opac header image

Astrophysical recipes : the art of AMUSE /

Zwart, Simon Portegies,

Astrophysical recipes : the art of AMUSE / Art of AMUSE. Art of Astronomical Multipurpose Software Environment. Simon Portegies Zwart, Steve McMillan. - 1 online resource (various pagings) : illustrations (chiefly color). - [IOP release 5] AAS-IOP astronomy. [release 1], 2514-3433 . - IOP (Series). Release 5. AAS-IOP astronomy. Release 1. .

"Version: 20181201"--Title page verso.

Includes bibliographical references.

1. What is computational astrophysics? -- 1.1. Computational astrophysics -- 1.2. A brief history of simulations in astrophysics -- 1.3. Software used in this book -- 1.4. Initial conditions 2. Gravitational dynamics -- 2.1. In a nutshell -- 2.2. N-body integration strategies -- 2.3. Gravity solvers in AMUSE -- 2.4. Examples -- 2.5. Validation -- 2.6. Assignments 3. Stellar structure and evolution -- 3.1. In a nutshell -- 3.2. Simulating stellar evolution -- 3.3. Examples -- 3.4. Validation -- 3.5. Assignments 4. Elementary coupling strategies -- 4.1. Multiphysics problems -- 4.2. Combining two or more solvers -- 4.3. Analysis tools -- 4.4. Multi-code strategies -- 4.5. The multiples module -- 4.6. Examples -- 4.7. Validation -- 4.8. Assignments 5. Hydrodynamics -- 5.1. in a nutshell -- 5.2. Hydrodynamics in AMUSE -- 5.3. Examples -- 5.4. Validation -- 5.5. Assignments 6. Radiative transfer -- 6.1. In a nutshell -- 6.2. Radiative transfer in AMUSE -- 6.3. Examples -- 6.4. Validation -- 6.5. Assignments 7. Hierarchical coupling strategies -- 7.1. Code-coupling strategies -- 7.2. Using bridge -- 7.3. Bridging other codes -- 7.4. Examples -- 7.5. Assignments 8. Case studies -- 8.1. Accretion in the galactic center from s-star winds -- 8.2. Supernova impact on the early solar system -- 8.3. Closure 9. Epilogue -- Appendices. A. AMUSE fundamentals -- B. AMUSE specifics -- C. Programming primer.

Computational astrophysics is a new and quickly growing discipline. In this book the authors outline the fundamentals for computational astrophysics, focusing on the use of the Astronomical Multipurpose Software Environment (AMUSE), which is a general-purpose simulation environment in astrophysics written in Python. AMUSE allows you to combine existing solvers to build new applications that can be combined again to study gradually more complex situations. This enables the growth of multi-physics and multi-scale application software in a hierarchical fashion, testing each intermediate step as the complexity of the software continues to increase. All examples in the book are associated with codes that run on a simple laptop or workstation. All figures are reproducible with a simple script, and all scripts are available online to be downloaded and run accordingly.




Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.


Simon Portegies Zwart is currently professor of numerical star dynamics at Leiden University with research interests in computational gravitational dynamics, stellar and binary evolution and related topics. His ongoing work has been the development and building of the Astronomical Multipurpose Software Environment (AMUSE). He has published more than 300 papers and received numerous citations in relevant works. Steve McMillan is currently the head of the department of physics at Drexel University and his research interests lie in stellar dynamics and computations of stellar systems. Both authors have dedicated extensive amounts of time to this book and continue to work on AMUSE as an ongoing project.

9780750313209 9780750313223

10.1088/978-0-7503-1320-9 doi


Astronomical Multipurpose Software Environment (Electronic resource)


Astrophysics--Data processing.
Astrophysics--Computer simulation.
Theoretical & mathematical astronomy.
SCIENCE / Astronomy.

QB51.3.E43 / Z833 2018eb

522/.85

© 2022 Central Library, Tezpur University.
For any query, please contact Phone: 03712-27-3224 | Email: library@tezu.ernet.in