Micro	Microcline
Apa	Apatite
111	Illite
Као	Kaolinite
Smec	Smectite

Mont	Montmorillonite
Vermi	Vermiculite
Mz	Mean grain size
DOC	Dissolved organic carbon
POC	Particulate organic carbon
DIC	Dissolved inorganic carbon
ANOVA	Analysis of variance
LSD	Least significance difference
SPM	Suspended particulate matter
G-B-M	Ganga Brahmaputra Meghna
LS	Sediment load
Qt	Discharge
NASQAN	National Stream Quality Accounting Network
USDA	United States Department of Agriculture