Please use this identifier to cite or link to this item: http://192.168.98.239:8080/jspui/handle/1994/1802
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2025-02-06T04:35:31Z-
dc.date.available2025-02-06T04:35:31Z-
dc.date.issued2024-
dc.identifier.urihttp://192.168.98.239:8080/jspui/handle/1994/1802-
dc.description.abstractAvailable.en_US
dc.format.extent137 p.en_US
dc.language.isoenen_US
dc.publisherTezpur Universityen_US
dc.subjectEncoder-decoderen_US
dc.subjectHybrid deep learning modelen_US
dc.subjectLSTMen_US
dc.subjectConvolutional LSTMen_US
dc.subject3D convolution neural networken_US
dc.subjectBidirectional LSTMen_US
dc.subjectSNRen_US
dc.titleTime series characterization and prediction of ambient PM2.5 concentrations in India: A deep learning approachen_US
dc.typeThesisen_US
dc.contributor.guidePrakash, Amit-
dc.creator.researcherGoswami, Pranjol-
dc.departmentDepartment of Environmental Scienceen_US
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat 
01_title.pdf454.63 kBAdobe PDFView/Open
02_prelim pages.pdf794.28 kBAdobe PDFView/Open
03_content.pdf442.75 kBAdobe PDFView/Open
04_abstract.pdf444.29 kBAdobe PDFView/Open
05_chapter 1.pdf741.44 kBAdobe PDFView/Open
06_chapter 2.pdf1.87 MBAdobe PDFView/Open
07_chapter 3.pdf1.14 MBAdobe PDFView/Open
08_chapter 4.pdf4.84 MBAdobe PDFView/Open
09_conclusion.pdf563.6 kBAdobe PDFView/Open
10_annexures.pdf2.7 MBAdobe PDFView/Open
80_Recommendation.pdf1.02 MBAdobe PDFView/Open
90_Plagiarism_Report.pdf224.02 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.